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Abstract

The importance of fungal infections in both human and animals has increased over the
last decades. This article represents an overview of the different categories of fungal
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infections that can be encountered in animals originating from environmental sources
without transmission to humans. In addition, the endemic infections with indirect trans-
mission from the environment, the zoophilic fungal pathogens with near-direct trans-
mission, the zoonotic fungi that can be directly transmitted from animals to humans,
mycotoxicoses and antifungal resistance in animals will also be discussed. Opportunistic
mycoses are responsible for a wide range of diseases from localized infections to fatal
disseminated diseases, such as aspergillosis, mucormycosis, candidiasis, cryptococcosis
and infections caused by melanized fungi. The amphibian fungal disease chytridiomyco-
sis and the Bat White-nose syndrome are due to obligatory fungal pathogens. Zoonotic
agents are naturally transmitted from vertebrate animals to humans and vice versa. The
list of zoonotic fungal agents is limited but some species, like Microsporum canis and
Sporothrix brasiliensis from cats, have a strong public health impact. Mycotoxins are
defined as the chemicals of fungal origin being toxic for warm-blooded vertebrates. In-
toxications by aflatoxins and ochratoxins represent a threat for both human and animal
health. Resistance to antifungals can occur in different animal species that receive these
drugs, although the true epidemiology of resistance in animals is unknown, and options
to treat infections caused by resistant infections are limited.

Key words: Opportunistic fungi, pathogenic fungi, zoophilic fungi, zoonoses, mycotoxicoses, antifungal resistance,
mycoses in animals, veterinary mycology.

Introduction

The ISHAM Veterinary Mycology Working Group
(ISHAM-VMWG) has been established in 2010 by a group
of experts to support all scientific aspects that deals with
mycology and veterinary sciences, including: diagnosis and
identification of fungal pathogens of veterinary importance,
pathophysiology and immunology of fungal diseases in an-
imals, epidemiology, prevention, control and eradication of
animal mycoses, mycotoxins and mycotoxicosis in animals,
standardization of animal model, and development of alter-
natives. The first general meeting of ISHAM-VMWG was
held in June 2012 during the 18th congress of ISHAM in
Berlin, Germany. There was a great opportunity to share
expertise, recent activities, and also discuss future plans
among members. Attendees were scientists and veterinari-
ans from all over the world. The membership has been open
to any with a scientific interest in fungi affecting animal
species, understanding a veterinary disease problem, devel-
opment of animal models of human fungal disease. Since
then, ISHAM VMWG was highly involved in international
educational activities. The international veterinary mycol-
ogy course is a 5 days’ educational event under the umbrella
of ISHAM. The course is organized every two to three years
and the next one will be hold in June 2018 in Amsterdam,
The Netherlands. ISHAM-VMWG published several sci-
entific articles in the peer-reviewed journals. Attempts are
also under way to complete a textbook on emerging and
epidemic fungal infection by the end of 2017 and the Atlas
of Veterinary Pathogenic Fungi by 2020.

Fungi are relatively uncommon causes of disease in
healthy and immunocompetent humans and nonhuman ver-
tebrates, even though hosts are constantly exposed to in-
fectious propagules.1,2 However, an increasing number of
recalcitrant fungal diseases in animals have occurred over
the last two decades, originating from opportunistic and
pathogenic fungi.2

Opportunistic fungi have a preferred habitat indepen-
dent from the living host and cause infection after acci-
dentally penetration of intact skin barriers, or when im-
munologic defects or other debilitating conditions exist in
the host.3 In contrast, pathogens are defined as having ad-
vantage of the vertebrate host; in obligatory pathogens
the host is indispensable to complete their life-cycle and
for nutrient acquisition, growth, niche establishment, and
reproduction.4 Zoonoses are infections that can be nat-
urally transmitted between vertebrate animals and hu-
mans.5 From a global prospective, zoonotic infections have
been recognized for many centuries, and account for the
majority of emerging and reemerging infectious diseases,
worldwide.6

The present article only highlights a selected list of in-
fections caused by environmental fungi that can be encoun-
tered in animals, as well as zoonotic fungi that can be trans-
mitted from animals to humans. Another area of veterinary
significance is the presence of mycotoxins in animal feed,
and the eventual risks of mycotoxicoses. In addition, the
development and epidemiology of antifungal resistance in
animals will also be discussed.
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Opportunistic fungal infections with no

transmission

Aspergillosis

Aspergillosis in animals covers a wide range of diseases
from localized conditions to fatal disseminated infections,
as well as allergic reactions caused by fungi belonging to
the genus Aspergillus.7,8 The numerous members of this
genus are saprobic filamentous fungi commonly found in
soil, decaying vegetation, and on seeds and grains, with an
occasional potential to infect living animal hosts including
insects, birds, and mammals.9,10

Although there are more than 300 known species in
the genus, animal aspergilloses are mainly caused by A.
fumigatus, and only rarely by a few other species.9,10

Modern classification of Aspergillus species is by polypha-
sic taxonomy and has led to the distinction of 22 dis-
tinct sections, of which Aspergillus, Fumigati, Circumdati,
Terrei, Nidulantes, Ornati, Warcupi, Candidi, Restricti,
Usti, Flavipedes, and Versicolores contain clinically rele-
vant species.11

In animals, aspergillosis is primarily a respiratory infec-
tion that may become generalized; however, tissue predilec-
tion is variable between species. Similar to infections in
humans, animals exhibiting inability to produce a normal
immune response are at higher risk of infection. Aspergillo-
sis may also occur in healthy animals under environmental
stress and other immune-compromising conditions.12,13

In invertebrates, A. sydowii causes a recently recognized,
large epizootic affecting sea fan corals (Gorgonia species),14

first documented in 1995 near Saba the Bahamas and sub-
sequently spreading throughout the Caribbean basin, in-
cluding in the Florida Keys.15,16 Aspergillus species are
also known to infect honeybee (Apis mellifera) brood,
causing stonebrood disease over all larval stages.17,18 As-
pergillus species with the ability to produce mycotoxins
such as A. flavus, A. fumigatus, and A. niger have been
suggested to be the primary cause of this disease.19 In rep-
tiles, Aspergillus species such as A. fumigatus, A. niger and
A. terreus have been isolated from both cutaneous and
disseminated infections,20 mainly promoted by immune-
compromising conditions, such as husbandry deficiencies
or inappropriate temperatures, humidity, or poor enclosure
hygiene.21 Avian aspergillosis is predominantly a disease of
the respiratory tract, but all organs can be involved, lead-
ing to a variety of acute or chronic manifestations.22,23 All
avian species should probably be considered as suscepti-
ble. Aspergillus fumigatus has been involved in significant
common-source sapronotic die-offs of domestic and free-
ranging wild birds.24 Economic significance of aspergillosis
is most readily apparent in poultry production, where dis-
ease occurs late in the growing cycle.25

Sinonasal, bronchopulmonary, and disseminated infec-
tions are major forms of aspergillosis in dogs and cats.26–28

In dogs, a breed or gender predisposition can be recog-
nized.29 Aspergillosis also has been also reported in cats
stressed by underlying disease (such as feline Immunode-
ficiency Virus and Feline Leukemia Virus) or immunosup-
pression.30–32 Aspergillus felis has been the most frequently
reported etiologic agent of sinoorbital aspergillosis in cats,
followed by cryptic species of the section Fumigati, includ-
ing A. udagawae and A. viridinutans.32,33 In ruminants,
Aspergillus species, particularly A. fumigatus, are known
worldwide to cause mycotic pneumonia, gastroenteritis,
mastitis, placentitis, and abortions.34 Aspergillus species
also cause guttural pouch infections, keratomycosis and
pneumonia in horses.35–39 In marine mammals, aspergillo-
sis can be primary or secondary to any chronic infection,
physiologic stress, or immunosuppression.40 Aspergillosis
may also occur in various non-human primate species, par-
ticularly in immunocompromised hosts.41

Mucormycosis

Mucormycosis is a saprobic opportunistic infection caused
by fungi in the order Mucorales in the former class Zy-
gomycetes.42 Within the order, the most often identified
species belong to the genera Rhizopus, Mucor, Rhizomu-
cor, Lichtheimia (formerly Absidia), Apophysomyces, Cun-
ninghamella, and Saksenaea. The natural habitat for the
Mucorales is soil, and they are typically isolated from de-
caying organic material. The fungi are often also found in
indoor and outdoor air, in food stuffs, and in dust.42 Mu-
cormycosis in animals (both domesticized and wild, and in
mammalian and non-mammalian) and humans are similar
with respect to epidemiology, portal of entry, localization,
and formation of lesions.43–54

The opportunistic pathogenic members of the Mucorales
are ubiquitous within the domesticated environment of ani-
mals and in indoor habitats, but infection almost invariably
is established only when the normal balance between animal
and the agent is disturbed.43 In line with other opportunis-
tic fungal infections in animals, for example, candidiasis
and aspergillosis, predisposing factors are not related to
the animal species but to the infected animal per se.43–54

General predisposing factors favoring mucormycosis in hu-
mans also apply for animals, that is, infections are seen
in hosts that are immunocompromised or otherwise debil-
itated due to metabolic disorders. However, overwhelming
exposure to mucoralean fungi or disturbance of the bacte-
rial microbiota in the forestomach may cause infection in
otherwise healthy animals.55 Two examples in cattle are of
interest, that is, mucormycotic ruminitis and lymphadenitis.
The rumen of ruminants is anaerobic, but the ruminal wall
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represents an aerobic-anaerobic interface, which therefore
is colonized by microaerobic bacteria.43 Antibiotic treat-
ment will destroy this normal micro-aerobic bacterial flora,
facilitating infection by Mucorales. Mucormycotic rumini-
tis is therefore a well-known sequel to intensive antibiotic
treatment of cattle.52 Heavy exposure to Mucorales fungi
through contaminated food stuffs is a cause of infection of
intestinal lymph nodes. Notably, lesions of mucormycotic
lymphadenitis are macroscopically indistinguishable from
bovine tuberculosis.56

Ruminant mucormycosis may also be respiratory, oc-
cur in other parts of the gastrointestinal tract, or system-
ically.51,53 Due to the frequently observed angioinvasion
of Mucorales, hematogenous spread to multiple organs is
often reported. In pregnant cows, the fungus frequently
spreads to the placenta, although Aspergillus fumigatus is
the predominant course of bovine mycotic placentitis and
abortion.57

In horses, mucormycotic lesions have been reported in
different organs, especially in the respiratory system and
gastrointestinal tract, and may lead to systemic spread to
multiple organs.48 Moreover, cases of localized skin infec-
tion have also been described.47 Mucormycosis in pigs is
uncommon, again especially affecting lungs, gastrointesti-
nal tract and lymph nodes.58 In dogs and cats some cases
of mucormycosis have been described as a cause of, for ex-
ample, enteritis or systemic spread.59 Few, scattered reports
are available on the occurrence of mucormycosis in differ-
ent kinds of avian species. Especially the respiratory organs
and gastrointestinal tract are often involved.60–63 Cases in
wild living animals have been described, for example, in
dolphin, bison, and seal.64,65

Candidiasis

The genus Candida is currently being reclassified along phy-
logenetic lines. In its classical sense, it comprises over 200
species of which 15 have been isolated from infections in
humans and animals.66,67 Most prominent as causes of dis-
ease are C. albicans, C. glabrata, C. parapsilosis, C. tropi-
calis, and C. krusei.68–73 These species are also frequently
found as part of the microbiota of healthy humans and ani-
mals74–78 and are thus considered as commensal and facul-
tatively pathogenic. While C. albicans and C. glabrata ap-
pear to occur only in association with warm-blooded hosts,
other infectious Candida species are also known from the
environment. Infections are usually caused by strains that
commensally precolonized the host rather than by vertical
or longitudinal transfer,79,80 and the zoonotic potential can
thus be considered to be low. Although C. albicans is the
most virulent Candida species, others might be more promi-

nent in specific animals depending on the site of infection
(Table 1).

Candidiasis can be superficial, affecting the skin, mu-
cosal membranes of the gastrointestinal and urogenital
tract. Dissemination of the fungus can lead to candidemia
or localized infection of internal organs. In contrast to hu-
mans, epidemiological data and systematic analysis of risk
factors are lacking for veterinary candidiasis. Animal can-
didiasis is mentioned in veterinary textbooks as occasion-
ally affecting domestic animals.81–83 Given the fact that
the general factors contributing to candidiasis are not host-
specific, it seems likely that the general risk factors de-
scribed for human patients are also applicable to veterinary
medicine.84,85 Cutaneous candidiasis is rather frequent in
dogs, usually in association with atopy, other immune dis-
eases, immunosuppressive disorders, or medical treatment
leading to immunosuppression86–94 and clinically resembles
Malassezia infections. It can also occur in birds, especially
in chicken, but rarely in other species. Mucosal oral and
gastrointestinal candidiasis occurs most commonly in birds,
where it is the prevalent form of candidiasis. It is referred
to as thrush or sour crop, characterized by white-grayish
lesions, often accompanied by hyperkeratosis.95–97 Simi-
lar disorders have been described in horses, cattle, dogs,
cats, and pigs, usually associated with young age, antibi-
otic use, or immunosuppression.81,98—100 Lesions in mam-
malian hosts are often invasive and ulcerative. Systemic
Candida infection is usually rare in dogs and cats. How-
ever, surgery and trauma, for example, by foreign bod-
ies, can lead to introduction of Candida into deeper tis-
sue or the peritoneal cavity, leading to granuloma forma-
tion or peritonitis, which has been described in cats and
dogs.101–105 Candidiasis of the urinary tract likewise oc-
curs in dogs and cats, manifesting as candiduria and cysti-
tis, usually in association with antibiotic treatment due to
previous bacterial infections, or other underlying diabetes
mellitus.106–113 Environmental Candida species, such as C.
parapsilosis, C. tropicalis, and C. guilliermondii, can cause
abortion in horses and cattle,114–118 and Candida mastitis is
a well-described sequel of intramammary antibiosis in dairy
cattle.119–135 Disseminated candidiasis has been reported
in dogs, cats, sheep, calves, horses, ferrets, and alpacas
(Table 1). The symptoms of this disease are often unspecific,
and may lead to myocarditis, endocarditis or endophthalmi-
tis. Of note, eye infections in horses have rather frequently
been reported in the absence of disseminated disease.

Although candidiasis is a rare infection in animals, it is
an important differential diagnosis to bacterial infections,
and candidiasis can also occur secondary to bacterial infec-
tions. It should be considered as a possible option especially
when hosts do not respond to antibiotic treatment.
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Table 1. Selected case reports of candidiasis in animals. Candida spp.: species not determined or several species.

Host species Candida species Types of infection Predisposing factors

Birds Candida spp. Oral and gastrointestinal candidiasis
(pigeons, parrots, Galliformes,
Passeriformes, raptors)

None; concomitant infections by other
pathogens; immunosuppression

C. albicans
C. krusei
C. albicans Pulmonary candidiasis (sun conure,

raptors)
–

C. albicans Cutaneous candidiasis (Passeriformes,
chicken)

–

C. albicans Myocarditis (canary) –

Dogs C. guilliermondii Joint infection Leishmaniasis and intra-articular
corticosteroid injections

C albicans, C glabrata Peritonitis Intestinal surgery, corticosteroids
C albicans, C. guilliermondii,
C. parapsilosis, C. tropicalis

Dermatitis, incl. otitis externa Atopia and other autoimmune diseases,
immunosuppressive disorders and drugs,
other infections

C albicans, C. parapsilosis,
C. tropicalis

Urinary tract Diabetes mellitus, lower urinary tract
diseases incl. bacterial infections and
antibiotic treatment, neoplasia

(candiduria, cystitis)
C. albicans, Candida spp. Disseminated candidiasis (incl.

endophtalmitis, pericarditis, spondylitis)
Intestinal surgery, immunosuppression,
neoplasia, catheterization

C. albicans keratitis –
Candida spp. pneumonia Concurrent bacterial pneumonia and

aspergillosis

Cats C. parapsilosis Granulomatous rhinitis Corticosteroid treatment
C. albicans Urinary tract Diabetes mellitus, lower urinary tract

diseases incl. bacterial infections an
antibiotic treatment, neoplasia

Candida spp. (candiduria, cystitis)
C. albicans Intestinal granuloma Suspected trauma by foreign body
Candida spp. Disseminated candidiasis (incl. ocular

involvement)
Diabetes mellitus, immunosuppression

C. albicans Pyothorax –

Ruminants Cattle C. albicans, C. catenulata,
C. guilliermondii, C. kefyr,
C krusei, C. maltosa, C.
rugosa and others

Mastitis Intramammary antibiotic treatment,
environmental contamination, milking
hygiene

C. parapsilosis, C. tropicalis Abortion –
Candida spp. Otitis externa –
C. albicans Gastrointestinal infection Antibiotics, concurrent gastrointestinal

mucormycosis
C. glabrata
C. albicans Disseminated candidiasis Antibiotics, young age
Candida spp.
C. krusei Bronchopneumonia

Alpacas,
lamas,
guanaco

C. albicans Disseminated candidiasis Immunosuppression suspected

Candida spp.
Camel C. albicans Dermatitis
Sheep Candida spp. Disseminated candidiasis

Horses Candida spp. Keratitis
Candida spp. Arthritis
C. parapsilosis Endocarditis
C. albicans Systemic candidiasis Birth hypoxia, sepsis
Candida spp. Oral candidiasis Young age and immunodeficiency
Candida spp. Gastroesophageal candidiasis Young age
C. guilliermondii Abortion
C. pseudotropicalis

Pigs C. albicans Mucocutaneous candidiasis Possibly immunosuppression due to
viral infection (porcine circovirus 2)
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Cryptococcosis

The genus Cryptococcus (teleomorph Filobasidiella) com-
prises basidiomycetous yeast species, most of which
are environmental saprophytes that do not cause infec-
tions in human or animal.136 The pathogenic agents of
cryptococcosis are classified into two species, C. neofor-
mans and C. gattii.137 The species C. neoformans comprises
two varieties, C. neoformans var. grubii and C. neofor-
mans var. neoformans. The species C. neoformans consists
of the VNI-VNIV and VNB molecular genotypes, com-
prising var. grubii (serotype A or VNI, VNII, and VNB
strains), var. neoformans (serotype D or VN IV strains),
and serotype AD strains (VNIII), which represents hybrids
of the two varieties.138 The species C. gattii is subdivided
into two serotypes (B and C), and four molecular types
VGI, VGII, VGIII, and VGIV varying in virulence, geo-
graphic distribution, and possibly susceptibility to antimy-
cotic drugs.136,139 Diseases caused by other Cryptococcus
species, such as Cryptococcus laurentii and Cryptococcus
albidus, have been reported infrequently and generally in
immunocompromised hosts.140

The two species differ ecologically: C. neoformans was
isolated primarily from bird droppings,141 whereas C. gat-
tii was associated with trees, primarily Eucalyptus species,
initially in Australia,142,143 where the importance of koalas
feeding on these trees in perpetuating the yeast’s persis-
tence in the environment was suggested.144 Subsequently,
infections with C. gatti were reported in other regions
as well.145 In addition, differences are found in the pop-
ulation at risk: while C. neoformans infects primarily
immune-compromised patients, C. gattii may affect peo-
ple with intact immune systems.146 A large outbreak of
human and animal C. gattii infections that started in 2000
in Vancouver island have been seen during the following
years. Molecular analysis of the isolates showed, however,
that more than one type was involved.147 Of note, identical
genotypes were isolated from humans and animals includ-
ing marine mammals and in the affected environment.147

Cryptococcus neoformans infections have been reported
in a large variety of animals from lower invertebrates such
as soil dwelling amoebae, nematodes, cockroaches, and
mites, to higher mammals.145 Cats are the most frequently
infected animals with the involvement of the upper and or
lower respiratory tract, subcutaneous granulomata, and dis-
seminated infections. Dogs may present with similar symp-
toms but central nervous system (CNS) involvement is more
common.148 Moreover, cryptococcosis has been reported
causing mastitis in dairy animals149 and respiratory infec-
tions in horses.150

Cryptococcus gattii was isolated from different animal
species, including cats, dogs, marine mammals, ferrets, and

llamas in the regions affected by the outbreak that started
in Vancouver Island and subsequently spread to the Pa-
cific Northwest regions of the United States.151 The upper
respiratory tract infections and subcutaneous masses were
the most frequent primary lesions, but in several cases the
CNS, lymphatic tissue, lungs, oral cavity, and eyes were
affected.152 Among pets, a higher number of CNS involve-
ment in dogs was found, whereas subcutaneous masses were
shown more frequently in cats.153 CNS involvement was as-
sociated with higher mortality rates. In addition, gastroin-
testinal infections in dogs have been reported.146 Moreover,
a disseminated canine infection with C. neoformans var.
grubii was reported.153 Surveys have shown that incidence
of cryptococcosis does not increase in environment contam-
inated with bird dropping, including immunocompromised
patients.154,155 Nevertheless, molecular analysis indicated
in some cases that human and environmental isolates were
identical.156,157

About eight decades ago, Sangiorgi described the pres-
ence of Cryptococcus in the large mononuclear cells of liver
and spleen of a rat (Rattus norvegicus).158 Further, during
their investigation about histoplasmosis, Emmons et al., in
1947 isolated Cryptococcus from mice and rats.159 After a
long gap, naturally acquired cryptococcosis was again re-
ported, but this time in the greater bandicoot rat (Bandicota
indica).160 Pathological lesions were observed only in liver
and lungs but other organs like kidneys, spleen, and brain
were found positive for Cryptococcus neoformans var. gru-
bii. Singh et al. also isolated C. n. grubii from animal’s bur-
row and surrounding bamboo debris,160 thus suggesting B.
indica as a sentinel animal, which potentially amplified the
pathogen in the environment.

Recently, a case cluster of cryptococcosis has been ob-
served in a synanthropic Southeastern Asian murid (Mus
musculus castaneus).161 Unlike bandicoot rats, no lesions
were recorded in any organ of the animals, however, C.
n. var. grubii was recovered from cultures of tissue ho-
mogenates of brain, lungs, liver, and kidneys. The habi-
tat soil and fresh feces of the animals were also positive
for the fungus. It is interesting to note that, despite the
presence of Cryptococcus in the central vein, neither liver
nor any other organ exhibited pathological signs. Since the
pathogen passes through the animal host without affecting
it and all isolates recovered from M. musculus were weakly
pathogenic to experimental mice, which define the status
of M. musculus as passenger host for C. n. var. grubii in
a more appropriate manner. It is noteworthy that in most
of the cases, Cryptococcus yeasts have been isolated from
apparently healthy rodents.

Of note, household rodents are nuisance animals and
may serve as a continuous source of infection for humans
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and their pets. On one hand, rodents especially rats and
mice have expanded their geographic range dramatically
and also have significantly extended the territory of har-
bored pathogens,162 but on the other hand, they may play a
role to prevent human cases acting as sentinel for the pres-
ence of Cryptococcus in the environment.163 On the basis of
degree of interaction between host and harbored pathogens,
rodents may be termed as natural reservoirs, alternate
hosts, sentinel animals, carriers, and passenger hosts.

Infections due to melanized fungi

Several members of melanized fungi have been reported
sporadically as causative agents of severe phaeohyphomy-
coses, chromoblastomycosis, and mycetoma in human and
animals.164,165 However, the potential pathogenicity of in-
fections in crustaceans, captive and farmed fish, amphib-
ians, aquarium animals, and other cold-blooded vertebrates
has increasingly been recognized166–169 (Table 2). In con-
trast, reports of infections in warm-blooded animals are
relatively scant.170–172 It has been hypothesized that cold
blooded animals are more accessible to these fungi by their
naked, wet skin, while other vertebrates are protected by
fur of feathers.173 In line with this suggestion, the only non-
human vertebrate infections by Chaetothyriales are cases of
encephalitis in cats and dogs, where the portal of entry is
via inhalation and the texture of the skin is irrelevant.164

In vertebrates, two basic types of (sub)cutaneous in-
fection are associated with black fungi: (i) those with
yeast cells or hyphal elements in tissue leading to necro-
sis (phaeohyphomycosis) 164; and (ii) those with muriform
cells in tissue leading to host tissue proliferation (chro-
moblastomycosis).174 The main types of systemic infections
are disseminated—osteotropic or neurotropic—or single-
organ; the main organs affected are lungs and brain. In
cold-blooded animals such a classification is less apparent;
most infections can be regarded as disseminated, while mu-
riform cells have been reported in amphibians.175,176

Systemic phaeohyphomycosis occurs mainly in healthy
and in debilitated vertebrates. Infections in crustaceans,
captive and farmed fish, amphibians, aquarium animals,
and other cold-blooded vertebrates have regularly been
reported.164 Susceptibility to infection may enhance due
to transportation to adjacent basins, stress under aquar-
ium conditions, environmental pollution, or environmen-
tal changes. Mesophilic and oligotrophic, waterborne Ex-
ophiala species commonly occur in low-nutrient drinking
water, aquaria and fish nurseries173 and may cause massive
death upon stress of the animals. Exophiala psychrophila
caused high mortality in farmed Atlantic salmon smolt
(Salmo salar).177 Exophiala pisciphila was associated with
epizootics in cold-blooded vertebrates178 and infections

in coastal smooth dogfish (Mustelus canis)179 and marine
potbelly seahorses (Hippocampus abdominalis). Exophiala
aquamarina repeatedly caused disseminated infections in
several species of fish.180 Exophiala equina, originally iso-
lated from limb infection in a horse181; however, it has been
reported from disseminated infection in a Galapagos giant
tortoise (Geochelone nigra).182 The related species E. can-
cerae173,177 was isolated from tissue of moribund mangrove
crabs (Ucides cordatus) with Lethargic crab disease (LCD),
causing extensive epizootic mortality along the Brazilian
coast.168 Occasional coinfection by another black yeast-like
fungus, Fonsecaea brasiliensis has been described.183

Chromoblastomycosis has been mainly associated with
humans.174 However, several cases of subcutaneous infec-
tions have been reported in toads,184 although the presence
of typical muriform cells in the tissues were lacking174.
Older reports of muriform cells in cold-blooded ani-
mals175,185 need confirmation of the etiologic agent.

Members of the order Pleosporales have rarely been re-
ported from animals. In the Venturiales, Verruconis gal-
lopava has repeatedly been described from brain infections
in birds. In the literature Capnodiales are represented by
Cladosporium as reported agent of animal disease, but be-
cause of frequent occurrence of this genus as environmental
contaminants such cases need additional molecular tests for
credibility; none of the animal cases ascribed to Cladospo-
rium has been proven by sequencing.164

Endemic infections with indirect

transmission from the environment

Coccidioidomycosis

There are two distinct cryptic species within the genus Coc-
cidioides (Ascomycota, Pezizomycotina, Eurotiomycetes,
Onygenales, Onygenaceae): Coccidioides immitis and C.
posadasii.186 Both species are dimorphic fungi with an en-
vironmental saprotrophic phase and a host-associated par-
asitic phase. By definition, dimorphic fungi are defined by
their temperature-dependent transition from a saprophytic
mold to a parasitic yeast form upon transition into a mam-
malian host. Both Coccidioides species cause the disease
coccidioidomycosis also referred to as San Joaquin Valley
fever, valley fever, desert rheumatism, or “cocci/coccy.” Al-
though a broad diversity of animals is susceptible to infec-
tion by Coccidioides species, severe or disseminated disease
is mainly reported in pet dogs.187

Histoplasmosis

Histoplasma capsulatum is a dimorphic fungus widely dis-
tributed in the tropical or subtropical areas of the world
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Table 2. Diseases caused by black-yeasts and their filamentous relatives in animals.

Host species Fungal species Type of infection

Class Eurotiomycetes, Order Chaetothyriales, Family Herpotrichiellaceae

Invertebrates Mussel shells (Bathymodiolus brevior) Capronia moravica Disseminated infection
Mangrove land crab (Ucides cordatus) Exophiala cancerae Primary disseminated infection
Earthworms (Octolasion tyrtaeus) Exophiala jeanselmei Late embryonic stages of the earthworm

naturally infected presenting
healthy-appearing and necrotic eggs

Worms (Eisenia foetida) Exophiala jeanselmei cocoon albumen naturally infected with
healthy-appearing and necrotic eggs

Mangrove land crab (Ucides cordatus) Fonsecaea brasiliensis Secondary disseminated infection

Amphibians Toads, wild and captive frogs (Hyla
caerule, H. septentrionali, Pternohylaf
odiens, Phyllobatest rinitatis,
Rhacophorus spp.)

Fonsecaea pedrosoi, Fonsecaea spp.,
Rhinocladiella spp., Phialophora spp.

Skin lesion and disseminated infection
with neurological disorders and multifocal
dermatitis; pigmented hyphae invaded
multiple organs with mild cell necrosis
and minimal inflammatory cell response

Marine toad (Bufo marinus),
Spadefoot toad (Scaphiopus
holbrooki)

Fonsecaea spp. Phialophora spp. Phaeohyphomycosis: skin lesion and
disseminated infection

Frog Veronaea botryosa Disseminated infection
(Bufo japonicus formosus)
False tomato frogs (Dyscophus
guineti)

Reptiles Galapagos tortoise (Geochelone nigra) Exophiala equina Hematogenous dissemination
Turtle Exophiala jeanselmei Disseminated infection

Fishes Seadragons (Phyllopteryx taeniolatus) Exophiala angulospora Disseminated infection
Fish (Atlantic salmon; Channel
catfish; smooth dogfish), Seahorse

Exophiala pisciphila Disseminated infection

Fish (Cutthroat trout Atlantic salmon) Exophiala salmonis Disseminated infection
Fish (Siberian sturgeon: Acipenser
baerii, A. transmontanus)

Veronaea botryosa Disseminated infection

Mammals Dog, leopard, alpaca Cladophialophora bantiana Skin lesion to disseminated infection
Cat Cladophialophora bantiana, Exophiala Skin lesion

attenuata, Exophiala spinifera, Fonsecaea Skin lesion
multimorphosa, Phialophora verrucosa Phaeohyphomycosis

Brain disseminated infection
Horse Cladophialophora bantiana, Exophiala

equina
Phaeohyphomycosis with presence of skin
ulcerative lesion

Class Eurotiomycetes, Order Venturiales, family Sympoventuriaceae

Birds Turkey, Chicken, gray-winged
Trumpete, quail, owl

Verruconis gallopava Encephalitis

Amphibians Toad Ochroconis humicola Skin lesion

Reptiles Tortoise Ochroconis humicola Cutaneous lesions

Fishes Coho salmon, Atlantic salmon,
rainbow trout, scorpion fish, walking
catfish

Ochroconis humicola Disseminated infection

Fish (Chinook salmon) Ochroconis tshawytschae Disseminated infection

Mammals Cat Ochroconis gallopava Disseminated infection

Class Dothideomycetes, Order Capnodiales, family Davidiellaceae

Mammals Cat, dog, sheep Cladosporium spp. Disseminated infection

Class Dothideomycetes, Order Pleosporales, family Pleosporaceae

Mammals Cat, dog, horse Alternaria alternata Skin lesion

and infects numerous mammalian hosts. The population
of H. capsulatum include three distinct subspecies deter-
mined by geographical distribution and clinical signs.188

Histoplasma capsulatum var. capsulatum has a global dis-

tribution, causing pulmonary and systemic infections in
a diversity of mammals, including humans. Histoplasma
capsulatum var. duboisii is endemic/enzootic in western
and central Africa, which causes lymphadenopathy, and
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dissemination to the skin and bones, mainly in humans and
other primates. Histoplasma capsulatum var. farciminosum
affects the skin and the subcutaneous lymphatic system in
equids (horses, donkeys, and mules) but has also been re-
covered from humans, dogs, cats, and badgers. Disease out-
come is variable and depends on the immune status of the
host, inoculum size, and the virulence of the isolate.189

Paracoccidioidomycosis

Paracoccidioidomycosis is an endemic/enzootic mycosis ac-
quired by airborne inhalation of infective conidia of Para-
coccidioides spp. present in the environment.190,191 The
disease is caused by Paracoccidioides brasiliensis and P.
lutzii, which are dimorphic fungi belonging to the Ajel-
lomycetaceae.192 Paracoccidioidomycosis is the major sys-
temic mycosis in Latin American countries and ranks eighth
among causes of human death from infectious and para-
sitic diseases in Brazil.193,194 Naturally acquired Paracoc-
cidioidomycosis has been reported in dogs194–195 and ar-
madillos.197

Blastomycosis

Blastomycosis is a serious fungal disease of dogs, humans,
and occasionally other mammals such as cats and horses
caused by geographically restricted, thermally dimorphic
fungus Blastomyces dermatitidis.198,199 Blastomycosis is
mainly common in dogs residing in or visiting enzootic
areas.200 The incidence of blastomycosis in dogs is 8–10
times that of humans,201 presumably related to time spent
outdoors, proximity to soil, and activities, such as digging,
that may result in soil disturbances and increase conidial
exposure. Most affected dogs are immunocompetent.202

Infections due to zoophilic pathogens with

near-direct transmission

Chytridiomycosis

The amphibian fungal disease chytridiomycosis is a ma-
jor infectious disease responsible for amphibian decline
and one of the greatest fungal threats to frog and sala-
mander (urodeal amphibians) biodiversity.203 This lethal
skin disease is caused by members of the genus Batra-
chochytrium, chytridiomycetes belonging to the order Rhi-
zophydiales. The first known etiologic agent of amphibian
chytridiomycosis, B. dendrobatidis (Bd), was identified in
1998 and today causes disease in a wide variety of amphib-
ian species across the three orders, that is, frogs and toads
(Anura), salamandrines and newts (Urodela), and caecilians
(Gymnophiona).204,205 Bd has caused the rapid decline or

extinction of an estimated 200 amphibian species,206 which
is probably even an underestimation due to the cryptic be-
havior of many amphibians and the lack of monitoring.207

The worldwide emergence of chytridiomycosis is mostly
likely due to the rapid worldwide transmission of the vir-
ulent lineage ‘Bd Global Panzootic Lineage’ (BdGPL).208

BdGPL has caused declines in Australia, Mesoamerica,
North America, and Southern Europe. Determinants of host
susceptibility, Bd strain virulence208 and a conducive envi-
ronment,209 underpin pronounced differences in the out-
come of exposure to Bd, which ranges from mass die-offs
and population crashes over erratic or even lack of any ob-
served mortality and host-pathogen coexistence.210 Some
host species are refractory to infection.211

A second chytrid species, B. salamandrivorans (Bsal) has
recently emerged and has been causing mass mortality in
fire salamandrines (Salamandra salamandra) in Belgium,
the Netherlands, and Germany. This fungus is pathogenic
for most western Palearctic salamandrine and newt taxa
and is considered a major threat to the region’s biodiver-
sity.212,213 Salamandrines can be resistant (no infection, no
disease), tolerant (infection in absence of disease), moder-
ately susceptible (infection resulting in clinical disease with
possibility of subsequent recovery), or highly susceptible
(infection resulting in lethal disease). Infection experiments
demonstrated that frogs and toads are not susceptible to
Bsal but can act as infectious carriers.214 Bsal is believed to
have originated from Asia where it appears to be endemi-
cally present.212,215

For both (non-zoonotic) species the global trade in am-
phibians is considered a potent force in spreading novel
virulent lineages into naive host populations. Long distance
spread is most likely to have occurred due to movement
of infected amphibians, particularly through the pet trade
but also via accidental movement in the frog meat indus-
try (although the latter is likely significant for ranaviruses,
since most frog products are frozen).216 The listing of Bd
as an internationally notifiable disease by the OIE, with
the aim to improve trade safety, represents the first disease
that is listed solely because of a biodiversity concern. Al-
though rigorous quarantine and surveillance protocols are,
for example, in place for most livestock diseases, improved
standards are needed for wildlife.217

Counteracting the impact of chytridiomycosis on am-
phibian populations remains a major challenge.218 Bsal
mitigation is further complicated by the production of en-
cysted spores that remain infective for a long time and are
resistant to predation.214 Although immunization,219 dis-
infection,220 and the use of biocontrol with, for example,
probiotics or predatory microorganisms,221,222 may offer
some perspectives for in situ mitigation, captive assurance
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colonies of threatened amphibians currently offer the sole
effective, be it last resort solution to prevent amphibian
extinction due to chytrid infections.

Bat white-nose syndrome

Pseudogymnoascus destructans (Pd) (formerly known as
Geomyces destructans223,224) is the causative agent of
white-nose syndrome of hibernating bats in Northeastern
America.225,226 Since its detection in 2006, it caused the
worst mass mortality known in mammals with millions of
dead bats. Formerly abundant bat species are now region-
ally extinct.227

The psychrophilic fungus Pd finds an ideal substrate in
the skin of hibernating bats overwintering in cool and moist
cavernous hibernacula, as they lower their body tempera-
ture to ambient temperature of 12–15◦C. As the fungus
ceases to grow at temperatures above 20◦C,224 Pd will
neither be able to infect bats that are active in summer,
nor other mammals or humans. The fungal growth mostly
remains restricted to the outer skin, but in contrast to
dermatophytes the fungus may invade deep into the der-
mis,228 leading to severe erosive to ulcerative lesions, par-
ticularly on the wing membranes. Macroscopically, aerial
hyphae appear as white powdery patches around muzzle
and on wing membranes, but the histological diagnostic
hallmark—mandatory for the confirmation of the disease—
are cup-like epidermal erosions filled with fungal hyphae
or their full thickness invasion of the wing membrane.228

Microscopic evidence of disease are the distinctly asymmet-
rically curved conidia. In North America Pd infection is as-
sociated with aberrant hibernation behavior and a distinct
increase in arousals from torpor bouts, a physiologic state
lasting up to 15 days during which bats reduce metabolic
activity and immune response to a minimum as well as
lowering their body temperature to ambient degrees. The
premature consumption of the stored energy by frequent
activity phases is one of the presumed causes of death. Ad-
ditionally, it is thought that the skin damages could result
in a life-threatening imbalance in homeostasis leading to
mortality.229,230

Since its discovery, Pd is spreading in a radial fashion
from the index cave in New York State throughout the
North American continent. Last year, Pd appeared across
the Rocky Mountain barrier as the first hibernacula in
Washington State tested positive for the fungus.231 How-
ever, all isolates obtained from various affected American
hibernacula show a genetic relationship of a single clonal
genotype, highlighting that Pd seems a novel pathogen in-
troduced into a naı̈ve host population.232 Currently, eight
bat species are confirmed with Pd lesions in North America,
and an additional six bat species at least carry the fungus.

Meanwhile, hibernating bats of 17 species from various
parts of Europe were shown to carry the fungus with simi-
lar clinical appearance, but neither changes in hibernation
behavior nor associated mortality have ever been found.233

The reasons for these intercontinental differences are not
clear, but European bats seem to resist the impact of the in-
fection to a certain degree. Recent investigations in the phy-
logenetic relationships of Pd strains used microsatellites to
reveal not only long time diversification of European fungus
strains but also found Eurasia as the likely source of ori-
gin for the Pd clone occurring in North America.234 Fungal
conidia can easily be harvested from affected bats as well as
from hibernacula walls,233 and the accidental transport of
Pd from Europe via contaminated gear or clothing is the fa-
vored hypothesis for the emergence of Pd in North America.
However, the main transmission of fungal spores seems to
be bat-to-bat contacts and Pd infection will remain an on-
going threat for hibernating North American bats. As long
as the fungus can spread further to unaffected populations,
it will result in sinister consequences for biodiversity and
the ecological and economical services provided by bats to
mankind.235

Zoonotic outbreaks with direct animal to

human transmission

According to the official definition from the World Health
Organization, zoonoses are diseases and infections that
are naturally transmitted between vertebrate animals and
humans (and vice versa). Among transmissible fungal
pathogens, a few species should be considered as zoonotic
(Table 3).

Microsporum canis from cats

Cats are becoming increasingly popular as pet and compan-
ion animals. Tens of thousands of European crossbred cats
are abandoned each year and can be adopted for almost
free from animal shelters. It is also fashionable to purchase
expensive purebred cats from breeding units. In both cases,
animals are acquired from communities and may be af-
fected, visibly or not, by diseases that are transmissible to
humans. Dermatophytosis caused by Microsporum canis is
probably the most prevalent zoonosis that may occur in
such situations.236 In shelters, rapid turnover of cats of un-
known status, promiscuity, and economic constraints for
healthcare increase risks of contagion. In breeding units,
M. canis is commonly enzootic, and appropriate antifungal
treatments are either absent or incomplete. Asymptomatic
carriage is frequent, cats being infected without obvious
clinical signs.237
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Table 3. Main fungal species responsible for zoonoses.

Fungal species Distribution
Main reservoirs of fungal
pathogens

Mode of transmission to
humans Human disease

Zoophilic dermatophytes
Microsporum canis Worldwide Cats, dogs, rabbits Direct contact with

arthroconidia (formed on
the skin of infected
animals)

Dermatophytosis (tinea
corporis or capitis)

Trichophyton
mentagrophytes

Worldwide Rodents, rabbits

Trichophyton benhamiae Worldwide Rodents (Guinea-pigs for
the lutea variety)

Trichophyton verrucosum Worldwide Cattle
Nannizia (Microsporum)
persicolor

Worldwide Rodents, soil

Trichophyton erinacei Worldwide Hedgehogs

Microsporidia
Encephalitozoon cuniculi Worldwide Rabbits Ingestion of fungal spores

(shed in the urine of
rabbits)

Encephalitozoonosis
(neurological signs, systemic
disease)

Encephalitozoon hellem Worldwide Birds (Psittacidae) Inhalation of fungal
spores? Ocular contact

Encephalitozoonosis
(respiratory signs, systemic
disease)

Encephalitozoon
intestinalis

Worldwide Cattle, goats, pigs. . . Ingestion of fungal spores
(shed in the feces of
infected animals)

Encephalitozoonosis
(digestive signs, systemic
disease)

Enterocytozoon bieneusi
(many genotypes)

Worldwide Many mammals Ingestion of fungal spores
(shed in the feces of
infected animals)

Encephalitozoonosis
(digestive or respiratory
signs)

Dimorphic fungi
Histoplasma capsulatum
capsulatum

Worldwide Soil, bats Inhalation of fungal spores Histoplasmosis

Sporothrix schenckii Worldwide (but more
frequent in tropical
countries)

Soil, different mammals Traumatic inoculation of
contaminated soil, plants,
and organic matter into
skin or mucosa

Sporotrichosis

Sporothrix brasiliensis Brazil Cats Scratches or bites from
infected cats

Cats may be sold while still receiving antifungal, so
that they are still infected and contagious for congeners
and humans at the time of purchase. Microsporum canis
infection in cats may be highly polymorphic. This in-
terferes with diagnosis and treatment of feline dermato-
phytosis.238 Efficient vaccines against feline dermatophy-
tosis are currently unavailable, partly due to a lack of
knowledge on virulence factors. The keratinolytic secreted
proteases were thought to be the most likely factors of der-
matophyte’s pathogenicity, due to peculiar ability of der-
matophytes to use hard keratin in vivo as a growth sub-
strate.239 The enzymes were therefore purified from culture
supernatants produced in vitro in media enriched by ker-
atin. Subsequent characterization at the gene level and com-

plete sequencing of several dermatophyte genomes revealed
several exo- and endoproteases, some of them belonging
to large, expanded gene families.240 These virulence genes
are candidates for the development of vaccines. As an ex-
ample, an M. canis 31.5 kDa keratinolytic protease, later
called Sub3, was highly expressed by the fungus grown
in vitro in the presence of feline keratin and in vivo in
naturally infected cats,241 and experimentally infected
guinea pigs.242

Using RNA silencing, 243 and a sophisticated model of in
vitro reconstructed feline epidermis,244 and ex vivo models
of human or animal epidermis, Sub3 was shown to con-
tribute to the adherence of M. canis to host tissue. How-
ever, Sub3 is not required for the invasion of keratinized
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structures in vivo.245 Putative virulence factors involved
in tissue invasion remain to be identified. This could be
achieved by comparing in vivo and in vitro transcriptomes
and secretomes, as used for Trichophyton rubrum and T.
benhamiae.246,247 The importance of newly discovered pu-
tative virulence factors could be tested by manipulation of
dermatophyte genomes by gene knock-outs;248 combined
with pertinent animal models of dermatophytosis.249

Infection due to Sporothrix brasiliensis from cats

Recent improvements in the taxonomy of Sporothrix led
to the recognition of a clinically relevant clade comprising
four dimorphic species S. brasiliensis, S. schenckii, S. glo-
bosa, and S. luriei, remote from environmental clades that
included S. chilensis, S. pallida, and S. mexicana causing oc-
casional infections.250,251 Species from clinical clade show
different virulence profiles, antifungal susceptibilities and
geographical distributions.252

The classical route of transmission for humans and an-
imals involves trauma with soil and plant materials. How-
ever, epidemics driven by S. brasiliensis usually occur as a
result of animal-animal or animal-human transmission in
an alternative route.253 Remarkably, the largest epizootic
due to S. brasiliensis among felines that lead to massive
zoonotic transmission has been reported in the South and
Southeast regions of Brazil since the 1990 s.254 Initially, in
Rio de Janeiro state during 1998–2003, 497 humans and
1056 cats were diagnosed with positive culture. Among
these humans, 67.4% related scratch or bite from cats with
sporotrichosis; 68% were women with mean age of 39 years
old.255 From 2005 to 2011, the total number of cats assisted
at the national institute of infectology, Oswaldo Cruz foun-
dation (IPEC/FIOCRUZ) was 2301. The median age of af-
fected cats was 2 years old, and the median time between
the observation of the lesions and to take to veterinary as-
sistance was 8 weeks.256 The most recent surveys indicate
that about 244 dogs and 4703 cats were diagnosed through
2015 at IPEC/FIOCRUZ, characterizing the state of Rio de
Janeiro as hyperendemic for feline sporotrichosis.254

Feline sporotrichosis has also been reported in São Paulo
and Rio Grande do Sul states, with a distribution of 190
and 129 cats, respectively.257,258 However, the number of
affected cats may be underestimated, since sporotrichosis
is not a notifiable disease. To understand the epidemic sce-
nario caused by S. brasiliensis it is necessary to consider
some aspects of the host-pathogen-environment interplay,
such as the high susceptibility of cats to the fungal species;
the high virulence of S. brasiliensis circulating during epi-
demics associated to a recent introduction of the pathogen
in an urban feline population. Some characteristics of cat’s
behavior may be also taken into account, such as toileting

Table 4. The most common fungal species producing

mycotoxins.

Mycotoxin Fungal species

Aflatoxins Aspergillus flavus, A. parasiticus, A. nomius,
A. argenticus, etc.

Ochratoxin A Penicillium verrucosum, P. nordicum, A.
ochraceus, A. carbonarius, A. niger, A.
sclerotioniger

Deoxynivalenol Fusarium graminearum, F. culmorum, F.
sporotrichioides, F. poae, F. tricinctum

T-2 toxin F. sporotrichioides, F. poae
Diacetoxyscirpenol F. graminearum, F. semitectum, F.

tricinctum, F. oxysporum, etc.
Nivalenol Fusarium nivale, F. poae
Zearalenone Fusarium graminearum, F. culmorum
Fumonisin B1 Fusarium proliferatum, F. verticillioides (syn.

F. moniliforme), A. niger, A. carbonarius

habits in contact with soil, sharpening the nails in environ-
ment, behavior during mating, and territorial disputes that
frequently leads to scratches or bites spreading the fungus
to other hosts.259,260

Mycotoxins and mycotoxicoses

Mycotoxins are defined as the chemicals of fungal origin be-
ing toxic for (warm-blooded) vertebrates.261,262 Mycotox-
ins are secondary metabolites produced during consecutive
enzyme reactions via several biochemically simple interme-
diary products from the primary metabolism of acetates,
mevalonates, malonite, and some amino acids.263

The contamination of foods and animal feeds with my-
cotoxins is a worldwide problem, and formation of my-
cotoxins by many important phytopathogenic and food
spoilage fungi is undoubtedly one of the most significant
risk factors to mammalian health.264 Mycotoxins are cat-
egorized by fungal species, structure, and (or) mode of ac-
tion. As shown in Table 4, a single species of fungi may pro-
duce one or several mycotoxins and individual mycotoxins
may be produced by different fungal species.265,266 Aflatox-
ins, ochratoxins, trichothecenes, zearalenone, fumonisins,
tremorgenic toxins, and ergot alkaloids are main mycotox-
ins of public health and agro-economic importance.

Mycotoxins cause intoxications in both animals and hu-
mans, resulting in severe diseases called acute or chronic
mycotoxicoses,267 depending on species and susceptibil-
ity of the host. It is also believed that with a mycosis,
mycotoxins produced by the invading fungi can suppress
immunity, therefore increasing the infectivity of the fun-
gus.268 Acute mycotoxicoses have a rapid onset and an
obvious toxic response, while the most frequent type of
mycotoxicoses occurs after the long-lasting exposure of an
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Table 5. General toxic effects of the most common

mycotoxins.

Toxicity Mycotoxins

Dermatotoxic Trichothecenes, verrucarins, sporidesmins
Estrogenic Zearalenone
Genotoxic Aflatoxins, sterigmatocystin, ochratoxin A,

zearalenone, patulin, trichothecenes
Hematotoxic Aflatoxins, ochratoxin A, zearalenone,

trichothecenes
Hepatotoxic Aflatoxins, ochratoxins, rubratoxins,

sterigmatocystin etc.
Immunotoxic Aflatoxins, ochratoxin A, trichothecenes, patulin
Nephrotoxic Ochratoxin A
Neurotoxic Fumonisins, penitrem A, fumitremorgens
Gastrotoxic Trichothecenes

animal/human to low dosages of the toxin(s).269 The neg-
ative effects of mycotoxins on various animals have been
extensively described in the literature (Table 5). In poul-
try farms, contaminated feeds with aflatoxins to broilers
causes negative metabolic responses and enzyme activity
resulting reduced body weight gain, and tissue necrosis.270

In dogs, ingestion of a variety of mouldy foods, including
grains, walnuts, almonds, and peanuts, as well as nonspe-
cific garbage, has been associated with tremorgenic my-
cotoxicosis. Dogs are more commonly affected than other
species of domestic animals, probably because of their ten-
dency to scavenge; intoxication of several dogs within the
same household has also been reported. The most common
sources of tremorgenic mycotoxins are fungi of the genus
Penicillium.271 Ruminants such as cattle, sheep, goats, and
deer are generally resistant to the direct adverse effects
of mycotoxins, which appear to be due to capability of
rumen’s microbiota to degrade mycotoxins.272 However,
bovine production (milk, beef, or wool), reproduction, and
growth can be altered when ruminants consume mycotoxin-
contaminated feed for extended periods of time.273 Nega-
tive effects of the mycotoxins have been also documented
on the pig’s reproductive function.274

From the public health prospectives, mycotoxins are
considered as endogenous contaminants, that is, formed
directly in the matrix by toxic mycobiota. The mycotox-
ins of most concern from a food safety perspective include
the aflatoxins (B1, B2, G1, G2, and M1), ochratoxin A,
patulin, and toxins produced by Fusarium moulds, includ-
ing fumonisins (B1, B2, and B3), trichothecenes (principally
nivalenol, deoxynivalenol, T-2 and HT-2 toxin) and zear-
alenone. If edible animals are fed by mouldy materials con-
taining certain mycotoxins, those are either converted into
other toxic substances or are accumulating in their prod-
ucts (milk, eggs) or directly in the viscera, muscles dedicated

for human consumption.9 Given the frequent consumption
of milk and dairy products particularly by infants, myco-
toxins are an issue of considerable importance to public
health.265 Aflatoxins and ochratoxins are the most toxic
products and have been shown to be genotoxic, that is,
can damage DNA and cause cancer in animal species. By
their structure, aflatoxins are difuranocoumarol lactons, re-
cently known in about 20 derivatives. Aflatoxins B1, B2,
G1, and G2 are the most frequent one, with the toxicity de-
creasing in the row AFB1 > AFG1 > AFB2 > AFG2. AFB1
is the most potential proven human carcinogen (IARC class
I) of biological origin, and its metabolite AFM1 proved
the same toxicity, with hepatocells being the target struc-
tures of the action.265 Ochratoxins are polyketid derivatives
of dihydroisocoumarin including ochratoxin A (OTA, the
most toxic), B, C (ethylester OTA), and D. The sources in-
clude barley, ray, oat, wheat, rice, maize, beer, coffee, tea,
wine/ raisins, spices, and porcine products (meat, viscera)
and other meat and meat products of nonruminant animals
exposed to feedstuffs contaminated with this type of my-
cotoxin. Ruminants such as cows and sheep are generally
resistant to the effects of ochratoxin A due to hydrolysis to
the nontoxic metabolites by protozoa in the reticulorumen
sac before absorption into the blood.275 Importantly, OTA
in urine was found to be a better indicator of OTA con-
sumption than OTA in plasma. Low blood serum/plasma
concentrations of OTA have been reported for healthy per-
sons in many countries.276

The European Food Safety Authority (EFSA) has car-
ried out risk assessments on certain mycotoxins in animal
feed that are considered to pose a potential risk to human
or animal health including aflatoxin B1, deoxynivalenol,
zearalenone, ochratoxin A, fumonisins, and T-2 and HT-2.
Each of the recommendations has been used as a basis for
the current legislative controls on these mycotoxins. The
maximum permitted levels (MPLs) for substances that are
present in, or on, animal feed that pose a potential dan-
ger to animal or human health or to the environment, or
could adversely affect livestock production are summarized
in Table 6.

Antifungal resistance in animals with fungal

infections

Many of the antifungal agents that are used in humans
are also used in animals for the treatment of invasive fun-
gal infections. These can include the polyenes (e.g., am-
photericin B and nystatin), the azoles, including both the
imidazoles and triazoles, the allylamines (e.g., terbinafine),
and the echinocandins. Table 7 summarizes the uses of var-
ious antifungals that have proved successfully in various
animal species.
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Table 6. The European Food Safety Authority (EFSA) maximum permitted levels for six mycotoxins in animal feed that are

considered to pose a potential risk to human or animal health (Directive 2003/100/EC, amending Directive 2002/3 and Recom-

mendation 2006/576/EC).

Products intended for animal feed

Maximum content in mg/kg (ppm)
relative to a feedingstuff with a
moisture content of 12%

Aflatoxin B1 All feed materials 0.02
Complete feedingstuffs for cattle, sheep and goats with the exception of: 0.02
- complete feedingstuffs for dairy animals 0.005
- complete feedingstuffs for calves and lambs 0.01
Complete feedingstuffs for pigs and poultry (except young animals) 0.02
Other complete feedingstuffs 0.01
Complementary feedingstuffs for cattle, sheep and goats (except
complementary feedingstuffs for dairy animals, calves and lambs)

0.02

Complementary feedingstuffs for pigs and poultry (except young animals) 0.02
Other complementary feedingstuffs 0.005

Deoxynivalenol Feed materials
- cereals and cereal products with the exception of maize by-products 8
- maize by-products 12
Complementary and complete feedingstuffs with the exception of: 5
- complementary and complete feedingstuffs for pigs 0.9
- complementary and complete feedingstuffs for calves (< 4 months), lambs
and kids

2

Zearalenone Feed materials
- cereals and cereal products with the exception of maize by-products 2
- maize by-products 3
Complementary and complete feedingstuffs
- complementary and complete feedingstuffs for piglets and gilts (young
sows)

0.1

- complementary and complete feedingstuffs for sows and fattening pigs 0.25
- complementary and complete feedingstuffs for calves, dairy cattle, sheep
(including lambs) and goats (including kids)

0.5

Ochratoxin A Feed materials
- cereals and cereal products 0.25
Complementary and complete feedingstuffs
- complementary and complete feedingstuffs for pigs 0.05
- complementary and complete feedingstuffs for poultry 0.1

Fumonisin B1and
B2

Feed materials

- maize and maize products 60
Complementary and complete feedingstuffs for:
- pigs, horses (Equidae), rabbits and pet animals 5
- fish 10
- poultry, calves (<4 months), lambs and kids 20

T-2 and HT-2 Compound feed for cats 0.05

Mechanisms of antifungal resistance

Resistance to antifungal drugs can occur through various
mechanisms. These can include: (1) nonsynonymous point
mutations within the gene encoding the target enzyme lead-
ing to alterations in the amino acid sequence, (2) increased
expression of the target enzyme through increased tran-

scription of the gene encoding it, (3) decreased concentra-
tions of the drug within the fungal cells due to drug efflux,
(4) changes in the biosynthetic pathway resulting in reduced
production of the target of the antifungal drugs. For the
azoles, each of these mechanisms have been associated with
reduced susceptibility in Candida albicans, and several are
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Table 7. Recommended indications of antifungals in veterinary practice. Adapted from reference no. 309 with the permission

of authors.

Antifungal agent Animal species Indications

Systemic Amphotericin B Birds Aspergillosis, Candidiasis
Dogs Aspergillosis, Cryptococcosis, Blastomycosis, Histoplasmosis, Coccidioidomycosis,

Mucormycosis
Cats Aspergillosis, Cryptococcosis, Blastomycosis, Histoplasmosis, Coccidioidomycosis,

Mucormycosis
Horses Aspergillosis, Candidiasis, Histoplasmosis, Coccidioidomycosis, Sporotrichosis,

Mucormycosis
Nystatin Birds Candidiasis of the gastrointestinal tract
Terbinafine Dogs Cryptococcosis, Sporotrichosis, Dermatophytosis and Malassezia dermatitis

Cats Cryptococcosis, Sporotrichosis, Dermatophytosis
Ketoconazole Birds Aspergillosis, Candidiasis

Dogs Blastomycosis, Histoplasmosis, Cryptococcosis, Coccidioidomycosis, Sporotrichosis,
Malassezia dermatitis and Dermatophytosis

Cats Blastomycosis, Histoplasmosis, Cryptococcosis, Coccidioidomycosis, Sporotrichosis,
Dermatophytosis

Parconazole Birds (guinea fowl) Candidiasis (trush)
Fluconazole Birds Candidiasis

Dogs Cryptococcosis, Blastomycosis, Aspergillosis (nasal)
Cats Aspergillosis (CNS infection), Cryptococcosis, Blastomycosis, Coccidioidomycosis

Itraconazole Birds Aspergillosis, Candidiasis
Dogs Aspergillosis, Blastomycosis, Histoplasmosis, Cryptococcosis, Coccidioidomycosis,

Sporotrichosis, Dermatophytosis and Malassezia dermatitis
Cats Dermatophytosis

Aspergillosis, Sporotrichosis, Cryptococosis, Blastomycosis, Histoplasmosis,
Phaeohyphomycosis

Horses Aspergillosis, Coccidioidomycosis, Mycotic keratitis, Dermatophytosis
Rodents, rabbits and fur
animals

Dermatophytosis

Voriconazole Birds Aspergillosis
Dogs Aspergillosis, Scedosporiosis
Cats Aspergillosis
Horses Aspergillosis (systemic), Aspergillus keratitis

Posaconazole Dogs Aspergillosis, Mucormycosis
Cats Aspergillosis, Mucormycosis

Flucytosine Cats Cryptococcosis
Griseofulvin Dogs Dermatophytosis

Cats Dermatophytosis
Horses Dermatophytosis, Sporotrichosis
Ruminants Dermatophytosis
Rodents, rabbits and fur
animals

Dermatophytosis

Topical Clotrimazole Birds (Raptors) Aspergillosis
Dogs Aspergillosis, Dermatophytosis and Malassezia dermatitis
Cats Aspergillosis, Dermatophytosis
Rodents, rabbits and fur
animals

Dermatophytosis

Miconazole Birds Aspergillosis
Dogs Malassezia dermatitis
Cats Dermatophytosis, Malassezia dermatitis
Rodents, rabbits and fur
animals

Dermatophytosis

Enilconazole Birds Aspergillosis
Disinfection (Aspergillus and other pathogenic fungi)

Dogs Dermatophytosis, Malassezia dermatitis
Aspergillosis

Cats Dermatophytosis, Malassezia dermatitis
Aspergillosis

Horses Dermatophytosis
Disinfection (dermatophytes and other pathogenic fungi)

Ruminants Dermatophytosis
Disinfection (dermatophytes and other pathogenic fungi)

Rodents, rabbits and fur Dermatophytosis
animals Disinfection (dermatophytes and other pathogenic fungi)

Natamycin Horses Dermatophytosis
Ruminants Dermatophytosis

Thiabendazole Birds Disinfection
Horses Dermatophytosis
Ruminants Dermatophytosis
Rodents, rabbits and fur
animals

Dermatophytosis
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associated with resistance in other Candida species. Alter-
ations in the target enzyme (lanosterol 14-α-demethylase)
due to point mutations in the encoding gene ERG11 leads to
decreased susceptibilities to the azoles.277–289 Overexpres-
sion of the CDR1, CDR2, and MDR1 genes that encode
for efflux pumps leads to azole resistance.290,291 Azole resis-
tance has also been documented in A. fumigatus and is due
to point mutations within the CYP51A gene that encodes
the enzyme responsible for converting lanosterol to ergos-
terol.292–294 In isolates with environmental exposure to the
azoles tandem repeats in the promoter region along with
along with point mutations in the gene (e.g., TR34/L98H
and TR46/Y121F/T289A) have been found and cause in-
creased expression of CYP51A.295

Reports of antifungal resistance in different
animal species

Several studies have analyzed fungal isolates from different
animals for resistance to antimycotic agents, and many of
them reported surprisingly high levels of azole resistance
in yeasts. In a retrospective study, Beltaire et al. analyzed
fungal strains isolated from equine uteri collected between
1999 and 2011 and showed resistance rates of 19% and 2%
for itraconazole and fluconazole, respectively.296 Cordeiro
et al. investigated 59 C. tropicalis isolates predominantly
derived from healthy animals and found resistance to flu-
conazole and/or itraconazole in 50%, whereas all isolates
were susceptible to caspofungin and amphotericin B.297 Us-
ing the same microbroth dilution assay, Brilhante et al.
analyzed Candida isolates from the nasolacrimal duct of
healthy horses and found that 40% of the C. tropicalis iso-
lates were resistant to fluconazole and itraconazole.298 The
same group found high rates of fluconazole and itracona-
zole resistance also for Candida isolates from rheas and
cockatiels,299,300 and efflux pumps were a major resistance
mechanism.301 Using a commercial kit covering eleven com-
monly used agents, Lord et al. tested 144 Candida, Crypto-
coccus, Rhodotorula, and Trichosporon isolates from bird
feces for antifungal resistance.302 They reported that 45.8%
of the strains were resistant to at least four of the 11 drugs,
and 18.1% were resistant to all antifungals tested. A re-
cent study found similar resistant levels for 111 C. glabrata
isolates from the feces of sea gulls and 79 C. glabrata iso-
lates from human patients, while other have reported only
moderate azole resistance in Candida strains isolated from
raptors.303,304 These studies indicate that resistance to cer-
tain azoles is a common phenomenon in pathogenic yeasts
isolated from some animals. Strikingly, the azole resistance
rates of C. albicans and C. tropicalis isolated from healthy
animals are higher than those reported in some studies in

humans.305,306 This indicates that the elevated resistance
levels found in animals may not simply reflect a natural re-
sistance of the respective species. However, differences in
the methodology and breakpoints used, as well as the lim-
ited number of isolates included in several animal studies
make a direct comparison of data obtained for animal and
human isolates difficult.

Azole resistance has also been described for As-
pergillus,292 but up to now reports of resistant strains de-
rived from animals are sparse. Acquisition of azole resis-
tance can occur under prolonged therapy. Clinically, in-
vasive infections caused by azole-resistant A. fumigatus
are challenging to treat due to the lack of therapeutic op-
tions. In humans, lipid formulations of amphotericin B can
be used, and 5-flucytosine has also been recommended to
be added to other therapies in patients with central ner-
vous system infections caused by resistant isolates.307 How-
ever, both antifungals have limitations, including toxicities,
which may prohibit their long-term use in both humans
and animals. Depending on the mechanism of resistance,
higher doses of certain triazoles may be attempted, and
there is a recent report of the successful treatment of inva-
sive aspergillosis caused by an A. fumigatus isolate harbor-
ing a TR46/Y121F/T289A mutation in a bottlenose dolphin
with high dose posaconazole.308 Here, the oral solution
of posaconazole was incorporated into gelatin capsules and
administered with a goal of achieving trough concentrations
of >3 mg/l, which was achieved after prolonged adminis-
tration and resulted in clinical improvement.

Fungi that cause disease in humans can also cause seri-
ous infections in different animal species, associated with
significant morbidity and mortality. Examples of inva-
sive mycoses in animals include infections caused by non-
transmissible opportunistic fungi (aspergillosis, mucormy-
cosis, candidiasis, cryptococcosis, and infections caused by
melanized fungi, endemic environmental pathogens (coccid-
ioidomycosis, histoplasmosis, paracoccidioidomycosis, and
blastomycosis), zoophilic fungal pathogens (chytridiomy-
cosis and Bat White-nose syndrome). The list of zoonotic
fungal agents (transmissible mycoses) is limited, however
some of species (like Microsporum canis and Sporothrix
brasiliensis from cats) have a strong public health impact.
The fungal secondary metabolites ‘mycotoxins’ have been
associated with severe toxic effects to vertebrates. Myco-
toxins are also a major concern for public health. Major-
ity of antifungal agents including the polyenes, the azoles,
and the echinocandins that are used in humans are also
used in animals for the treatment of fungal infections. Sim-
ilarly, many limitations also occur in some animal species,
including variable pharmacokinetics, adverse effects, drug
interactions, and antifungal resistance.
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