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Abstract Nanotechnology is an emerging cutting-

edge technology, which involves interdisciplinary

subjects, such as physics, chemistry, biology, material

science and medicine. Different methods for the

synthesis of nanoparticles have been discussed here.

Although physical and chemical methods have been

successfully used to synthesize nanoparticles, the use

of hazardous chemicals and synthesis at high temper-

ature is a matter of concern. Hence, there is a necessity

to develop eco-friendly techniques for the synthesis of

nanoparticles. Biosynthesis of nanoparticles by fungi,

bacteria, actinomycetes, lichen and viruses have been

reported eco-friendly. Moreover, the fungal system

has emerged as an efficient system for nanoparticle

synthesis as fungi possess distinctive characters

including high wall binding capacity, easy to culture

and simpler biomass handling, etc. In this review, we

have discussed fungi as an important tool for the

fabrication of nanoparticles. In addition, methods and

mechanism for synthesis of nanoparticles and its

potential applications have also been discussed.

Keywords Biosynthesis � Fungi � Green chemistry �

Nanoparticles � Nanotechnology

Introduction

Nanotechnology is an important area that has demon-

strated multiple applications in opto-electronics, tex-

tiles, medicine, agriculture, and environment, etc.

(Dasgupta et al. 2015; Nanda andMajeed 2014) due to

the unique properties of nanomaterials. Among the

medical fields, high prevalence of resistance to

antimicrobial agents in different microorganisms

(Shelar and Chavan 2014), resistance of arthropods

to insecticidal agents (Jayaseelan and Rahuman 2012),

cancer cells to antitumor therapy (Daenen et al. 2014)

and many others have attracted attention of research-

ers towards metal nanoparticles as an alternative class
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of agents with antibacterial (Beyth et al. 2015; Franci

et al. 2015; Naseem and Farrukh 2015), antiviral

(Gaikwad et al. 2013; Galdiero et al. 2011), antipro-

tozoal (Said et al. 2012), antifungal (Kim et al. 2012),

larvicidal (Arjunan et al. 2012; Muthukumaran et al.

2015), acaricidal (Jayaseelan and Rahuman 2012;

Marimuthu et al. 2013), anthelmintic (Garg and

Chandra 2012) and antitumor activities (Cabeza

et al. 2015; Ortega et al. 2015).

Many unique properties of nanoparticles, such as

physicochemical, optical, mechanical, magnetic, etc.,

make them suitable for their use in various applica-

tions. Considering the importance of nanomaterials in

key future technologies, many countries have been

investing in nanotechnology. The concept of nan-

otechnology was first given by Richard Feynman

during his famous talk ‘There’s Plenty of Room at the

Bottom’ (The title of classic talk at the annual meeting

of the American Physical Society, the California

Institute of Technology in 1959).

Various methods of synthesis, viz. chemical, phys-

ical and biological, are commonly used for the

fabrication of metal nanoparticles. Among these,

chemical methods are used because of their advantage

in producing large quantities of nanoparticles in a

relatively short time with a fairly good control on the

size and distribution (Alkilany et al. 2015; He et al.

2015). Moreover, in chemical methods the variety of

shape of nanoparticles could be synthesized by

adjusting the concentration of reacting chemicals

and controlling the reaction conditions. Apart from

these advantages, chemical methods are energy

intensive, employ toxic chemicals and produce haz-

ardous wastes that are major risk to environment.

Similarly, in physical methods, various options, such

as sputter deposition, laser ablation or cluster beam

deposition, microwave-assisted synthesis, etc., are

available for the synthesis of metal nanoparticles. But,

due to the involvement of high temperature, radiations

and pressure associated with these methods (Alzahrani

et al. 2015; Dzido et al. 2015), biogenic synthesis is

gaining ground. The development of experimental

protocols for the synthesis of nanoparticles of specific

size and shape is a necessary advancement of

nanotechnology (Duran et al. 2010; Vala et al.

2014). Hence, researchers are foreseeing biological

systems that can be used as an efficient system for the

fabrication of different metal nanoparticles (Kar et al.

2014). Biological systems such as microorganisms

(bacteria, fungi, algae, cyanobacteria, actinomycetes,

myxobacteria) and plants are being efficiently used

either for intracellular or extracellular synthesis of

different metal nanoparticles (Adil et al. 2015; Ahmed

et al. 2015; Chen et al. 2014; Patel et al. 2015; Singh

et al. 2015a) Among the microbial systems, fungi are

most commonly used because they are ubiquitously

distributed in nature and play a crucial role in synthesis

of metal nanoparticles. There are several reports on

synthesis of metal nanoparticles by fungi (Kar et al.

2014; Qian et al. 2013; Rai et al. 2015a). In 2009, Rai

and his co-workers proposed the term ‘‘Myconan-

otechnology’’ to point out research on synthesis of

nanoparticles using fungi (Rai et al. 2009b). Thus,

myconanotechnology is an integrated discipline of

mycology and nanotechnology.

Biosynthesis: a novel and eco-friendly approach

As mentioned above, there are different methods for

the synthesis of metal nanoparticles including phys-

ical, chemical and biological. But, the physical and

chemical methods for the synthesis of nanoparticles

involve chemical reduction of metal ions in aqueous

solutions with or without use of stabilizing agents,

chemicals and photoreduction in reverse micelle,

chemical radiation and thermal decomposition in

organic solvents (Rai et al. 2008; Sharma et al. 2009;

Thakkar et al. 2010). Unfortunately, these methods

involve a large amount of heat and energy, use of

elevated temperature and toxic chemicals. (Sanghi and

Verma 2009). Thus, development of clean, non-toxic,

environment-friendly and biocompatible methods for

the synthesis of nanoparticles is needed. The use of

microorganisms for the synthesis of nanoparticles is

gaining impetus due to the ease in synthesis of

nanoparticles; moreover, the rate of success is much

higher (Adil et al. 2015; Chen et al. 2014; Patel et al.

2015; Shelar and Chavan 2014; Singh et al. 2015a, b).

Synthesis of nanoparticles by microbes and plants is a

green approach, and biogenic nanoparticles can be

used as antimicrobial agents, biosensors and bio-

nanocatalysts (Chen et al. 2014; Narayanan and

Sakthivel 2010; Rai et al. 2009a; Singh et al. 2011).
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Why fungi are an efficient mycosystem?

Fungi are non-phototrophic, eukaryotic microorgan-

isms consisting of a rigid cell wall (Bowman and Free

2011; Duran and Nombela 2004). They have simple

nutrition requirements being chemo-organotrophs

(Holan and Volesky 1995). The majority of these

fungi grow in the land and derive their food from dead

organic matter. Some fungi also grow as parasites on

other organisms. Fungi generally feed by secreting

enzymes that digest their food extracellularly and the

remaining food is then absorbed and completely

digested internally (Madigan and Martinko 2006).

The fungal cell wall is a dynamic structure that

provides cell with mechanical strength to endure

changes in osmotic pressure and environmental stress

(Bowman and Free 2011; Duran and Nombela 2004).

The morphological features and the biological activity

of the fungal cell wall are mainly due to its chemical

composition. The fungal cell wall comprises glyco-

proteins and polysaccharides, which mainly include

glucan and chitin. Polysaccharides represent about 80

to 90 % of dry matter of fungal cell wall (Fig. 1). The

glycoprotein, glucan and chitin are exceedingly cross-

linked together in a complex network, which forms the

structural basis of the fungal cell wall (Bowman and

Free 2011; Farkas 1979).

The fungal cell wall causes the adhesion of fungal

cells and also serves as a signaling center to activate

signal transduction pathways within the cell. Disrup-

tion of fungal cell wall depicts profound effect on the

growth and morphology of the cell and often leads to

lysis and cell death (Bowman and Free 2011). Fungi

have an incredible potential and are employed in

various biotechnological applications such as remedi-

ation of toxic metals, biomining, bioleaching, biomin-

eralization and biocorrosion (Klaus-Joerger et al.

2001; Narayanan and Sakthivel 2010). Hence, among

different biological agents harnessed for synthesis of

metal nanoparticles, fungi are used predominantly due

to their high metal tolerance and ability to bioaccu-

mulate metals. The fungal system possesses high wall-

binding capacity and also intracellular metal uptake

capability (Hemath et al. 2010; Ingle et al. 2008; Jain

et al. 2011; Sanghi and Verma 2009). The fungus,

Verticillium sp., for example, showed efficient reduc-

tion of silver ions leading to the synthesis of silver

nanoparticles below the surface of the fungal cells

(Mukherjee et al. 2001).

Fungi are easy to grow and synthesize nanoparticles

as the handling of biomass is simple (Chan and

Mashitah 2012; Honary et al. 2013). The fungal

mycelia can withstand high flow pressure, agitation

and other conditions in bioreactor compared to other

microbes and plants (Soni and Prakash 2012). Further

advantages include economic viability as large scale

synthesis is possible using a small amount of biomass

(Ingle et al. 2008; Vala et al. 2014). Fungi secrete a

large amount of extracellular enzymes required for

synthesis and higher yield of nanoparticles (Alani

et al. 2012; Birla et al. 2009; Kumar et al. 2007b;

Narayanan and Sakthivel 2010). Furthermore, the

nanoparticles precipitated outside the cell are devoid

of cellular components and hence can be directly used

for different applications (Narayanan and Sakthivel

2010).

Fig. 1 Representation of

the fungal cell wall
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Progress in mycofabrication of metal nanoparticles

The nanoparticles can be synthesized both intra- and

extra-cellularly in nanoscale dimensions with exquisite

morphology (Gholami-Shabani et al. 2013; Li et al.

2012). In intracellular synthesis, nanoparticles are

synthesized inside the fungal cell (Chan and Mashitah

2012; Vala et al. 2014). In this method, the fungal

biomass is treated with a metal salt solution and

incubated for 24 h in the dark. In extracellular

synthesis, the fungal filtrate is treated with a metal salt

solution and observed for the synthesis of nanoparticles

(Duran et al. 2005, 2006; Mukherjee et al. 2008; Nanda

and Majeed 2014). The synthesis of metal nanoparti-

cles using the extracellular method is much faster as

compared to the intracellular method (Narayanan and

Sakthivel 2010). Moreover, nanoparticles synthesized

using intracellular methods are smaller in size com-

pared to the extracellularly synthesized nanoparticles

(Narayanan and Sakthivel 2010; Thakkar et al. 2010).

The difference in size could be possibly due to the

nucleation of particles inside the fungus. However, as

the synthesis takes place inside the cell, its downstream

processing becomes difficult and hence the cost of

nanoparticle synthesis increases (Dhillon et al. 2012;

Gade et al. 2008; Zhang et al. 2011). On the other hand,

extracellular synthesis does not require extensive

downstream processing, which offers easier and cost-

effective synthesis. Therefore, extracellular methods

for nanoparticle synthesis are mostly preferred (Devi

and Joshi 2015). There are some reports on intra- and

extracellular synthesis of metal nanoparticles briefly

discussed below.

There are only a few studies that have been carried

out on the intracellular synthesis of nanoparticles; they

include the intracellular synthesis of silver nanopar-

ticles in the size range of 2–25 nm within Verticillium

sp. with the deposits of the metal clearly bound to the

surface of the cytoplasmic membrane (Sastry et al.

2003). Similarly, Mukherjee et al. (2001) demon-

strated the intracellular synthesis of gold nanoparticles

using the same fungus. In another study by Chen et al.

(2003) the fungus Phoma sp. 32883 was used for

the intracellular synthesis of silver nanoparticles.

Moreover, some other fungi such as Trichothecium

spp. (Ahmad et al. 2005), Verticillium luteoalbum

(Gericke and Pinches 2006), Penicillium chrysogenum

(Sheikhloo and Salouti 2011) for gold, Fusarium

oxysporum f. sp. lycopersici for platinum (Riddin et al.

2006), Aspergillus flavus (Vala et al. 2014) for silver,

etc. have been used for the intracellular synthesis of

various metal nanoparticles.

The extracellular synthesis has been extensively

studied using various fungi. For example, green

synthesis of gold nanoparticles using Alternaria sp.

In this study, the authors demonstrated the effect of

different concentration of chloroaurate solution on the

size of nanoparticles. TEM analysis revealed the

formation of spherical, rod, square, pentagonal and

hexagonal shape nanoparticles for 1 mM chloroaurate

solution. However, quasi-spherical and spherical

nanoparticles/heart-like morphologies with size range

of about 7–13 and 15–18 nm were observed for lower

molar concentrations of 0.3 and 0.5 mM gold chloride

solution, respectively (Dhanasekar et al. 2015). In

another study, Devi and Joshi (2015) used three

endophytic fungi, Aspergillus tamarii PFL2, Asper-

gillus niger PFR6 and Penicillium ochrochloron PFR8

isolated from an ethno-medicinal plant Potentilla

fulgens L., for the synthesis of silver nanoparticles.

The nanoparticles synthesized using the fungus A.

tamarii PFL2 had the smallest average particle size

(3.5 ± 3 nm) compared to the nanoparticles synthe-

sized by other two fungi A. niger PFR6 and P.

ochrochloron PFR8 with average particle sizes of

8.7 ± 6 and 7.7 ± 4.3 nm, respectively.

Similarly, a number of fungi such as F. oxysporum

(Duran et al. 2005; Kumar et al. 2007a; Namasivayam

et al. 2011), F. acuminatum (Ingle et al. 2008),

F. solani (Ingle et al. 2009), F. semitectum (Basavaraja

et al. 2007), Trichoderma asperellum (Mukherjee

et al. 2008), A. flavus (Jain et al. 2011), A. niger (Gade

et al. 2008), Phoma glomerata (Birla et al. 2009),

A. clavatus (Verma et al. 2010), Aspergillus sp.

(Pavani et al. 2012), Trichoderma viride (Fayaz

et al. 2009), Pestalotia sp. (Raheman et al. 2011),

A. terreus (Li et al. 2012), Trichophyton rubrum,

Trichophyton mentagrophytes and Microsporum can-

isetc (Moazeni et al. 2012),Helminthosporium tetram-

era (Shelar and Chavan 2014), P. gardeniae (Rai et al.

2015a), etc. have proved their ability for extracellular

synthesis of nanoparticles. Table 1 summarizes the list

of some fungi used for intra- and extracellular

synthesis of various nanoparticles.
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Table 1 List of some fungi that synthesize metal nanoparticles or other metallic nanostructures

Fungi Mode of Synthesis Nanoparticles References

Verticillium sp. Intracellular Au Mukherjee et al. (2001)

Fusarium oxysporum Extracellular CdS Ahmad et al. (2002)

Phoma sp. 3.2883 Intracellular Ag Chen et al. (2003)

Colletotrichum sp. Extracellular Au Shankar et al. (2003)

Fusarium oxysporum Extracellular Zirconia Bansal et al. (2004)

Trichothecium sp. Extra/Intra Au Ahmad et al. (2005)

Fusarium oxysporum Extracellular Si, Ti Bansal et al. (2005)

Fusarium oxysporum Extracellular Ag Duran et al. (2005)

Fusarium oxysporum, Verticillium sp. Extracellular Magnetite Bharde et al. (2006)

Aspergillus fumigates Extracellular Ag Bhainsa and D’Souza (2006)

Fusarium oxysporum f. sp. lycopersici Intra- & Extracellular Pt Riddin et al. (2006)

Verticillium luteoalbum Intracellular Au Gericke and Pinches (2006)

Fusarium semitectum Extracellular Ag Basavaraja et al. (2007)

Fusarium oxysporum Extracellular CdSe quantum dots Kumar et al. (2007a)

Fusarium oxysporum Extracellular Ag Kumar et al. (2007b)

Fusarium oxysporum Extracellular Ag Mohammadian et al. (2007)

Aspergillus niger Extracellular Ag Gade et al. (2008)

Fusarium acuminatum Extracellular Ag Ingle et al. (2008)

Trichoderma asperellum Extracellular Ag Mukherjee et al. (2008)

Penicillium sp. Extracellular Ag Sadowski et al. (2008)

Phoma glomerata Extracellular Ag Birla et al. (2009)

Fusarium solani Extracellular Ag Ingle et al. (2009)

Coriolus versicolor Extracellular Ag Sanghi and Verma (2009)

Aspergillus clavatus Extracellular Ag Verma et al. (2010)

Penicillium sp. Extracellular Ag Hemath et al. (2010)

Fusarium oxysporum Extracellular Ag Namasivayam et al. (2011)

Aspergillus flavus NJP08 Extracellular Ag Jain et al. (2011)

Neurospora crassa Extracellular Ag, Au, Bimetallic Castro-Longoria et al. (2011)

Aspergillus niger Extracellular Au Soni and Prakash (2012)

Aspergillus terreus Extracellular Ag Li et al. (2012)

Pycnoporus sanguineus

Schizophyllum commune

Lentinus sajor caju

Intracellular Ag Chan and Mashitah (2012)

Aspergillus foetidus MTCC8876 Extracellular Ag Roy et al. (2013)

Penicillium citrinum Extracellular Ag Honary et al. (2013)

Fusarium oxysporum Extracellular Ag Gholami-Shabani et al. (2013)

Helminthosporium tetramera Extracellular Ag Shelar and Chavan (2014)

Aspergillus flavus Intracellular Ag Vala et al. (2014)

Nigrospora oryzae Extracellular Au Kar et al. (2014)

Penicillium glabrum Extracellular Ag Nanda and Majeed (2014)

Phanerochaete chrysosporium Extracellular CdS Chen et al. (2014)

Aspergillus tamari, Aspergillus niger,

Penicillium ochrochloron

Extracellular Ag Devi and Joshi (2015)

Fusarium oxysporum Extracellular Ag Krishnakumar et al. (2015)

Phoma gardeniae Extracellular Ag Rai et al. (2015a)
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Other biological systems used for nanoparticle

synthesis

A vast array of biological resources for nanoparticle

synthesis have been harnessed, and include plants and

their products, bacteria, algae, fungi, yeast, actino-

mycetes and viruses showing both intracellular and

extracellular synthesis of metal nanoparticles (Adil

et al. 2015; Ahmed et al. 2015; Chen et al. 2014;

Golinska et al. 2014; Nanda and Majeed 2014; Patel

et al. 2015; Singh et al. 2015a). Some of the recent

reports are briefly discussed here.

The phytosynthesis of silver nanoparticles include

use of leaf extract of Prosopis farcta (Miri et al. 2015),

Musa balbisiana (banana), Azadirachta indica (neem)

and Ocimum tenuiflorum (Banerjee et al. 2014),

Phyllanthus niruri (Kathireswari et al. 2014), seed

extract of Brassica nigra (Pandit 2015), etc. Gold

nanoparticles were produced from the leaves extract of

Salvia officinalis, Lippia citriodora, Pelargonium

graveolens and Punica granatum (Elia et al. 2014),

Nepenthes khasiana (Bhau et al. 2015), Cucurbita

pepo (Gonnelli et al. 2015), etc. Copper nanoparticles

were synthesized from Citrus medica (Shende et al.

2015),Nerium oleander (Gopinath et al. 2014), copper

oxide nanoparticles—from Gloriosa superba extract

(Naika et al. 2015), iron nanoparticles—from the

extract of Lawsonia inermis and Gardenia jasmi-

noides (Naseem and Farrukh 2015).

Singh et al. (2015a) reviewed the role of various

bacteria for the intra- and extra-cellular synthesis of

silver nanoparticles. Similarly, there are many reports

available on the synthesis of silver nanoparticles by

bacteria that include Escherichia coli (Kushwaha et al.

2015), Bacillus spp. (Das et al. 2014; Malarkodi et al.

2013) and Bacillus stearothermophilus (El-Batal et al.

2013). Gold nanoparticles were synthesized from

E. coli K12 (Srivastava et al. 2013), Geobacillus sp.

strain ID17 (Correa-Llanten et al. 2013). Copper

nanoparticles from Pseudomonas fluorescens (Shan-

tkriti and Rani 2014) and Salmonella typhimurium

(Ghorbani et al. 2014).

Other microorganisms including yeast, actino-

mycetes and algae have also been used for the

synthesis of metal nanoparticles. Dameron et al.

(1989) reported synthesis of quantum crystallites in

yeasts Candida glabarata and Schizosaccharomyces

pombe cultured in the presence of cadmium salt.

Extracellular synthesis of silver nanoparticles was

reported in silver tolerant yeast strains MKY3 when

challenged with 1 mM soluble silver in the logarith-

mic phase of growth (Kowshik et al. 2003). Other

studies on biosynthesis of silver nanoparticles from

yeasts have also been published (Mourato et al. 2011;

Namasivayam et al. 2011). Actinomycetes are also

potential synthesizers of nanoparticles (Golinska et al.

2015) and includin extremophilic actinomycetes

Thermomonospora sp. (Sastry et al. 2003), Rhodococ-

cus sp. (Ahmad et al. 2003) and Streptomyces

viridogens (Balagurunathan et al. 2011); they have

been used for the extra and intracellular synthesis of

gold nanoparticles. Abdeen et al. (2014), Narasimha

et al. (2013), Saminathan (2015) and others have

demonstrated the synthesis of silver nanoparticles

from actinomycetes.

Many algae, such as cyanobacteria (Patel et al.

2015),Caulerpa racemosa (Kathiraven et al. 2015) and

marine brown macroalgae (Sunitha et al. 2015), etc.,

have been used for the synthesis of silver nanoparticles.

In addition, Spirulina platensis (Kalabegishvili et al.

2012), green algae (Parial et al. 2012), blue- green

algae (Suganya et al. 2015) and others were used for

the synthesis of gold nanoparticles.

Mechanism of mycosynthesis of metal

nanoparticles

The dissimilatory properties of eukaryotic microor-

ganisms, such as fungi, may be used to biosynthesize

nanoparticles. Fungi have the ability of producing

extracellular metabolites that serve as agents for their

own survival when exposed to different environmental

stresses like toxic materials (such as metallic ions),

predators and temperature variations (Mehra and

Winge 1991). During the synthesis of metal nanopar-

ticles by a fungus, the fungal mycelium is exposed to

the metal salt solution, which prompts the fungus to

produce enzymes and metabolites for its own survival.

In this process, the toxic metal ions are reduced to the

non-toxic metallic solid nanoparticles through the

catalytic effect of the extracellular enzyme and

metabolites of the fungus (Vahabi et al. 2011).

For the extracellular synthesis of nanoparticles, a

number of mechanisms have been proposed (Duran

et al. 2011; Ingle et al. 2008; Mukherjee et al. 2008).

Ahmad et al. (2003) for the first time proposed

mechanism involved for the synthesis of silver
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nanoparticles by F. oxysporum. They performed the

protein assay to detect the presence of NADH-depen-

dent reductase and reported that this enzyme was

responsible for the reduction of Ag ions and the

subsequent formation of silver nanoparticles. Duran

et al. (2005) worked out the mechanism of biosynthesis

of silver nanoparticles and reported that the synthesis

of silver nanoparticles occurred in the presence of

anthraquinone and NADPH-nitrate reductase. In this

case, the electron required to fulfil the deficiency of

aqueous silver ions (Ag?) and convert it into Ag

neutral (Ag0) was donated by both quinone and

NADPH. Kumar et al. (2007b) reported that the

process of formation of silver nanoparticles require

the reduction of -NADPH to -NADP? and the

hydroxyquinoline probably acts as an electron shuttle

transferring the electron generated during the reduction

of nitrate to Ag? ions converting them to Ag0. They

further reported that the action of hydroxyquinoline is

similar to that of quinones in the electron transport

taking place in themitochondria or the chloroplast. The

presence of nitrate reductase enzyme was confirmed

from the SDS-PAGE. Similarly, based on the previous

studies Ingle et al. (2008) proposed a mechanism for

the synthesis of silver nanoparticles from F. acumina-

tum. The authors supported the hypothetical mecha-

nism where the cofactor NADH and nitrate reductase

enzyme were responsible for the synthesis of silver

nanoparticles. They also confirmed the presence of

nitrate reductase in the fungal cell filtrate.

Mukherjee et al. (2008) also suggested Michaelis–

Menten type of mechanism for the synthesis of

nanoparticles where the reaction initially exhibits

pseudo-zero order kinetics and then follows higher-

order kinetics. Thus, at initial phase when the

concentration of silver nitrate is higher, the reaction

is rather slow and as the reaction proceeds the

concentration of silver nitrate lowers down consider-

ably. The authors proposed that bioreduction of metal

nanoparticles was brought about by protein extract

containing amino acid with -SH bonds and most likely

cysteine undergoes dehydrogenation on reaction with

silver nitrate to produce silver nanoparticles. While,

the free amino acid groups possibly serve as a capping

for silver nanoparticles.

The involvement of polypeptides/proteins in the

bioreduction of metal ions was also reported by Das

et al. (2009). In this study, FTIR spectra of fungal

culture containing AuCl4
- (auric chloride) revealed

the presence of amide I, II and III groups and the

disappearance of carbonyl groups present in the

mycelia. The shifting of peaks from 1034 to

1075 cm-1 illustrated the role of phosphate bonds in

the reduction process. Thus, the authors hypothesized

that the surface bound protein molecules acted as

reducing and stabilizing agent. Silver nanoparticles

synthesized by Coriolus versicolor also showed the

reduction of silver ions by amide I and amide II groups

(Sanghi and Verma 2009). The stabilization of

nanoparticles was attained by fungal protein.

Fig. 2 Hypothetical mechanism for intracellular synthesis of nanoparticles
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Jain et al. (2011) reported a two-step hypothetical

mechanism for synthesis of silver nanoparticles. In the

first step, reduction of bulk silver ions to silver

nanoparticles takes place by a 32 kDa protein, which

might be a reductase secreted by Asp. flavus. In the

second step, silver nanoparticles were capped by a

35 kDa protein that binds with the nanoparticles and

confers stability. Similar results were reported with

F. oxysporum showing the presence of two extracel-

lular proteins with molecular weight of 24 and 28 kDa

responsible for the synthesis of zirconian oxide

nanoparticles (Bansal et al. 2004; Duran and Seabra

2012). Chan and Mashitah (2012) exploited three

different macro fungi (Pycnoporus sanguineus,

Schizophyllum commune and Lentinus sajor-caju)

for synthesis of silver nanoparticles. The authors

supposed that the reduction of silver ions was possibly

due to the presence of diketone compound, which was

also confirmed by GC–MS analysis. Li et al. (2012)

also inferred that a NADH-dependent reductase

released by A. terreus might have accounted for the

synthesis of silver nanoparticles. In the process,

NADH acted as an electron carrier, and the silver

ions obtained electrons from NADH via the NADH-

dependent reductase, and then were reduced to silver

nanoparticles. However, it is hypothesized that the

intracellular synthesis of metallic nanoparticles is

through electrostatic attraction of the ions by the

enzymes or proteins in the fungal cell wall, then

reduced by the enzymes. Other possibility is the

migration of ions to cytoplasmic membrane and then

reducing in that site. These data were summarized by

Kashyap et al. (2013) who indicated that the synthesis

of silver nanoparticles require the reduction of

NADPH to NADP? and the hydroxyquinone acts as

an electron shuttle transferring the electrons generated

during the reduction of nitrate to Ag? ions converting

them to Ago. It can be concluded that the electrostatic

interaction and specific enzyme of fungi (e.g. NADPH

dependent reductase enzyme, hydroxyquinone, phy-

tochelatin etc.) are major factors in the mycosynthesis

of nanoparticles.

The actual mechanism of mycosynthesis of

nanoparticles, however, is still not fully understood.

According to Mukherjee et al. (2001), in intracellular

synthesis, metal nanoparticles are synthesized below

the cell surface, which is possibly due to the reduction

of metal ions by enzymes present in the cell membrane.

Synthesis proceeds firstly by the entrapment of metal

ions on the surface of fungal cell, which occurs due to

the electrostatic interaction between lysine residues

and metal ions (Riddin et al. 2006). The second step in

the synthesis is the enzymatic reduction of metal ions,

which leads to aggregation and formation of nanopar-

ticles. The cell-wall sugars also play a major role in the

reduction of metal ions (Mukherjee et al. 2001).

Although the mechanisms for the intracellular synthe-

sis of other metals are not available, the reduction of

other metalsmay occur in a similar pattern as described

for silver and gold nanoparticles (see Fig. 2).

Application of nanoparticles

Over the past few decades, inorganic nanoparticles

have demonstrated unique electromagnetic, optical

and catalytic properties (Dhillon et al. 2012; Rai et al.

2008; Singh et al. 2011). This has elicited much

interest of researchers to allow better usage of

nanoparticles in a number of applications (Gholami-

Shabani et al. 2013). Applications of nanoparticles in

medicine, agriculture and environment have been

discussed here.

Biomedical applications of nanoparticles

The metal nanoparticles in general and noble metal

nanoparticles in particular such as silver, gold and

platinum, have huge biomedical applications. Out of

these, silver and gold nanoparticles are preferentially

used. Silver nanoparticles showed strong antimicro-

bial potential, whereas gold nanoparticles showed

their applications in drug delivery for many important

diseases including cancer (Rai et al. 2015b).

Silver nanoparticles

Studies that emphasize the antimicrobial properties of

silver nanoparticles against bacteria, viruses, and

fungi have been explored extensively. Here, we have

briefly focused on these activities. Naqvi et al. (2013)

demonstrated the effect of silver nanoparticles and

commercial antibiotics on Staphylococcus aureus,

Klebsiella pneumoniae, Bacillus sp. and E. coli. The

results confirmed the potential activity of silver

nanoparticles compared to antibiotics used in the

study. Many other researchers have reported the
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antibacterial activity of silver nanoparticles on Gram

positive as well as Gram negative bacteria (Rai et al.

2009a). Morones et al. (2005) studied the effect of

silver nanoparticles on E. coli, Pseudomonas aerug-

inosa, Salmonella typhi and Vibrio cholerae. Further,

they reported the size-dependent activity of silver

nanoparticles. According to them, binding strength of

nanoparticles depend on the surface area to the volume

ratio resulting into the changes in the local electronic

surface, which ultimately enhance the reactivity of

surface. Taglietti et al. (2012) studied the minimal

inhibitory concentration (MIC) for silver nanoparti-

cles against Gram positive (Staphylococcus aureus)

and Gram negative (E. coli) bacteria, which were 180

and 15 lg/ml, respectively. Kanmani and Lim (2013)

and Lee et al. (2014) also studied the effect of silver

nanoparticles against various bacteria.

There are some studies that have shown promising

results for the control and prevention of viral diseases

by the use of silver nanoparticles. The latter have

demonstrated inhibitory activity against influenza A

H1N1 virus, which was proved through hemaggluti-

nation-inhibition tests and embryo inoculation assays

(Xiang et al. 2011). Silver nanoparticles of 1–10 nm

can bind to HIV-1 in a size-dependent manner

(Elechiguerra et al. 2005). The authors also reported

a spatial relationship, which can be explained using

the structural information of HIV-1 envelope. The

HIV-1 is composed of two subunits out of which a

surface glycoprotein subunit gp120 is exposed to the

exterior and the transmembrane glycoprotein subunit

gp41 connects the gp120 subunit to the interior p17

matrix protein. The principle function of gp120 is to

bind with CD4 receptor sites on the host cells (Lara

et al. 2010a). The silver nanoparticles in concentration

of 24 lg/ml significantly inhibited HIV-1 infection in

CD4
?MT2 cells and cMAG HIV-1 receptor cells

(Elechiguerra et al. 2005; Lara et al. 2010a).

In another study by Lara et al. (2010b)

polyvinylpyrrolidone (PVP)-stabilized silver nanopar-

ticles were employed for the development of a gel used

to avoid contamination by viruses, especially HIV,

during sexual intercourse. The results were favorable

to prevent HIV infection in sexually active women,

providing protection up to 48 h after application.

Tefry et al. (2012) reported the development of a

method to evaluate the activity of silver nanoparticles

against pseudo-typed HIV-1-based viruses. Their aim

was to develop a system that could also be used to test

the activity of other nanoparticles on other pseudo

viruses.

Gaikwad et al. (2013) demonstrated the antiviral

activity of biologically synthesized silver nanoparti-

cles against herpes simplex virus type 1 and 2 (HSV 1

and 2) and human parainfluenza virus type 3 (HPIV-3)

in dose-dependent manner. In another method, the

infectivity of virions was inhibited when viral aliquots

were incubated with silver nanoparticles for 2 h at

37 �C. In a similar study against adenovirus type 3,

Chen et al. (2013) reported the cytotoxicity of

chemically-synthesized silver nanoparticles at 50 lg/

ml. Hu et al. (2014) explained the inhibition mecha-

nism of silver nanoparticles on HSV2. Silver nanopar-

ticles formed bonds with the glycoprotein membrane

of HSV2, which contains sulfhydryl groups. This

interaction prevents the internalization of the virus by

inhibiting the interaction of glycoprotein and receptor.

Silver nanoparticles at concentration 50 and 25 lg/ml

significantly inhibited the HSV 2 progeny.

Antifungal activity of silver nanoparticles has been

less explored compared to their antibacterial activ-

ity. Kim et al. (2008) reported significant antifungal

activity of silver nanoparticles against various

strains of Candida albicans, C. tropicalis, C. glabrata,

C. parapsilosis, C. krusei and Trichophyton menta-

grophytes. Gajbhiye et al. (2009) reported effective-

ness of biosynthesized silver nanoparticles against

Phoma glomerata, P. herbarum, F. semitectum, Tri-

choderma sp. and C. albicans. Some other reports

include antifungal activity of silver nanoparticles

against A. flavus and C. albicans (Kandile et al.

2010), C. albicans and Saccharomyces cerevisiae

(Nasrollahi et al. 2011), A. flavus, A. niger, Curvularia

sp., Fusarium sp. and Rhizopus sp. (Savithramma et al.

2011), Rhizoctonia solani, A. flavus and Alternaria

alternata (Kaur et al. 2012),C. albicans, Trichophyton

rubrum and A. fumigatus (Tile and Bholay 2012),

against keratitic fungi such as Fusarium, Aspergillus

and Alternaria (Xu et al. 2013), C. albicans (Dar et al.

2013).

Silver nanoparticles are used as biocides to prevent

infections in burns, traumatic wounds and ulcers

(Franci et al. 2015; Jain et al. 2011; Rai et al. 2009a;

Rai et al. 2009b). Furthermore, they are also employed

as water disinfectant (Bhattacharya and Mukherjee

2008). Other applications of silver nanoparticles

include nanocrystalline silver dressings, silver

nanoparticles impregnated surgical masks, gloves,
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catheters, etc. (Kumar and Yadav 2009; Rai et al.

2009a).

Combined use of mycofabricated silver

nanoparticles and antibiotics to combat antibiotic

resistance

Although many studies on antibacterial activity of

silver nanoparticles have been made, the exact

mechanism is still to be elucidated. Silver nanopar-

ticles may damage the structure of bacterial cell

membrane and suppress the activity of some mem-

branous enzymes, which cause the bacteria to die (Li

et al. 2010). Xiu et al. (2012) presented data that silver

nanoparticles themselves do not significantly exert

direct particle-specific toxicity on bacteria, which is

still an open question, since contrary results to this

were previously reported stating that the silver ions as

the final active effector against bacteria are quite

clear. The grade of penetration is the question that

plays an important role in this action. Silver nanopar-

ticles are extremely effective at penetrating microor-

ganisms compared to silver ions. But it is very

important to note that studies by Fayaz et al. (2011)

and Devi and Joshi (2012) must be taken with certain

caution when extrapolating this mechanistic inference

to other biological systems. In addition, their signif-

icant antimicrobial effects have been clearly demon-

strated (Birla et al. 2009; Karwa et al. 2011; Lima

et al. 2013). The use of this nanomaterial in combi-

nation with antibiotics is therefore a new and impor-

tant area.

One of the possible applications of metallic

nanoparticles is the enhancement of activity of other

antimicrobial agents. Toxic effects of nanoparticles on

Table 2 Antibacterial activity of combination of mycofabricated nanoparticles and antibiotics

Fungus used for

biosynthesis

Nanoparticles

type and size

Test object Antibiotics in

combination

Observed effect in the presence of

nanoparticles

Ref

Phoma

glomerata

Silver,

60–80 nm

Staphylococcus

aureus, Escherichia

coli, Pseudomonas

aeruginosa

Ampicillin,

gentamicin,

kanamycin,

streptomycin and

vancomycin

Activity of vancomycin was the

most increased. An increase of

activity was more prominent

against Gram-negative bacteria.

Birla

et al.

(2009)

Trichoderma

viride

Silver,

5–15 nm

S. aureus, E. coli,

Micrococcus luteus,

Salmonella typhi

Ampicillin,

erythromycin,

kanamycin and

chloramphenicol

All tested combinations showed

beneficial effect, especially in

amoxicillin. An increase in

activity was more significant

against Gram-negative bacteria.

Fayaz

et al.

(2009)

Ganoderma

lucidum

Silver,

10–70 nm

S. aureus, E. coli Tetracycline Activity increased Karwa

et al.

(2011)

T. viride Gold,

4–15 nm

S. aureus, E.coli,

VRSA

Vancomycin Against VRSA activity increased;

appeared activity against E. coli

Fayaz

et al.

(2011)

Pestalotia sp. Silver,

10–40 nm

S. aureus, S. typhi Gentamycin and

Sulphamethizole

Activity of both antibiotics

increased, especially of

gentamycin

Raheman

et al.

(2011)

Trichoderma

harzianum

Silver,

30–50 nm

S. aureus, E. coli Cefazolin Activity of both antibiotics

increased

Singh

et al.

(2011)

Aspergillus

terreus,

Paecilomyces

lilacinus,

Fusarium sp.

Silver,

5–50 nm

S. aureus,

Streptococcus

pyogenes,

Salmonella enterica,

Enterococcus

faecalis

Erythromycin,

methicillin,

chloramphenicol,

ciprofloxacin

Increase in activity of

erythromycin, methicillin,

chloramphenicol and

ciprofloxacin, more prominent

against S. aureus and S. pyogenes

Devi and

Joshi

(2012)
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mammalian cells limit their broad use with therapeutic

purposes (Lewinski et al. 2008) but these effects

depend on several other factors (Lima et al. 2013).

However, synergistic combinations between nanopar-

ticles and other antimicrobials make it possible to

lower dosages thus reducing toxic effect. Another

important benefit of such combinations is the pro-

longed activity of highly effective antibiotics owing to

fewer chances of development of resistance to a

combination of drugs compared with the use of single

components, and combinations are important also in

restoring activity of previously effective antibiotics

but which lose their clinical application owing to

development of bacterial resistance (Allahverdiyev

et al. 2011).

Research on combinations between antibiotics and

metallic nanoparticles of any origin are scarce and,

especially, for mycofabricated nanoparticles, as this is

a new and developing area (Table 2). Most studies are

conducted with silver nanoparticles produced by

fungi; some or all tested combinations demonstrate

beneficial enhancing effects; therefore, combinations

of mycofabricated nanoparticles with antibiotics

should be further evaluated in detail against different

bacterial models and especially, multi-drug resistant

bacteria. Mechanisms of synergistic interactions

between metal nanoparticles and antibiotics can be

explained by increasing local concentration of antibi-

otic. With the accumulation of nanoparticle-antibiotic

complexes at the site of bacterium-antibiotic interac-

tion, it facilitates the binding reaction between antibi-

otic and bacterial surface, and increases permeability

of the bacterial cell wall for nanoparticles. For

example, beta-lactam antibiotics acted synergistically

with silver nanoparticles enhancing subsequent influ-

ence of nanoparticles on inner bacterial structures (Li

et al. 2005); in another study, synergistic effect was

obtained in the combination of silver nanoparticles

and polymyxin B against Gram-negative bacteria

(Ruden et al. 2009).

The formation of biofilm is associated with resis-

tance to antimicrobial agents and chronic bacterial

infections. In this direction, silver nanoparticles have

demonstrated antibiofilm activities. To prove this, an

ATPase inhibitor assay, permeability assay and

hydroxylradical assay were studied. Antibacterial

activity of silver nanoparticles was influenced by

these factors and not by permeability of the outer

membrane (Hwang et al. 2012).

The antibacterial activities of amoxicillin, ery-

thromycin and vancomycin were increased in the

presence of silver nanoparticles against S. aureus; also

activity of gentamicin, tetracycline and carbenicillin

was increased against P. aeruginosa. The highest

enhancing effects were observed for vancomycin and

amoxicillin against S. aureus and for carbenicillin and

gentamicin against P. aeruginosa (Sattari et al. 2012).

The biogenic silver nanoparticles showed enhanced

quorum sensing activity against S. aureus biofilm and

prevention of biofilm formation. The synergistic effect

of silver nanoparticles along with antibiotics in biofilm

sensing was found to be effective (Chaudhari et al.

2012).

Silver nanoparticles functionalized with ampicillin

were effective, broad-spectrum bactericides against

Gram-negative and Gram-positive bacteria (Brown

et al. 2012). The activity of different antibiotics

evaluated against selected human bacterial pathogens

such as S. aureus, S. epidermidis, E. coli, P. aerug-

inosa, and Bacillus cereus by disc diffusion method

showed the maximum increase with vancomycin

against P. aeruginosa and E. coli and kanamycin

against S. epidermis (Thangapandiyan and Prema

2012). Biosynthesized silver nanoparticles alone and

in combination with antibiotics demonstrated excel-

lent antimicrobial activity against MRSA. Antimicro-

bial activity was studied with biogenic silver

nanoparticles and cephalexin, which showed a syner-

gistic effect against S. aureus and E. coli (Vivekanan-

dan et al. 2012). Piperacillin and erythromycin showed

a significant increase in their activities in the presence

of biogenic silver nanoparticles. A synergism was

observed for chloramphenicol or vancomycin against

P. aeruginosa and streptomycin against E. coli (Ghosh

et al. 2012).

Gold nanoparticles

Like silver nanoparticles, gold nanoparticles also have

tremendous biomedical applications. They are mainly

used for the diagnosis and treatment of cancer, AIDS,

tuberculosis and other diseases through drug delivery.

Huo et al. (2012) demonstrated that size of nanopar-

ticles exerts great influence on the penetration and

retention behavior of nanoparticles entering in tumors.

They studied the effect of 50 and 100 nm gold-coated

Au@tiopronin nanoparticles using MCF-7 breast

cells as a model system. The results showed that
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nanoparticles of 50 nm penetrated more deeply into

tumor spheroids. In contrast, larger gold-coated

nanoparticles (100 nm) were primarily localized in

the periphery of the tumor spheroid and around blood

vessels, hindering deep penetration into tumors.

Johnson et al. (2013) reviewed the potential role of

nanotechnology in therapeutic approaches for breast

cancer. Madhusudhan et al. (2014) reported that

conjugates of anticancerous drug doxorubicin and

gold nanoparticles are more effective as compared to

the use of doxorubicin alone. Similarly, Ashiq et al.

(2013) reported the use of gold nanoparticles in breast

cancer therapy by the technique known as laser-

induced coulomb explosion of gold nanoparticles.

Radiotherapy is mostly used to treat various

cancers. It involves the use of bombardment of

ionizing radiations containing high energy particles

on target tissue. These rays, however, are non-specific

as they cannot discriminate between the normal and

cancerous cells. Thus, there are many chances of

damaging the normal cells during the process. The

tumour specific nanoparticles can be used with

radiation therapy to reduce the exposure of normal

cells (Hainfeld et al. 2010). Functionalized particles

like gold-coated, lanthanide phosphate nanoparticles

were used for radiotherapy (McLaughlin et al. 2013).

Hwang et al. (2014) demonstrated the potential use of

small sized gold nanoparticles (6 nm) for the pho-

tothermal therapy in cancer. Ali et al. (2014) inves-

tigated the anticancer activity of rifampicin

conjugated gold nanoparticles in multidrug resistant

(MDR) cancer cells. Rifampicin enhances the accu-

mulation of anticancer drugs in cancer cells and the

authors reported that rifampicin-conjugated gold

nanoparticles significantly enhanced the rate and

efficiency of endocytosis and also increased their

concentration inside the cancer cells. Cell viability test

showed a remarkable enhancement in the photother-

mal therapeutic effect of gold nanoparticles in pres-

ence of rifampicin. Hence, it will help to decrease the

demand on the overall amount of gold nanoparticles

needed for treating cancer and thus decreasing its

toxicity.

Gold nanoparticles are also efficiently used for the

treatment of AIDS. Berry et al. (2007) demonstrated

the role of biocompatible gold nanoparticles of

different sizes functionalized with the HIV-1 tat

integral protein transduction domains (PTD) to

develop nuclear targeting agents. The functionalized

gold nanoparticles were tested in vitro with a human

fibroblast cell line. Nanoparticles at 5 nm were easily

transferred across the plasma membrane. Larger

nanoparticles (30 nm), however, were retained in

cytoplasm, suggesting entry was blocked via nuclear

pores dimension. This study concluded that gold

nanoparticles 5 nm or smaller can be used as a vehicle

for the drug delivery for AIDS. In another study,

multivalent mercaptobenzoic acid-coated gold

nanoparticles of 2 nm were synthesized and conju-

gated with SDC-1721, a derivative of TAK-779 and a

known CCR5 antagonist, which is principal entry co-

receptor for most commonly transmitted strains of

HIV-1 (Bowman et al. 2008). The authors reported

that free SDC-1721 alone had no inhibitory effect on

HIV infection; however, the SDC-1721-gold nanopar-

ticles conjugate showed higher inhibition. Conse-

quently, the conjugation of small molecules (SDC-

1721) on gold nanoparticles surface can convert

inactive drugs into potent therapeutics. Other reports

have indicated the efficacy of gold nanoparticles

against cancer (Arnaiz et al. 2012; Chiodo et al. 2014;

He et al. 2014; Kesarkar et al. 2012; Zheng et al.

2012).

Until recently, only PCR-based molecular methods

have been available for the direct identification and

susceptibility testing of mycobacteria (Costa et al.

2010; Hussain et al. 2013). But, today, various types of

gold nanoparticle-based sensors have been developed

for the detection ofMycobacterium infections. Duman

et al. (2009) demonstrated activity of biosensor

developed in combination with gold nanoparticles,

which is also used for the detection ofM. tuberculosis.

Similarly, Thiruppathiraja et al. (2011) developed

DNA electrochemical biosensor using gold nanopar-

ticles for detection of genomic DNA of Mycobac-

terium sp. Gajendiran et al. (2014) developed a gold

conjugated poly(lactic-co-glycolic acid)-polyethylene

glycol (PEG)-succinic anhydride (SA)-polyethylene

glycol (PEG)-poly(lactic-co-glycolic acid) (i.e.

PLGA–PEG–SA–PEG–PLGA) multiblock copoly-

mer nanoparticles, loaded with the tuberculosis drug,

rifampicin, and administered in the experimental

model. Liu et al. (2014) developed a new DNA-based

biosensor for the highly sensitive detection of the

specific IS6110 DNA sequence of M. tuberculosis.

They also found that DNA biosensor show stability,
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possessed high specificity and also provided a new

strategy for early detection of M. tuberculosis.

Gold nanoparticles are now used in vaccine deliv-

ery. The current field is still developing but there are

reports on the use of gold nanoparticles in vaccine

delivery in some diseases due to their small size and

ability to enter the cell easily. Fujita and Taguchi

(2011) proposed that gold nanoparticle-based vaccines

can be developed by two ways; the first one includes

addition of functional components (T cell epitopes,

cell-penetrating peptides and lipophilic moieties) and

the second one is known as the synthetic approach,

which is achieved by using size-defined nanomaterials

(self-assembling peptides, non-peptidic dendrimers

and gold nanoparticles) as antigen-displaying

platforms.

Gold nanoparticle- based DNA vaccines are more

effective than the conventional vaccines. Zhou et al.

(2008) demonstrated that gold nanoparticles conju-

gated with low molecular weight chitosan induce an

enhanced serum antibody response ten-times more

potent than naked DNA vaccine. Park et al. (2013)

reviewed the role of nanotechnology in the field of

immunotherapy. According to them this field allows

the application of vaccine adjuvants and immunomod-

ulatory drugs that improve clinical outcomes for

immunological diseases (vaccines in cancer

immunotherapy). Similarly, Lee et al. (2012) and

Ahn et al. (2014) developed imageable antigen-

presenting gold nanoparticle vaccines and tumor-

associated self-antigens as a potential vaccine for

effective cancer immunotherapy. Cao-Milan and Liz-

Marzan (2014) have reviewed the recent advances of

conjugated gold nanoparticles in various clinical

applications including delivery of vaccines in infec-

tious diseases.

Application of nanoparticles in agriculture

Nanotechnology has the potential to revolutionize

different sectors of the agriculture (Goel 2015; Rai and

Ingle 2012; Rai et al. 2015c). Apart from its major

application as antimicrobial agents for the manage-

ment of plant pathogens, nanoparticles can serve as

nano-pesticides, nano-insecticides and nano-fertiliz-

ers. Nanomaterials are also useful for the development

of nanobiosensors used for the preparation of devices,

which can be applied in precision farming.

Precision farming

Precision farming generally involves the use of

devices made of biosensors which helps in agriculture.

Nanobiosensor is a modified version of a biosensor,

which may be defined as a compact analytical device

or unit incorporating a biological or biologically-

derived sensitized element linked to a physico-chem-

ical transducer (Turner 2000). Rai et al. (2012a, b)

reported that nanobiosensors can be effectively used

for sensing a wide variety of fertilizers, herbicide,

pesticide, insecticide, pathogens, moisture and soil

pH. According to Mousavi and Rezaei (2011), the

concept of precision farming includes a system

controller for each growth factor such as nutrition,

light, temperature, etc. Also, these systems should

have information for planting and harvest time, which

can be controlled by satellite systems. These systems

allow the farmer to know the best time for planting and

harvesting to avoid of encountering bad weather

conditions.

Nano-fungicides

Fungi are most common plant pathogens compared to

bacteria and viruses. There is a large number of fungal

genera, that are common plant pathogens: species of

Fusarium, Phoma, Aspergillus, Phytopthora, Phyl-

losticta, etc. (Ingle and Rai 2011). All can be managed

by nanomaterials (Ingle et al. 2014; Singh et al.

2015a).

Nanofertilizers

Many problems are associated with agriculture, such

as excessive and continuous use of chemical fertilizers

and water resources, decrease the fertility of soil and

eventually in the crop production. Therefore, nanofer-

tilizers can be the only alternative to regain and protect

the fertility of soil with minimum damage to soil.

Nanostructured formulation through targeted delivery

or slow/controlled release or conditional release of

fertilizer according to environmental triggers and

biological demands is the important The use of

nano-fertilizers leads to an increase in nutrient

efficiencies, reduces soil toxicity, minimizes the

potential of negative effects associated with over dose

of chemical fertilizers. Hence, nanotechnology has a

high potential for achieving sustainable agriculture,
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especially in developing countries (Naderi and

Danesh-Shahraki 2013). Corradini et al. (2010) pro-

posed a concept of incorporation of chemical fertiliz-

ers into chitosan nanoparticles for the slow and

constant release in adequate amount. This concept is

helpful to control the release of chemical fertilizers

into soil and also to avoid excess disposal of chemical

fertilizers into soil and aquatic environments.

Naturally occurring minerals, such as nano clays

and zeolites can be applied as nanofertilizers (Chin-

namuthu and Boopathi 2009). Millan et al. (2008)

reported that urea- fertilized zeolite chips can be used

as slow-release nitrogen fertilizers. Ammonium-

charged zeolites have a capacity to raise the solubi-

lization of phosphate minerals and have improved

phosphorus uptake and the yield of crop plants. Li

(2003) demonstrated the possibility of using surfac-

tant-modified zeolite by application of hexa-decyl

trimethyl ammonium as fertilizer carrier to control

nitrate release and proposed that surfactant-modified

zeolite was suitable sorbent for nitrate, since slow

release of nitrate is achievable. In another study,

Subbarao et al. (2013) developed the strategies for

slow release of potash fertilizer with coating of plaster

of Paris, wax etc. It helps in slow release of fertilizers

and minimizes the fertilizer loss.

Nano-pesticides

Nano-pesticides include a great variety of products

that consist of organic ingredients (polymers) and/or

inorganic ingredients (metal oxides) in various forms

(particles, micelles). The aims of nanoformulation are

generally similar to other pesticide formulations as

follows: (i) increasing the apparent solubility of poorly

soluble active ingredient, and (ii) releasing the active

ingredient in a slow/targeted manner and/or protecting

the active ingredient against premature degradation. If

one defines nano-pesticides as any formulation that

intentionally includes elements in the nanometer size

range and/or claims novel properties associated with

these small size range, it would appear that some nano-

pesticides have already been on the market for several

years.

Effectiveness of metal anoparticles against differ-

ent plant pathogens, insects and pest makes them

compatible for their use in the preparation of new

formulations including pesticides, insecticides and

insect repellants (Barik et al. 2008; Goswami et al.

2010). Liu et al. (2006) used porous hollow silica

nanoparticles (PHSNs) loaded with validamycin (pes-

ticide) as efficient delivery system of water-soluble

pesticide and for its controlled release. Such controlled

release behaviour of PHSNs makes it as promising

carrier in agriculture, especially for pesticide con-

trolled delivery whose immediate as well as prolonged

release is needed for plants. Wang et al. (2007),

reported that nano-emulsions was useful for the

formulations of pesticides, which could be effective

against various insect pests in agriculture.

Barik et al. (2008) claimed that nano-silica can be

used as nano-pesticide. Further, they focused on the

mechanism of control of insect pest using nano-silica,

and according to them insect pests used a variety of

cuticular lipids for protecting their water barrier and

thereby prevent death from desiccation, but nano-

silica gets absorbed into the cuticular lipids by

physiosorption and thereby causes death. Surface-

charged modified hydrophobic nano-silica (3 to 5 nm)

can control a range of agricultural insect pests (Ulrichs

et al. 2005). Goswami et al. (2010) studied the

application of different kind of nanoparticles, viz.

silver nanoparticles, aluminium oxide, zinc oxide and

titanium dioxide, for the control of rice weevil and

grasserie disease in silkworm (Bombyx mori) caused

by Sitophilus oryzae and baculovirus B. mori nuclear

polyhedrosis virus, respectively. Later, it was reported

that all the nanoparticles showed significant control of

these insect pests.

Application of nanoparticles in environment

The environment is an important factor for existence

of life on the earth. Due to human interference air, soil

and water are being polluted by many contaminants.

For example, carbon monoxide, chlorofluorocarbons

and metals, such as arsenic and mercury, and various

hydrocarbons are responsible for air pollution. How-

ever, NO and SO2 released from industries cause acid

rains leading to soil acidity. Industrial effluents,

sewage and oil spills are the major sources of water

pollution. There are many technologies being imple-

mented for effective removal of contaminants from

environment. But either they lack the efficacy and/or

are time-consuming processes. Therefore, there is a

need of technology which can cope with this problem

and nanotechnology has the great prospects in this
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area. Many researchers have focused their research on

nanotechnology to save the environment by using

various kinds of nanomaterials.

Among all nanomaterials, metal nanoparticles play

a vital role in adsorbing water contaminants. For

instance, iron nanoparticles transform and detoxify

environmental pollutants, such as chlorinated organic

solvents, pesticides and polychlorinated biophenyls.

They also enhance efficacy of remediation of toxic

compounds from environments (Zhang 2003). Zero

valent iron nanoparticles can be used for remediation

of groundwater so as to make it potable (Rajan 2011).

Metals such as mercury, arsenic and chromium, are

among the most harmful contaminants of water and

exist in ionic form, which could interact with various

biomolecules and alter their structure and functions.

Polymer brush functionalised magnetic nanoparticles

are highly effective in removing mercury ions (Far-

rukh et al. 2013) and chromium ions (Telling et al.

2009) from contaminated water. Magnetic iron oxide

nanoparticles adsorb arsenic. Moreover, they are

highly biocompatible and can be easily degraded in

the environment and therefore, they are the safer

option for such usage. TiO2 nanoparticles are promis-

ing candidate for photocatalytic degradation of several

pollutants. They are effective in degrading pollutants,

such as phenols, volatile compounds, dyes, etc.

Therefore, they have been used in photocatalytic

membranes for decontamination of water at large scale

(Chong et al. 2010). Singh et al. (2011) demonstrated

that the use of zero-valent iron nanoparticles (nZVI)

can be useful for the remediation of Cr(VI) from soil.

They reported that 1.5 g nZVI entrapped in alginate

beads remove 98 % Cr(VI) from spiked soil within

60 min.

Key areas of research

The mycosynthesis of metal nanoparticles is a green,

economically viable and easy approach. Therefore,

fungi should be screened for selection of potential

strains for the synthesis of nanoparticles. There is a

greater need for optimization of conditions for

synthesis of nanoparticles. Various mechanisms have

been proposed to explain the synthesis of nanoparti-

cles by fungi but a better understanding of the fungal

system is still needed. Extensive studies are therefore,

required to understand the exact biochemical and

molecular mechanism involved in nanoparticle

synthesis.

Efforts are needed for large-scale production of

nanoparticles. Mycosynthesized nanoparticles can be

used as novel nanoantimicrobials with potential to

tackle the problem of multi-drug resistance. There is a

wide scope of nanoparticles in the fields such as

agriculture and environment.

Conclusions

The increasing interest for greener and biological

methods of synthesis has led to the development of

non-toxic and comparatively more bioactive nanopar-

ticles. Unlike physical and chemical methods of

nanoparticle synthesis, microbial synthesis in general

and mycosynthesis in particular is cost-effective and

environment-friendly. Hence, mycosynthesis of

nanoparticles is now an important branch of bionan-

otechnology and is referred to as myconanotechnol-

ogy. The fungi involved are efficient due to their

innate potential for intracellular and extracellular

synthesis of nanoparticles, and therefore, they can be

regarded as novel biomills for the synthesis of

nanoparticles. However, different aspects, such as

the rate of synthesis, monodispersity and downstream

processing, need to be improved. Extensive research

on the synthesis of nanoparticles using different fungi

and the possible mechanisms involved synthesis still

needs to be elucidated. There is also an acute need to

study the large-scale synthesis of nanoparticles for

commercial applications.
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