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RESEARCH Open Access

Fungi stabilize connectivity in the lung and
skin microbial ecosystems
Laura Tipton1,2†, Christian L. Müller3†, Zachary D. Kurtz4, Laurence Huang5, Eric Kleerup6, Alison Morris7,

Richard Bonneau2,3 and Elodie Ghedin2,8*

Abstract

Background: No microbe exists in isolation, and few live in environments with only members of their own

kingdom or domain. As microbiome studies become increasingly more interested in the interactions between

microbes than in cataloging which microbes are present, the variety of microbes in the community should be

considered. However, the majority of ecological interaction networks for microbiomes built to date have included

only bacteria. Joint association inference across multiple domains of life, e.g., fungal communities (the mycobiome)

and bacterial communities, has remained largely elusive.

Results: Here, we present a novel extension of the SParse InversE Covariance estimation for Ecological ASsociation

Inference (SPIEC-EASI) framework that allows statistical inference of cross-domain associations from targeted

amplicon sequencing data. For human lung and skin micro- and mycobiomes, we show that cross-domain

networks exhibit higher connectivity, increased network stability, and similar topological re-organization patterns

compared to single-domain networks. We also validate in vitro a small number of cross-domain interactions

predicted by the skin association network.

Conclusions: For the human lung and skin micro- and mycobiomes, our findings suggest that fungi play a

stabilizing role in ecological network organization. Our study suggests that computational efforts to infer association

networks that include all forms of microbial life, paired with large-scale culture-based association validation

experiments, will help formulate concrete hypotheses about the underlying biological mechanisms of species

interactions and, ultimately, help understand microbial communities as a whole.

Background

Determining networks of microbial interactions that affect

the fitness of individual species is relevant for the func-

tional characterization of a microbial community. These

interactions can vary across time and space, depending on

both abiotic and biotic factors. Common abiotic factors

include oxygen, temperature, and pH, while biotic factors

can include the presence or absence of other microbes.

The ability to predict biological associations between mi-

crobes from next-generation sequencing data, particularly

from targeted amplicon sequencing (TAS), has been a

topic of increasing interest due to the advent of efficient

statistical network inference tools for TAS data [1–3]. The

resulting microbial association networks can be inform-

ative both at species and community levels. At the species

level, associations have been used to successfully co-

culture organisms previously thought un-culturable. Co-

culture has, for example, enabled the cultivation and se-

quencing of a member of the candidate division TM7,

called TM7x, from the human oral microbiome [4]. TM7x

is now known to be an obligate epibiont of Actinomyces

odontolyticus and cannot be cultured without it. At the

community level, the topological organization of the

association network can indicate ecological and co-evolu-

tionary relationships in the community [2]. For example,

early-life antibiotic exposure has been shown to have last-

ing and transferable effects on the topology of murine gut

microbial association networks [5].

Standard methods for microbial association inference

from TAS data are based on co-occurrences or correlations
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[1, 3] and have been applied to bacterial communities. By

targeting the 16S subunit of the ribosomal RNA gene (16S

rRNA gene), these bacterial studies ignore other compo-

nents of the community, including fungi. Although present

at significantly lower abundance than bacteria, fungi play

an important role in the microbial community, and interac-

tions between individual fungi and bacteria are well

documented [6–8], making these interactions deserving of

further study [9].

Here, we present a statistical framework that allows

the inference of associations across multiple microbial

domains. Rather than relying on correlation or co-oc-

currence information, we consider a cross-domain ex-

tension of the SPIEC-EASI (SParse InversE

Covariance estimation for Ecological ASsociation

Inference, pronounced “speak easy”) method [2],

which estimates microbial associations in a composition-

ally robust, sparse graphical modeling framework. The ori-

ginal SPIEC-EASI method relies on a normalization

technique to make the operational taxonomic units

(OTUs) independent of one another. We exploited this

pre-processing step to expand the method to include mul-

tiple domains, as described in detail in the methods sec-

tion. By using independent TAS studies of the 16S rRNA

gene and Internal Transcribed Spacer (ITS) from the same

samples of bacterial and fungal communities, our novel

SPIEC-EASI variant allows compositionally robust, simul-

taneous inference of both within-domain and cross-

domain associations. The inferred network represents a

parsimonious statistical description of cross-domain

species associations, which could result from direct spe-

cies interactions or relationships mediated through latent

(unmeasured) biotic or abiotic factors.

We consider two microbiome studies that include

both 16S rRNA gene and ITS sequencing: the lung

microbiome [10, 11], and the skin microbiome [12, 13].

For both habitats, we highlight system-wide features

of the single-domain and cross-domain networks, as

well as key re-organization patterns of the cross-

domain association networks compared to their

single-domain counterparts. For the lung micro-

biome, we highlight network modules of disease-

associated microbes. Guided by the inferred skin

microbiome association network, we select several

skin microbiome community members, belonging to

two bacterial and one fungal species, and experimen-

tally confirm their predicted co-variation profiles by

co-culture.

Results

To highlight the relevance and the impact of cross-

domain associations on community organization, we

inferred association networks of two microbiome

communities. The first community was the lung

microbiome from the Pittsburgh cohort of the Lung HIV

Microbiome Project [10, 11]. The cohort included both

HIV-infected and HIV-uninfected individuals and these

individuals had either normal lung function or chronic ob-

structive pulmonary disease (COPD). There were 25 indi-

viduals with a total of 35 bronchoalveolar lavage (BAL)

samples. The second community was the skin microbiome

from the National Human Genome Research Institute [12,

13]. This cohort consisted of 10 healthy individuals with

382 skin swab or nail clipping samples obtained from 14

body sites. We inferred three association networks for

each microbiome: a single-domain bacterial (SDB), a

single-domain fungal (SDF), and a cross-domain bacterial-

fungal (CDBF) network. For each habitat, we analyzed the

topology of the networks in terms of modularity and con-

nectivity, the impact of including both microbial domains

on the re-organization of the networks, network assorta-

tivity of species with respect to phyla, distributions of

interaction strengths, and attack robustness.

Cross-domain interactions add connectivity and reduce

modularity of interaction networks

Lung microbiome

The SDB network derived from the lung microbiome

dataset was comprised of one large connected compo-

nent (302 out of 305 OTUs (99.01%)) and three

singleton OTUs with no connections to the main net-

work (Fig. 1a). The average number of association

partners (node degree) for each OTU was 15.75 (SD:

10.70). Based on their connectivity pattern, we clus-

tered the OTUs using modularity maximization [14],

resulting in 7 modules (i.e., potential niches) with re-

alized modularity [15] (the ratio of the number of

edges within modules and the number of edges across

modules) of 0.85. Following Estrada’s topological clas-

sification of complex networks [16], the SDB network

belonged to class II, characterized by a highly modu-

lar organization and no central core, implying that

there are several groupings of species that only re-

quire species within each group to interact. There

was a high degree of assortativity of the network with

respect to phylum (assortativity coefficient ca = 0.56).

The SDF network of the lung microbiome contained

one large connected component (83.33% of OTUs), four

dyads (8.33%), eight singletons (8.33%), and an average

node degree of 3.46 (SD, 2.35) (Fig. 1b). The large con-

nected component was comprised of eight modules with

realized modularity of 0.80. The SDF network belonged

to Estrada class IV, which contains networks that can be

understood as a mixture of a core-periphery and modu-

lar networks, implying the combination of a core set of

species and multiple groupings. No significant assorta-

tivity with respect to phylum was observed (ca = − 0.01).
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The CDBF network of the lung microbiome con-

sisted of one large connected component with 369

bacterial and fungal nodes and one singleton fungal

node; it showed an average node degree of 16.12 (SD,

9.78) (Fig. 1c). The singleton fungal OTU was identi-

fied as Candida dubliniesis, which in the SDF net-

work was connected only to the fungus Plicaturopsis

crispa, an OTU not present in the combined cross-

domain dataset. The CDBF network was comprised of

eight modules with reduced realized modularity of

0.68, implying that the individual modules had more

associations among each other. Like the SDB network,

the lung CDBF network belonged to Estrada class II,

showing modular organization without central core,

indicative of interaction within groupings rather than

across them. Assortativity of the CDBF network with

respect to phylum (ca = 0.45) was slightly reduced

compared to the SDB network.

When we compared the CDBF network to the

domain-specific networks in terms of connectivity and

robustness, we found that the average path length

was significantly shorter in the cross-domain network.

In fact, the average (or characteristic) path length be-

tween any two bacterial nodes in the cross-domain

network was 2.588 (SD, 0.734) and between any two

fungal nodes was 3.605 (SD, 1.508). Each path length

was reduced by more than one compared to the

single-domain networks: the SDB (mean, 3.176; SD,

1.094, t test p < 0.0001) and SDF (mean, 4.549; SD,

2.203; p < 0.0001). We computed the total expected

commute time (ECT), a global network property

which can be understood as a measure of how effi-

ciently processes (such as movement, gene flow, or

metabolites) can diffuse over the entire association

network [17, 18]; smaller ECTs imply more efficient

global connectivity. We observed that the CDBF net-

work is more efficiently connected (ECT = 1613) than

the SDB network (ECT = 1876) despite its larger

number of community members, suggesting that fungi

facilitate improved communicability in the microbial

ecosystem.

To quantify the influence of species loss on network

connectivity, we followed an approach used by Ruiz et

al. [5] to measure “attack robustness” of the networks

[19] by sequentially removing nodes from the network

and measuring the size of the remaining largest con-

nected component relative to its starting size (Fig. 2).

Nodes were removed in order of decreasing betweenness

(probing bottlenecks in the network) (Fig. 2a), decreas-

ing node degree (probing hubs) (Fig. 2b), or randomly

(Fig. 2c). In each case, the CDBF network was found to

be more robust than the SDB and the SDF network. The

attack robustness on decreasing betweenness was con-

siderably increased in the CDBF network, consistent

with the reduced modularity.

To study the relationship between HIV infection,

COPD status, and the topology of the association net-

works, we examined OTUs uniquely present in HIV-

infected (HIV+) or HIV-uninfected (HIV−) individuals,

and those OTUs present only in individuals that were

COPD positive (COPD+) or showed normal lung func-

tion (COPD−). The neighborhoods that comprised the

status-dependent OTUs and their nearest neighbors in

the lung CDBF network are shown in Fig. 3. We found

that two network modules (modules 5 and 6) were

enriched for OTUs that were uniquely present in any of

the four status groups (Fig. 4). Module 6 included an

OTU identified as Daedaleopsis confragosa, uniquely

present in HIV+ individuals, an OTU identified as Thele-

bolus microsporus uniquely present in COPD+ individ-

uals, and an OTU identified as Phlebia tremellosa

present in both HIV+ and COPD+ individuals. Module

5 included 18 fungal OTUs which were uniquely present

in one or more of the four status groups (Fig. 4a). The

Fig. 1 Lung microbiome networks. Networks inferred for the lung microbiome based on a bacteria only, b fungi only, and c bacteria and

fungi combined. In all three networks, bacterial nodes are circles and fungal nodes are squares. Each node is colored by phyla. Edges between

nodes represented a predicted interaction, either positive or negative
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OTUs identified as Sebacina calcea and Aporospora ter-

ricola appeared uniquely in HIV+ and COPD+ individ-

uals, whereas the OTU identified as Penicillium paneum

appeared uniquely in HIV− and COPD− individuals. In

addition to these 18 fungal OTUs, module 5 included 13

bacterial OTUs and 18 additional fungal OTUs. The net-

work comprised of all OTUs in module 5 is shown in

Fig. 4b. The gain or loss of these status-specific organ-

isms, which may occur at the onset of COPD or HIV,

has the potential to cause major restructuring of interac-

tions within the module and across the entire network.

Skin microbiome

The skin SDB network was comprised of one large con-

nected component with 130 out of 153 bacterial OTUs

(84.97%), 18 OTUs (11.76%) in a small connected com-

ponent, and 5 singletons (Fig. 5a). The nodes had an

average degree of 11.37 (SD = 7.63). Modularity analysis

of the largest component revealed four modules with re-

alized modularity of 0.91. The skin SDB network showed

highly modular organization and no central core (Es-

trada topology class II), and no assortativity by phylum

(ca = − 0.02).

The skin SDF network consisted of one large con-

nected component containing 79 out of 94 fungal

(84.04%) OTUs, a quintet (5.32%), a dyad (2.13%),

and 8 singletons (8.51%) (Fig. 5b). The network had

an average node degree of 7.51 (SD = 6.40). The main

connected component was organized into five

modules with realized modularity of 0.74. The SDF

network belonged to Estrada class IV (mixture of

core-periphery and modular network), and showed

moderate phylum assortativity (ca = 0.40).

The skin CDBF network consisted of a single con-

nected component comprised of all 229 fungal and

bacterial OTUs (Fig. 5c). The network’s average node de-

gree was 20.02 (SD = 6.89). Modularity analysis revealed

six modules with realized modularity of 0.70. The skin

CDBF network belonged to Estrada class II (modular

without central core) and showed low-to-moderate

phylum assortativity (ca = 0.32).

A comparison of the skin CDBF network with the

single-domain networks revealed network re-organization

principles similar to the lung microbial community. The

average path length was shorter in the cross-domain

network (mean = 2.29, SD = 0.64) than in the SDB (mean

= 3.18, SD = 1.71) or SDF (mean = 2.65, SD = 1.06) net-

works. We observed that the ECT of the CDBF network

was smaller (ECT = 562) than the SDB network (ECT =

795), implying improved global connectivity. Attack ro-

bustness analysis revealed that the cross-domain network

was topographically less sensitive to species loss than the

single-domain networks (Fig. 2). These features were con-

sistent with the reduced modularity observed in the CDBF

network.

Validation of interactions in co-culture

To experimentally validate some of the cross-domain

associations de novo, we established growth assays for

a representative set of three species in the commu-

nity. We limited ourselves to medically relevant fungi

and bacteria that could be identified to the species

level, could be commercially obtained, and could be

grown under aerobic conditions. This last criterion

eliminated all the lung microbiome cross-domain as-

sociations as all cliques that could be identified to a

species level included at least one strictly anaerobic

bacterium. From the skin microbiome, we selected

species that formed a clique in the CDBF network,

that covered a significant part of the network, and

Fig. 2 Robustness curves for all networks. Attack robustness of a network was measured by sequentially removing nodes based on the node’s a

betweenness, b degree, or c randomly selected and measuring the percentage of nodes that remain in the central connected component.

Measurement of robustness was performed for each of our six networks and the results are plotted here with the percentage of nodes removed

on the X axis and the percentage of remaining nodes in the central connected component on the Y axis. Each network is represented by a line

on this graph. A larger area under the curve indicates a more robust network
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that showed non-trivial co-variation patterns across

the skin samples. These criteria led us to choose the

bacterium Propionibacterium acnes, a prominent spe-

cies in the skin microbiome samples (18 OTUs were

assigned to this species). We selected the fungus

Emericella nidulans (Aspergillus nidulans) because

four OTUs were assigned to this species that showed

consistent strong negative co-variation with a third

Fig. 3 Subnetwork of exclusive OTUs with HIV+, HIV−, COPD+, and COPD− status and their nearest neighbors. Seventeen fungal OTUs were

uniquely present in HIV+ individuals while one bacterial and five fungal OTUs were uniquely present in HIV− individuals. Seven fungal OTUs were

uniquely present in COPD+ individuals while eight bacterial and ten fungal OTUs uniquely occurred in COPD− individuals. a The 17 HIV+ OTUs

and their 51 nearest neighbors OTUs formed a subnetwork with five components. The HIV− subnetwork was comprised of 6 single-status nodes

and 32 adjacent neighbors organized in three components. b The 17 COPD− OTUs with its 51 adjacent OTUs formed a large connected

component with 64 members and a small four-node component. The seven COPD+ OTUs with 33 adjacent nodes organized into a disconnected

six component network
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species, Rothia dentocariosa. The co-variation pattern

of P. acnes with E. nidulans and R. dentocariosa was,

on average, close to zero, serving as a baseline for

weak overall interaction (Fig. 6a).

To measure growth, we established and compared

growth curves for each bacterial species under

uniform conditions, in pairs, and as a trio. The key

observation of the experiment was that, as predicted,

R. dentocariosa grew significantly worse in the

presence of E. nidulans than when grown in mono-

culture (KS p = 0.003; Fig. 6b). For the other two

pairs, no significant change in growth was detected

compared to monoculture, confirming that the

associations of P. acnes with E. nidulans and R. den-

tocariosa were relatively weak (Fig. 6c, d). Overall,

bacterial growth appeared to be fully restored in the

tri-culture at similar levels observed in R. dentocariosa or

P. acnes monoculture (p = 0.228 and p = 0.925,

respectively; Fig. 6e). However, the bacterial growth

curve measurement technique could not discriminate

R. dentocariosa and P. acnes growth, leading to two

potential explanations for the observed growth. Either

P. acnes alleviated the negative effects of E. nidulans

on R. dentocariosa, resulting in joint growth of both

species, or the negative effects of E. nidulans

persisted, leading to higher abundance of P. acnes

Fig. 4 Lung microbiome modules and HIV infection/COPD status. a Assignment of OTUs into modules of the lung cross-domain bacterial-fungal

(CDBF) network. The CDBF network is comprised of six modules. OTUs uniquely appearing in HIV-infected (dark blue), HIV-uninfected (light blue),

COPD negative (yellow), or COPD positive (green) samples are found across all modules with strong enrichment in module 5. The unique species

names that appeared in module 5 are listed on the right. b Associations in module 5 of the lung CDBF network. The size of the nodes was scaled

by the number of neighbors, the thickness of the edges marks association strength
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compared to R. dentocariosa. Predicting the details of

this higher-level interaction involving more than two

species is beyond the scope of any ecological network

inference tool, including SPIEC-EASI.

Role of Candida in cross-domain associations

In the lung microbiome, Candida parapsilosis, a

known fungal pathogen [20], formed associations with

Neisseria and a member of the Bacteroidales order

and was among the fungal species with highest be-

tweenness centrality (Fig. 7a), suggesting a potentially

important role in the lung microbial community. C.

parapsilosis in the skin microbiome formed eight

cross-domain associations with Rothia dentocariosa,

Propionibacterium granulosum, Streptococcus spp., and

five unclassified OTUs. However, C. parapsilosis

ranked low both in terms of node degree and

betweenness centrality (Fig. 7b), suggesting a less

prominent role in this ecosystem. From the keystone

species analysis (using betweenness centrality and

node degree) (Fig. 7), we identified a fungus in the

Davidiellaceae family as potential skin keystone spe-

cies (Fig. 7b) as it maximized both measures across

all species, had low relative abundance (maximum of

7.8%), and high ubiquity across samples (present in

58.1% of samples). This family contains the genera

Cladosporium and Davidiella, both of which are com-

mon fungi.

Discussion

We inferred cross-domain association networks from

lung and skin microbial TAS data using our novel ex-

tension of the SPIEC-EASI framework. From lung mi-

crobial samples, we found that both the SDB and the

CDBF networks had a modular organization with no

central core (Estrada class II) whereas the fungal

network was modular with a small central core (Es-

trada class IV). The inferred CDBF network showed

higher overall connectivity and reduced modularity

compared to both single-domain networks. Moreover,

the CDBF network exhibits higher attack robustness.

It has been shown that antibiotic exposure in mice

resulted in lower attack robustness of the correspond-

ing microbial association networks, compared to con-

trol [5]. This suggests that attack robustness is a

promising measure for indicating destabilizing effects

on microbial communities. We thus hypothesize that

fungi play a stabilizing role in the microbial commu-

nity organization. We also identified a network mod-

ule of 49 highly connected OTUs that showed

enrichment for OTUs that were uniquely present in

either HIV+/− or COPD+/− individuals (18 unique

OTUs). This subnetwork may see large structural re-

arrangements in connection with disease status and

may contain key species whose presence or absence

can serve as disease indicators. One candidate was

the fungus Aporospora terricola, which was uniquely

present in HIV+ and COPD+ patients and showed

connections with seven other species, including

Leohumicola minima and Phlebia subserialis, two plant-

associated fungi uniquely identified in HIV+ patients.

The skin single- and cross-domain networks followed

the same Estrada class assignment as the lung microbial

networks and showed similar topological re-

organization. The skin CDBF network showed increased

attack robustness, more efficient global connectivity, and

reduced modularity. The robustness with respect to high

betweenness centrality OTUs in the network increased

in the presence of fungi, suggesting an important role of

fungi in the stability of the skin microbial community.

From the skin CDBF network, we were able to isolate a

clique containing one model fungus, E. nidulans, and

Fig. 5 Skin microbiome networks. Networks inferred for the skin microbiome based on a bacteria only, b fungi only, and c bacteria and

fungi combined. In all three networks, bacterial nodes are circles and fungal nodes are squares. Each node is colored by phyla. Edges between

nodes represented a predicted interaction, either positive or negative
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two common bacteria, R. dentocariosa and P. acnes. By

co-culturing the bacteria and fungus, we saw growth

curves in line with our predicted co-variation patterns: a

strong negative co-variation between E. nidulans and R.

dentocariosa and near-neutral co-variation patterns

between E. nidulans and P. acnes, and R. dentocariosa

and P. acnes. These experiments represent, to our know-

ledge, the first culture-based validation of computation-

ally predicted fungal-bacterial associations.

In both microbiomes, cross-domain associations

reshaped the overall organization of the networks.

Cross-domain interactions made up 135 out of all

2982 (4.53%) interactions in the lung microbiome and

480 out of 2292 (20.94%) interactions in the skin

microbiome. The greater percentage of cross-domain

interactions in the skin may have been driven by the

higher biomass located there or by the greater bio-

geographical overlap of species from both domains on

the skin. Both CDBF networks showed reduced

positive-edges percentage (PEP) [21], the percentage

of positive partial correlations in the networks (Fig. 8).

This decrease revealed that neglecting the fungal

component in the ecosystem leads to overestimation

of the percentage of positive associations.

Model fungi, including E. nidulans, have been

studied in co-culture with bacteria in the laboratory

to induce properties not produced in monocultures.

Direct contact with the bacterium Streptomyces hygro-

scopicus is required for E. nidulans to produce sec-

ondary metabolites, including polyketide synthase,

a

c d e

b

Fig. 6 Co-variation pattern and growth curves for co-culture validation experiment. a Emericella nidulans (E, green), Propionibacterium acnes

(P, pink), and Rothia dentocariosa (R, blue) form a clique in the skin CDBF network (left). The edge weights are average covariations from

the estimated covariance matrix (right) between all species assigned to R. dentocariosa (one member), P. acnes (18 members), and E.

nidulans (four members). The microbes were grown in pairs and a trio, and the growth curves for the bacteria were compared to when

they were grown in monoculture. Cellular concentration growth curves are based on the average of three biological replicates and the

vertical lines indicate their standard deviations. While we were able to grow E. nidulans as a monoculture, no growth curves are available

because there is no established method for measuring the growth of filamentous fungi in liquid culture. b R. dentocariosa grown with E.

nidulans (cyan line) or alone (blue line). c R. dentocariosa grown with P. acnes (purple line) or alone (blue line). d P. acnes grown with E.

nidulans (brown line) or alone (pink line). e Trio of all three organisms grown together (grey line) compared to R. dentocariosa alone (blue

line) or P. acnes alone (pink line)
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often seen in nature, but not in the laboratory [22].

However, this and most other co-culture experiments

originated from the knowledge that the organisms

grow in physical proximity rather than from computa-

tionally predicted interactions. We have shown here

that cross-domain interactions inferred computation-

ally can be validated via co-culture in a simplified en-

vironment. Despite the simplifications, these

experiments highlighted how complicated microbial

interactions are likely to be and demonstrated how a

tool such as SPIEC-EASI can help infer some of these

interactions and provide biological insight.

Conclusions

In summary, we have introduced a novel extension of

SPIEC-EASI for predicting cross-domain associations

from TAS data, applied this method to two human-

associated microbiome datasets, and experimentally vali-

dated a subset of the predicted co-variation patterns.

Our analysis of network features and network topologies

of single- and cross-domain networks revealed that

analyzing ecological association networks from a single

domain may bias accurate characterization of the overall

topology and robustness of the microbial ecosystem

under study. Incorporating other ecosystem members,

such as protists, archaea, and viruses, should be a prior-

ity for future network inference efforts. If surveyed with

TAS, these taxa can be readily incorporated into the

current cross-domain SPIEC-EASI framework presented

here. These computational efforts, paired with large-

scale culture-based association validation experiments,

will help formulate concrete hypotheses about the

underlying biological mechanisms of species interactions

and, ultimately, help understand microbial ecosystems as

a whole.

Methods

Adapting SPIEC-EASI for two domains

We adapted the SPIEC-EASI method to analyze

microbiome networks across multiple microbial

domains [2]. The tables of absolute bacteria and

eukaryote OTU counts are stored in matrices = W∈

ℕ
n�d
0 ; V ∈ℕ

n�p
0 , where w jð Þ ¼ w

jð Þ
1 ;w

jð Þ
2 ;…;w

jð Þ
d

n o

and

υ jð Þ ¼ υ
jð Þ
1 ; υ

jð Þ
2 ;…; υ

jð Þ
p

n o

denote the d- and p-dimen-

sional row vectors of counts from the jth sample,

with j ∈ {1,...,n} and N0 denotes the set of natural

numbers. Define the total cumulative counts for each

domain as M(j) =
Pd

i¼1 w
jð Þ
i and N(j) =

Pp
i¼1 v

ðjÞ
i .

In a standard sequencing experiment, absolute count

data w(j) and v(j) are unknown, since absolute informa-

tion is typically not available. However, by dividing

observed sequencing counts by the total library size, we

get compositional data vectors, x jð Þ ¼ x
jð Þ
1 ; x

jð Þ
2 ;…; x

jð Þ
d

n o

and yðjÞ ¼ fy
ðjÞ
1 ; y

ðjÞ
2 ;…; y

ðjÞ
p g , with associated relative

abundance matrices X∈Sd�n and Y ∈ S
p�n: S

p≐

x xij >0;
Pp

i¼1xi ¼ 1
� �

is the p-dimensional unit simplex.

It is well known that components of a composition are

not independent due to the unit sum constraint, and

covariance matrices of compositional data show negative

bias due to closure. Furthermore, compositional data can

be completely determined from absolute abundance data

Fig. 7 Keystone species analysis. Betweenness centrality vs. node degree of all species in the cross-domain bacterial-fungal networks of lung (a)

and skin (b). Nodes with high betweenness centrality represented potential key connector (or bottleneck) species. Nodes with high degree repre-

sented hubs in the network. Both measures were indicators for potential keystone species. Bacterial species (dots) and fungal species (squares)

were colored by phylum membership. Bacterial and fungal species that were maximal in either property are highlighted in both plots. One fun-

gus in the Davidiellaceae family (top right) may act as potential keystone species in the skin microbiome. In addition, we highlighted the role of

Candida parapsilosis across both networks
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(termed a basis), i.e., x jð Þ ¼

w
jð Þ
1 =M jð Þ;w

jð Þ
2 =M jð Þ;…;w

jð Þ
d =M jð Þ

n o

.

As noted by John Aitchison, the simple equivalence

log
xi

xj

� �

¼ log
wi=M

wj=M

� �

¼ log
wi

wj

� �

; ð1Þ

implies that statistical inferences drawn from the ana-

lysis of log-ratios of compositions are equivalent to those

drawn from analysis of log-ratios of the basic compo-

nents, which establishes the precedence of log-ratio

transformations to study compositional data. The cen-

tered log-ratio (CLR) transformation,

CLR(x) = flog½ x1gðxÞ�; : : : ; log½ xdgðxÞ�g , where g xð Þ

¼
Q

i¼1

d

xi

� �1=d

, is particularly useful, as it is symmetric

and isometric with respect to the original composition.

The CLR maps compositional data from the simplex to

a (d − 1)-hyperplane of d-dimensional Euclidean space,

with the corresponding population covariance matrix

ΓX = Cov[CLR(X)]. The matrix ΓX is related to the

population covariance of the log-transformed absolute

abundances ΩW = Cov[logW] by

Γx ¼ Gd
ΩWGd; ð2Þ

where Gd ¼ Id− 1
d
11

T , is the standard centering matrix,

where Id is the d × d identity matrix and 1 = {1,…, 1}, the

Fig. 8 Distribution of interaction strengths (partial correlation coefficients) for all six association networks. All distributions consistently showed a

peaked distribution with positive mean and skew. The positive edge percentage (PEP) was > 0.8 for all single-domain networks. Both cross-

domain networks showed lower PEP (0.76 for the lung CDBF and 0.71 for the skin CDBF)
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d-length vector of ones. Therefore, for high-dimensional

data, d≫ 4 ,

Gd ≈ Id ð3Þ

and ΓX ≈ΩW is a reasonable approximation. Indeed,

recent work has shown the theoretical conditions

under which the covariance structure ΩW is approxi-

mately identifiable from ΓX, where recovery guaran-

tees depend on sparsity, dimensionality, and sample

size [23].

This observation was the basis of SPIEC-EASI, which

seeks to estimate a sparse inverse covariance (precision)

matrix using the sample covariance as input to the

optimization problem

Ω̂
W
−1

¼ argmin
Ω
^

W

−1
∈PD

−log det
�

Ω̂
W
−1

�

þ tr
�

Ω̂
W
−1

Γ
^
x

�

þ λ∥Ω̂W
−1∥

1

ð4Þ

where Γ̂x is the sample covariance estimate of CLR(X)

and PD is the set of symmetric positive definite matrices.

Solving Eq. 4 ensures that the penalized estimator is full

rank. The sparsity pattern depends on the value of λ,

since the L1 norm ||.||1 penalizes the absolute values of

the entries of the symmetric precision matrix. The

collection of non-zero entries of Ω̂
−1

W is then interpreted

as the graph associated with the single-domain microbial

community under study.

In cross-domain studies, different marker genes are

amplified and sequenced separately and, hence, do not

compete for reads. This implies that technically inde-

pendent compositions are generated in these studies.

Therefore, a naive application of Eq. (4) directly to the

combined dataset [ X Y ], a n × (d + p) matrix generated

from a simple concatenation of two compositional data-

sets, would be inappropriate.

To illustrate this, consider that the log-ratio

log
xi

yj

" #

¼ log
wi=M

υj=N

� �

≠ log
wi

υj

� �

ð5Þ

does not satisfy the scale-invariance property of Eq. 1.

Similarly, the approximation in Eq. (3) does not hold be-

tween cross-compositional pairs.

We instead considered the datamatrixZ= [ CLR(X) CLR(Y) ],

generated by concatenating independently transformed compo-

sitions. ΓZ = Cov[Z] has the still-satisfying relation to the basis

covariances:

ΓZ ¼
Gd

ΩWGd Gd
ΩWVG

p

Gp
ΩVWGd Gp

ΩVG
p

" #

; ð6Þ

where ΩWV ¼ Cov logW; logV½ � is the cross-covariance

matrix between the two log-transformed basis datasets,

and ΩVW ¼ ΩWVð ÞT . In other words, the dþ pð Þ
� dþ pð Þ combined covariance structure ΓZ is decom-

posable into blocks where the approximation in Eq. (3)

holds. If p,d >>4 then the approximation

ΓZ ≈ Ωz ¼
ΩW ΩWV

ΩVW ΩV

� �

ð7Þ

allows us to use Γ̂Z as the input to Eq. (4) to get a

penalized estimator Ω̂
−1

Z , which is interpretable as an

intra- and cross-domain interaction network and

amenable to the standard SPIEC-EASI framework.

The same principle can be applied to more than two

domains.

Datasets

In this study, we analyzed two previously published

microbiota datasets that included both bacterial and

fungal sequences. The first was from bronchoalveolar

lavages (BALs) collected as part of the Lung HIV

Microbiome Project, as published in [10] and [11]. It

contained 35 samples that were subjected to 16S

rRNA gene and ITS sequencing. The BAL samples

originated from the right middle lobe or the left

upper lobe of the lungs from 25 individuals of whom

14 were HIV-infected and 11 were HIV-uninfected.

Of the 35 samples, 17 came from individuals with

normal spirometry and 18 from individuals with

COPD (diffusing capacity of the lungs from carbon

monoxide (DLCO) < 80% or forced expiratory volume

in 1 s (FEV1) < 70%). The demographics of the cohort

analyzed here can be found in Table 1. No significant

differences were found between HIV-infected and

HIV-uninfected or between individuals with COPD

and those with normal lung function.

The second dataset was from a skin microbiome

study at the National Human Genome Research

Institute, as published in [12] and [13]. It includes

382 samples from 14 body sites on 10 healthy adults.

Ten body sites were repeated on the left and right

sides, and some of the healthy volunteers underwent

repeat sampling 1–3 months after their initial visits.

Sample and sequence processing

Sample processing procedures for the lung micro-

biome have been previously described [10, 11]. In

brief, all samples had DNA extracted using standard

techniques of the PowerSoil® DNA Isolation Kit from

MO BIO (Carlsbad, CA). For bacterial DNA
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sequencing, the hyper-variable regions 1 through 3

(V1–V3) of the 16S rRNA gene were amplified and

sequenced using the Roche 454 GS-FLX Titanium

platform. For fungal DNA sequencing, the ITS1 was

amplified and sequenced on the Ion PGM™ Sequencer

using the 400 bp protocol [24].

The sample processing procedures for the skin micro-

biome were previously described [12, 13]. In brief, sam-

ples were lysed using the MasterPure™ Yeast DNA

Purification Kit, cell walls were mechanically disrupted

using a Tissuelyser (Qiagen, Valencia, CA), and DNA

was extracted using the Invitrogen PureLink Genomic

DNA Kit (Invitrogen, Carlsbad, CA). For bacteria DNA

sequencing, the V1–V3 regions of the 16S rRNA gene

were amplified, and for fungal DNA sequencing, the

ITS1 region was amplified. Both bacterial and fungal

DNA was sequenced on the Roche 454 GS20/FLX

platform with Titanium chemistry (Roche, Branford,

CT). We analyzed the resulting sequences in a manner

consistent with the lung microbiome, which was

different than that which was used in the original

publications.

All sequences from both the lung and skin micro-

biomes were processed using the QIIME pipeline

version 1.7 [25] with default settings for the de novo

Operational Taxonomic Unit (OTU) picking at 97%

similarity for bacteria and 99% similarity for fungi.

Additional processing for the ITS sequences was per-

formed using FHiTINGS [26]. Samples with fewer

than 1000 16S bacterial reads (N = 16 for the lung

microbiome; N = 12 for the skin microbiome) and

samples with fewer than 50 ITS fungal reads (N = 16

for the lung mycobiome; N = 3 for the skin

mycobiome) were considered to have failed and were

removed. Bacterial taxonomic assignments were made

using the Green genes 12.10 reference database [27], and

fungal taxonomic assignments were made using the FHiT-

INGS version of the Index Fungorum (http://www.index-

fungorum.org/) reference database [26].

We removed OTUs present in fewer than 1/3 of the

samples (20 lung samples or 120 skin samples) as well as

any OTUs represented by single reads in every sample.

Requiring that OTUs be present in 1/3 or more of the

samples reduces the influence of any single individual,

since both environments included repeated samples of

the same individual volunteer. The number of samples

and bacterial and fungal OTUs of each resulting network

dataset are presented in Table 2. A pseudo count of 1

read was added to every OTU in every sample to elimin-

ate zeros in samples where OTUs were absent. All OTU

counts were normalized using total sum scaling (also

known as relative abundance) followed by centered log-

ratio scaling [28], as described above.

Constructing networks

All networks were constructed using the SpiecEasi package

version 0.1 in R (https://github.com/zdk123/SpiecEasi). We

used the sparse graphical lasso (glasso) setting and selected

the optimal sparsity parameter based on the Stability

Table 1 Demographics of the lung microbiome cohort. Values presented as mean (SD) except for those that are the percentage of

the subset denoted with (%). P values are from Welch t tests for continuous variables and from Fisher’s exact tests for percentages

Cohort HIV+ HIV− p-value COPD+ COPD− p value

N 25 14 11 – 13 12 –

Age (years) 51.5 (7.7) 51.2 (8.3) 51.9 (7.4) 0.8472 49.4 (8.1) 53.6 (7.1) 0.2032

Male (%) 88.0 92.9 81.8 0.5648 92.3 83.3 0.5930

White (%) 56.0 50.0 63.6 0.6887 53.8 58.3 1.0000

Current smokers (%) 20.0 28.6 9.1 0.4913* 30.8 8.3 0.4671*

Former smokers (%) 12.0 14.3 9.1 7.7 16.7

BMI (kg/m2) 25.9 (5.3) 24.2 (4.2) 28.1 (5.9) 0.0792 24.4 (5.4) 27.6 (4.8) 0.1426

Viral load (IU/mL) – 1477 (2850) – – 2053.5 (3230.5; N = 10) 35.5 (18.2; N = 4) 0.0746

CD4 count (cells/mm3) – 646 (305) – – 620.2 (326.2; N = 10) 701.8 (278.8; N = 4) 0.6195

FEV1/FVC (%) 79.0 (11.5) 80.1 (8.8) 77.7 (14.6) 0.6435 75.8 (15.0) 82.5 (4.1) 0.1463

DLCO (ml/min/mmHg) 77.2 (15.3) 73.3 (16.0) 82.1 (13.5) 0.1520 66.8 (13.9) 88.4 (6.0) < 0.0001

*Smoking status p value calculated using an ANOVA test

Table 2 Dataset sizes for each network constructed. Amplification

of target genes and sequencing were not successful for all samples

resulting in variable node counts in the combined networks

Network Samples Bacteria OTU nodes Fungi OTU nodes

Lung bacteria only 77 302 –

Lung fungi only 48 – 96

Lung combined 35 302 68

Skin bacteria only 360 153 –

Skin fungi only 375 – 94

Skin combined 353 144 85
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Approach to Regularization Selection (StARS) [29]. The

StARS variability threshold was set to 0.1 for all networks.

Evaluating and comparing networks

Networks were analyzed using functions of the R pack-

age igraph version 1.0.1 [30] and customized MATLAB

scripts. We evaluated node degree (i.e., the count of

edges a node has) as a measure of sparsity. A complete

network would have an average node degree equal to the

number of nodes minus 1; a lower degree indicates a

sparser network. To evaluate connectedness of the net-

works, we used normalized node betweenness centrality

for undirected graphs. Normalized node betweenness

centrality measures the proportion of the shortest paths

in the network that pass through the node. A lower aver-

age betweenness centrality number indicates a more

connected network, either because of more shortest

paths or because fewer of the shortest paths travel

through each node. These metrics, as well as distance

between nodes, were used to compare the networks

using Welch’s unequal variances t-tests [31]. We used

expected commute time (ECT) as a measure of connect-

edness [17]. For each pair of nodes, the commute time

corresponds to the expected number of “hops” it takes

for a random walk on the graph to visit the paired node

and to return to the starting node. The expected com-

mute time is an average over all pairs of nodes and can

be efficiently computed for the spectrum of the graph

[17]. Modularity analysis was performed using the stand-

ard deterministic modularity maximization framework

[14]. The reported realized modularity measure, intro-

duced in [15], Eq. 2, is the ratio of the number of edges

within modules and the number of edges across mod-

ules. Following Estrada [16], we determined the topo-

logical (or Estrada) class of the different networks using

the concept of subgraph centrality and spectral scaling

(see [16] for details). Briefly, Estrada introduced four

topological classes for complex networks. Networks in

class I possessed good expansion properties, implying

that the network cannot be partitioned into separate

modules. Class II was comprised of networks with

modular structures with smaller interconnectivity among

modules. Class III was comprised of networks with core-

periphery structure, implying a tightly connected core

module with sparse branches to nodes in the periphery.

Class IV networks possessed features of both class II

and class III networks. MATLAB analysis scripts are

available at https://github.com/muellsen/MNA/tree/

master/Tipton-2017.

Microbial co-cultures

All organisms were purchased from ATCC and grown

under their recommended conditions (Table 3) to estab-

lish stocks. From these stocks, uniform condition stocks

were inoculated in 10 mL brain-heart infusion (BHI)

broth in 74-mm2-untreated Nest Biotechnology (Wuxi,

China) culture flasks and incubated at 37 °C under

aerobic conditions with mild shaking. BHI was selected

as the growth medium because all three organisms have

been shown to grow on it. The established uniform con-

ditions were used to grow mono, dual, and tri organism

co-cultures, each started with the same number of cells

of each organism (10 million bacterial cells or 1 million

fungal spores). Growth was measured by cellular con-

centration, calculated based on cell counts in five loca-

tions on a hemocytometer, every 24 h for 5 days, and

curves were fit by connecting the average of three bio-

logical replicates. To ensure that cells were maintaining

viability, aliquots were plated on BHI agar at each time

point and colony forming units (CFUs) were counted

after a 24-h incubation period.
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