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Agents of selection for behavioral responses to abiotic, biotic, and social environments are described
as cognitive challenges. Research integrating behavior, ecology, and brain evolution has generated a
growing literature—and sometimes controversy—over inferences made from correlating cognitive
traits with neural metrics. We propose that our understanding of the role of cognition in brain
evolution can be advanced through studies of eusocial insect species differing in agricultural
practices and degree of division of labor, and thus social complexity. Fungus-growing ants offer
diverse systems to assess the impacts of cognitive challenges on behavioral evolution and its neural
and genomic architectures. Workers exhibit variability in social role differentiation in association
with diet, morphology, group size, and task efficiency. This suite of covarying traits enables the
accurate mapping of cognition, worker repertoire breadth, neuroanatomy, and genomic change in
light of social evolution.

HOW DO BRAINS RESPOND TO COGNITIVE CHALLENGES?

Cognition is difficult to universally define (Logan et al., 2018; Bayne et al., 2019) and measure
(Rowe and Healy, 2014; Simons and Tibbetts, 2019). However, cognitive ecologists have
developed definitions emphasizing divergent demands from behavioral niches and neurobiological
capabilities (Balda and Kamil, 1989; Real, 1993; Shettleworth, 2000, 2010; Dukas and Ratcliffe,
2009; Lihoreau et al., 2019). Cognition should be linked to ecological adaptation to understand
developmental and evolutionary brain plasticity. Cognitive capability is thus the product of
selection for brain organization to adaptively increase computational power and reduce energetic
costs. Metrics applied in the study of brain evolution range from genes and cells to nervous
system topologies. Correlations between behavioral capabilities and tissue volume have been
viewed critically (Herculano-Houzel et al., 2006, 2007; Healy and Rowe, 2007, 2013; Chittka and
Niven, 2009; Godfrey and Gronenberg, 2019; Wartel et al., 2019), although in principle quantify
brain investment. Functionally specialized brain compartments may develop allometrically
(disproportionate scaling) through differential cell and tissue-type trajectories (Barton and Harvey,
2000; Hager et al., 2012), circuitry (Guzowski et al., 2005), neuron structure and function (Quiroga
et al., 2005), and genetics (Hibar et al., 2015; Kohno and Kubo, 2019). These patterns provide
fine-grain traits for evolutionary analyses.

Social environments can influence brain evolution. Primates distinguish rivals from allies and
recall interaction histories. Social brain theory, which posits a positive correlation between brain
volume and group size to track social relationships (Dunbar and Shultz, 2017), has been applied
to eusocial insects (Lihoreau et al., 2012; Godfrey and Gronenberg, 2019). However, eusocial insect
workers typically lack the competing demands of direct reproduction; their brains are functionally
dedicated to altruistic labor, and cognitive challenges from specialized behavior can thus be more
clearly circumscribed. Diverse social systems enable the functional analysis of mosaic brains and
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responsiveness to divergent sensory demands underpinning task
specialization (Muscedere and Traniello, 2012; Giraldo et al.,
2013; Gordon et al., 2017). Two eusocial insect clades—a tribe
of ants and a subfamily of termites—include ultrasocial species
(Campbell, 1982) that are agriculturalists, producing their own
crops of gongylidia—nutritional fungal swellings—and have
evolved complex division of labor. These traits are shared with
humans (Gowdy and Krall, 2016). Ant societies, as models, can be
experimentally dissected (Kennedy et al., 2017), enabling studies
of cognitive variation in association with the evolution of division
of labor.

Assessing motivated behavior in natural contexts (Rowe and
Healy, 2014) and selecting comparative frameworks illustrating
divergence in cognitive challenges across related species (Simons
and Tibbetts, 2019) are essential to link fitness to behavioral
evolution. Therefore, to determine cognitive impacts on brain
evolution, a model system should meet the following criteria:
(1) the natural behavioral environment can be measured to
assess sensory and processing requirements; (2) behavior can
be quantified at multiple levels of intraspecies and interspecies
biological organization; and (3) the metrics used to identify
neural and genomic underpinnings are methodologically and
statistically robust. With these points in mind, we identify
fungus-growing ants as appropriate and insightful study models
for cognitive evolution.

DIVISION OF LABOR AND WORKER

COGNITION

The evolution of division of labor in support of agriculture in
fungus-growing ants enables societal and individual cognition to
be examined. Workers vary morphologically (monomorphism to
exceptional polymorphism) and behaviorally (task pluripotency
to specialization) across species and within colonies (Mehdiabadi
and Schultz, 2010). In highly polymorphic leafcutting ants,
colonies are large and may produce size-differentiated workers—
for example, minims, medias, and majors in order of increasing
size. This variation in body size, colony size, and diet can help
disentangle confounding factors that may obscure the linkage of
neuroanatomy to behavior. Fungus-growing ants select, harvest,
and process plant tissue and other substrates to provide for fungal
growth, cultivate fungus, manage waste and control infection,
construct and maintain the nest and regulate microclimate,
and provide defense. Workers with specialized repertoires are
predicted to be more efficient than generalists (Wilson, 1980b).
In theory, drivers of worker task performance may differ, but in
polymorphic species body size and behavior are integrated and
clearly correlate (Beshers and Fewell, 2001). Cognitive needs vary
according to role and worksite: tasks performed within the nest
by fungal-garden tenders require different stimulus-processing
capabilities than foragers or defenders working outside the nest
or at multiple worksites. Identifying, cutting, transporting, and
mulching leaves forms an assembly line of exterior to interior
work where leaf fragments are degraded as they are passed from
larger to smaller workers and eventually deposited as fungal

mulch. Worker size-related labor therefore requires specific
motivation and cognitive abilities.

Minim workers primarily transplant and prune gongylidia.
Working in dark underground fungal chambers, they likely
rely on sensory inputs other than vision for navigation, which
may involve the central complex (Plath and Barron, 2015;
Honkanen et al., 2019). They also nurse, recognizing larval
needs and discriminating brood stages, and assess humidity
and temperature to maintain optimal growth conditions. These
tasks involve chemical signals (Schultner and Pulliainen, 2020)
processed by the antennal lobes and mushroom bodies, as
well as fine motor coordination of the mouthparts, mediated
by subesophageal zone circuitry (Paul and Gronenberg, 2002).
Minims may deposit pheromones on foraging trails (Howard,
2001; Evison et al., 2008), clean contaminants from incoming
leaves and otherwise protect the fungus from microbes (Goes
et al., 2020), and defend against parasitic flies (Feener and Moss,
1990).

Media workers engage in diverse tasks. Large-scale agriculture
requires evaluating diverse plant chemistries to assess leaf quality
and maximize fungal growth (Hubbell et al., 1984; Howard et al.,
1988; Saverschek et al., 2010). This discrimination may require
learning. Also, the gustatory and olfactory processing abilities of
medias should be well developed. Media worker skill in cutting
leaves (Wilson, 1980b) requires compass-like coordination of legs
and mandibles that determines leaf fragment size, facilitating
size-assortative load-bearing for transport (Wilson, 1980a; Burd,
2000; Burd and Howard, 2008). Medias navigate trails between
food sources and the nest. In many ants, this process involves
recalling landmarks, using odometry and optic flow to measure
speed and distance, learning canopy patterns and celestial cues,
and decoding chemical recruitment information (Ronacher and
Wehner, 1995; Wittlinger et al., 2006; Provecho and Josens,
2009; Basten and Mallot, 2010; Müller and Wehner, 2010; Steck,
2012; Heinze et al., 2018). Media worker foraging thus requires
processing multimodal signals through interplay between the
antennal and optic lobes, mushroom bodies, and central
complex. Behavioral flexibility may be reflected in enlarged
mushroom bodies (Farris, 2013), a pattern expected in media
brains, but not minims or majors.

Majors defend against army ants and other enemies (Powell
and Clark, 2004). Defensive may require close-range vision,
mediated by the optic lobes (Via, 1977), and antennal lobe and
mushroom body tuning to recruitment and alarm pheromones
(López-Riquelme et al., 2006; Mizunami et al., 2010). Differences
in task biomechanical demands are evident in subcaste myology
(Gronenberg et al., 1997; Paul and Gronenberg, 1999, 2002):
larger mandibular muscles provide majors with bite force,
controlled in part by the subesophageal zone.

SOCIAL AND PHYLOGENETIC

PERSPECTIVES ON COGNITIVE

EVOLUTION

Fungus-growing ant species richness (>230 species; Schultz
and Brady, 2008) encompasses exceptional heterogeneity
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in agricultural practice and social complexity. Behavioral
phenotypes evolved greater specialization through
developmental divergence in worker morphology (Mehdiabadi
and Schultz, 2010; Sosa-Calvo et al., 2018; Solomon et al., 2019).
The diversity of worker phenotypes in leafcutting genera such
as Atta and Acromyrmex, which cultivate large quantities of
fungus and form colonies of millions of polymorphic workers,
is thought to have evolved from an ancestral monomorphic,
generalist worker caste (Wilson, 1980a). The ancestral worker
phenotype is evident in the paleoattini: these species form
small colonies of monomorphic workers that engage in basic
agriculture, scavenging insect frass and other materials for
fungal substrate. Repertoire breadth is thought to influence
brain size: performing more kinds of tasks requires greater
processing power (Benson-Amram et al., 2016). A specialist
worker of a polymorphic neoattine species would be relatively
free of the constraints of maintaining a generalist repertoire
and could evolve to prioritize neural capabilities specified by
its task set. Size-differentiated workers display disproportionate
scaling in morphology and physiology related to social roles that
affect task efficiency (Wilson, 1980b). Selection should also be
evident in brain structure in both attine clades. In sum, worker
morphology, behavior, and brain size and structure are predicted
to be integrated.

SOCIETIES, BRAINS, AND GENOMES

Ecological niche differentiation, and thus variability in cognitive
needs across attine species and among neoattine worker
subcastes, is remarkable. In some socially complex species,
brain size (Seid et al., 2011), investment in vision-related
compartments (Arganda et al., 2020), and microprocessing
circuitry (Groh et al., 2014) vary with worker size. Brain volume
decreases and antennal lobe volume increases with social group
size in monomorphic species, suggesting decreased selective
pressures on brain size coupled with a need for increased
olfactory social discrimination (Riveros et al., 2012). Larger
Atta workers have an antennal lobe macroglomerulus, absent
in smaller workers, that likely functions in trail following
(Kleineidam et al., 2005). Increased volume in visual processing
regions in A. cephalotes majors allows greater visual acuity and
processing in workers active in light and engaging in close-
range defense (Arganda et al., 2020). Neuroanatomical and
neurochemical variation (Smith et al., 2013) should integrate with
brain gene expression to control behavior (Li et al., 2014; Qiu
et al., 2018), enabling neural requirements of specific roles to
be met.

Genetic analyses offer mechanistic and evolutionary insight
into agriculturally adapted brains. Gene expression regulating
attine ant neural phenotypes and behavior (Castillo and
Pietrantonio, 2013; Koch et al., 2013) may be influenced by
epigenetics, RNA editing, and copy number, as in related systems
(Chittka et al., 2012; Scholes et al., 2013; Feldmeyer et al., 2014;
Li et al., 2014). Developmental switches mediating size-related
differentiation (Rajakumar et al., 2012, 2018) and differentially

expressed brain genemodules related to caste determination (Qiu
et al., 2018) appear conserved, although some worker-biased
genes are more evolutionarily novel (Feldmeyer et al., 2014;
Mikheyev and Linksvayer, 2015; Schrader et al., 2017). Deep
brain homologies in eusocial insects (Tomer et al., 2010; Shpigler
et al., 2017; Trible et al., 2017) provide broadly translatable
insights into adaptive brain evolution and development, and their
genomic basis.

FUTURE RESEARCH

The ability to identify mechanisms of response to cognitive
challenges within phylogenetic context facilitates understanding
brain evolution in light of socioecological selective forces.
This allows the relative importance of task repertoire breadth
and social structure to be examined. Studies that assess the
same properties of learning (speed and memory, e.g.,) but
consider species-specificity in behavior across size-variable
workers in paleo-and neoattine ants can elucidate effects of
social complexity on brain evolution. Comparative studies
of neuroanatomical scaling and genomics enable variation in
task diversity and sensory environments to be mapped onto
fungus-growing ant phylogeny to reveal evolutionary patterns.
Gene functions influencing neuroanatomy and behavior can
reveal the relative importance of metabolism, neurotransmission,
growth factors, and other pathways in the evolution of
division of labor. The contrast between simple societies of
monomorphic fungus-growing ants and complex colonies of
leafcutting ants provides opportunities to examine genomic
evolution in the brain. With increasingly precise genetic tools
available for ant research, components of neural and anatomical
phenotypes may be separated and linked to developmental
origins. Ultimately, functional manipulations and genomic data
will enable the identification of neurogenetic traits associated
with cognitive evolution.
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