
 Open access Book Chapter DOI:10.1007/3-540-36136-7_20

Funnel Heap - A Cache Oblivious Priority Queue — Source link

Gerth Stølting Brodal, Rolf Fagerberg

Institutions: Aarhus University

Published on: 21 Nov 2002 - International Symposium on Algorithms and Computation

Topics: Cache algorithms, Cache-oblivious algorithm, Cache pollution, Cache coloring and Cache

Related papers:

 The input/output complexity of sorting and related problems

 Cache-oblivious priority queue and graph algorithm applications

 Cache-oblivious algorithms

 Cache Oblivious Distribution Sweeping

 External memory algorithms and data structures: dealing with massive data

Share this paper:

View more about this paper here: https://typeset.io/papers/funnel-heap-a-cache-oblivious-priority-queue-
1nm6i2fe07

https://typeset.io/
https://www.doi.org/10.1007/3-540-36136-7_20
https://typeset.io/papers/funnel-heap-a-cache-oblivious-priority-queue-1nm6i2fe07
https://typeset.io/authors/gerth-stolting-brodal-2s14gbln8w
https://typeset.io/authors/rolf-fagerberg-34e1xptqr2
https://typeset.io/institutions/aarhus-university-2s1zo7wa
https://typeset.io/conferences/international-symposium-on-algorithms-and-computation-3kxkx2vx
https://typeset.io/topics/cache-algorithms-u99b01nk
https://typeset.io/topics/cache-oblivious-algorithm-2kw57nbq
https://typeset.io/topics/cache-pollution-ntf1qyqg
https://typeset.io/topics/cache-coloring-3bnx8t50
https://typeset.io/topics/cache-1i1l9v6x
https://typeset.io/papers/the-input-output-complexity-of-sorting-and-related-problems-3764pqyfqw
https://typeset.io/papers/cache-oblivious-priority-queue-and-graph-algorithm-2nl8k3401o
https://typeset.io/papers/cache-oblivious-algorithms-228gx3mgqu
https://typeset.io/papers/cache-oblivious-distribution-sweeping-4nz3vxs19n
https://typeset.io/papers/external-memory-algorithms-and-data-structures-dealing-with-556wlcd7jg
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/funnel-heap-a-cache-oblivious-priority-queue-1nm6i2fe07
https://twitter.com/intent/tweet?text=Funnel%20Heap%20-%20A%20Cache%20Oblivious%20Priority%20Queue&url=https://typeset.io/papers/funnel-heap-a-cache-oblivious-priority-queue-1nm6i2fe07
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/funnel-heap-a-cache-oblivious-priority-queue-1nm6i2fe07
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/funnel-heap-a-cache-oblivious-priority-queue-1nm6i2fe07
https://typeset.io/papers/funnel-heap-a-cache-oblivious-priority-queue-1nm6i2fe07

Funnel Heap - A Cache Oblivious Priority Queue

Gerth Stølting Brodal1,⋆,⋆⋆ and Rolf Fagerberg1,⋆

BRICS⋆ ⋆ ⋆, Department of Computer Science, University of Aarhus, Ny Munkegade,
DK-8000 Århus C, Denmark. E-mail: {gerth,rolf}@brics.dk

Abstract The cache oblivious model of computation is a two-level mem-
ory model with the assumption that the parameters of the model are
unknown to the algorithms. A consequence of this assumption is that an
algorithm efficient in the cache oblivious model is automatically efficient
in a multi-level memory model. Arge et al. recently presented the first op-
timal cache oblivious priority queue, and demonstrated the importance
of this result by providing the first cache oblivious algorithms for graph
problems. Their structure uses cache oblivious sorting and selection as
subroutines. In this paper, we devise an alternative optimal cache oblivi-
ous priority queue based only on binary merging. We also show that our
structure can be made adaptive to different usage profiles.

1 Introduction

External memory models are formal models for analyzing the memory access
patterns of algorithms on modern computer architectures with several levels of
memory and caches. The cache oblivious model, recently introduced by Frigo
et al. [13], is based on the I/O model of Aggarwal and Vitter [1], which has been
the most widely used external memory model—see the surveys by Arge [2] and
Vitter [14]. Both models assume a two-level memory hierarchy where the lower
level has size M and data is transfered between the two levels in blocks of B
elements. The difference is that in the I/O model the algorithms are aware of B
and M , whereas in the cache oblivious model these parameters are unknown to
the algorithms and I/Os are handled automatically by an optimal off-line cache
replacement strategy.

Frigo et al. [13] showed that an efficient algorithm in the cache oblivious
model is automatically efficient on each level of a multi-level memory model.
They also presented optimal cache oblivious algorithms for matrix transposition,
FFT, and sorting. Cache oblivious search trees which match the search cost of the
standard (cache aware) B-trees [4] were presented in [6,8,9,11]. Cache oblivious
algorithms have also been given for problems in computational geometry [6,10],
for scanning dynamic sets [5], and for layout of static trees [7]. Recently, the first

⋆ Partially supported by the Future and Emerging Technologies programme of the EU
under contract number IST-1999-14186 (ALCOM-FT).

⋆⋆ Supported by the Carlsberg Foundation (contract number ANS-0257/20).
⋆ ⋆ ⋆ Basic Research in Computer Science, www.brics.dk, funded by the Danish National

Research Foundation.

cache oblivious priority queue was developed by Arge et al. [3], who also showed
how this result leads to several cache oblivious graph algorithms. The structure
of Arge et al. uses existing cache oblivious sorting and selection algorithms as
subroutines.

In this paper, we present an alternative cache oblivious priority queue, Fun-
nel Heap, based only on binary merging. Essentially, our structure is a single
heap-ordered tree with binary mergers in the nodes and buffers on the edges.
It was inspired by the cache oblivious merge sort algorithm Funnelsort pre-
sented in [13] and simplified in [10]. Like the priority queue of Arge et al., our
data structure supports the operations Insert and DeleteMin using amortized
O(1

B logM/B
N
B) I/Os per operation, under the so-called tall cache assumption

M ≥ B2. Here, N is the total number of elements inserted.
For a slightly different algorithm we give a refined analysis, showing that the

priority queue adapts to different profiles of usage. More precisely, we show that
the ith insertion uses amortized O(1

B logM/B
Ni

B) I/Os, where Ni can be defined
in any of the following three ways: (a) Ni is the number of elements present in the
priority queue when performing the ith insert operation, (b) if the ith inserted
element is removed by a DeleteMin operation prior to the jth insertion then
Ni = j − i, or (c) Ni is the maximum rank that the ith inserted element has
during its lifetime in the priority queue, where rank denotes the number of
smaller elements present in the priority queue. DeleteMin is amortized for
free since the work is charged to the insertions. These results extend the line of
research taken in [12], where (a) and (c) are called size profile and max depth
profile, respectively.

We note that as in [10], we can relax the tall cache assumption by changing
parameters in the construction. More precisely, for any ε > 0 a data structure
only assuming M ≥ B1+ε can be made, at the expense of logM/B(x) becoming
1
ε logM (x) in the expressions above for the running times. We leave the details
to the full paper.

This paper is organized as follows. In Section 2 we introduce the concept
of mergers and in Section 3 we describe our priority queue. Section 4 gives the
analysis of the presented data structure. Finally, Section 5 gives the analysis
based on different profiles of usage.

2 Mergers

Our data structure is based on binary mergers. A binary merger takes as input
two sorted streams of elements and delivers as output the sorted stream formed
by merging of these. A merge step moves one element from the head of an
input stream to the tail of the output stream. The heads of the input streams
and the tail of the output stream reside in buffers holding a limited number of
elements. A buffer is simply an array of elements, plus fields storing its capacity
and pointers to its first and last elements. Figure 1 shows a binary merger.

Binary mergers may be combined to binary merge trees by letting the output
buffer of one merger be an input buffer of another. In other words, a binary merge

❣✲
✑✑✸
◗◗s

Figure 1. A binary merger.

tree is a binary tree with mergers at the internal nodes and buffers at the edges.
The leaves of the tree are buffers containing the streams to be merged. See
Figure 3 for an example of a merge tree. Note that we describe a merger and its
output buffer as separate entities mainly in order to visualize the binary merge
process. In an actual implementation, the two will probably be identified, and
merge trees will simply be binary trees of buffers.

Invoking a binary merger in a merge tree means performing merge steps until
its output buffer is full (or both input streams are exhausted). If an input buffer
gets empty during the process (but the corresponding stream is not exhausted),
it is filled by invoking the merger having this buffer as output buffer. If both input
streams of a merger get exhausted, its output stream is marked as exhausted.
The resulting recursive procedure, except for the issue of exhaustion, is shown
in Figure 2 as Fill(v). An invocation Fill(r) of the root r of the merge tree
produces the next part of a stream which is the merge of the streams at the
leaves of the tree.

Procedure Fill(v)
while v’s output buffer is not full

if left input buffer empty
Fill(left child of v)

if right input buffer empty
Fill(right child of v)

perform one merge step

Figure 2. Invoking a merger.

One particular merge tree is the k-merger. In this paper, we only consider
k = 2i for i a positive integer. A k-merger is a perfectly balanced binary merge
tree with k − 1 binary mergers, k input streams, and buffers of specific sizes.
The size of the output buffer of the root is k3. The sizes of the remaining buffers
are defined recursively: Let the top tree be the subtree consisting of all nodes of
depth at most ⌈i/2⌉, and let the subtrees rooted by nodes at depth ⌈i/2⌉+ 1 be
the bottom trees. The buffers at edges between nodes at depth ⌈i/2⌉ and depth
⌈i/2⌉ + 1 all have size ⌈k3/2⌉, and the sizes of the remaining buffers are defined
by recursion on the top tree and the bottom trees. A 16-merger is illustrated in
Figure 3.

❣✲

✂
✂
✂
✂✍

❇
❇
❇
❇◆

❣✲

✡
✡✣

❏
❏❫

❣✲
✑✑✸
◗◗s

❣✲✏✏✶
PPq

❣✲✏✏✶
PPq

❣✲
✑✑✸
◗◗s

❣✲✏✏✶
PPq

❣✲✏✏✶
PPq

❣✲

✡
✡✣

❏
❏❫

❣✲
✑✑✸
◗◗s

❣✲✏✏✶
PPq

❣✲✏✏✶
PPq

❣✲
✑✑✸
◗◗s

❣✲✏✏✶
PPq

❣✲✏✏✶
PPq

r

v

Figure 3. A 16-merger consisting of 15 binary mergers. Shaded regions are the occupied
parts of the buffers. The procedure Fill(r) has been called on the root r, and is
currently performing merge steps at its left child v.

To achieve I/O efficiency in the cache oblivious model, the memory layout of a
k-merger is also defined recursively. The entire k-merger is laid out in contiguous
memory locations, first the top tree, then the middle buffers, and finally the
bottom trees, and this layout is applied recursively within the top tree and each
of the bottom trees.

The k-merger structure was defined by Frigo et al. [13] for use in their cache
oblivious mergesort algorithm Funnelsort. The algorithm described above for
invoking a k-merger appeared in [10], and is a simplification of the original one.
For both algorithms, the following lemma holds [10,13].

Lemma 1. The invocation of the root of a k-merger uses O(k + k3

B logM/B k3)

I/Os, if M ≥ B2. The space required for a k-merger is O(k2), not counting the
space for the input and output streams.

3 The Priority Queue

Our data structure consists of a sequence of k-mergers with double-exponentially
increasing k, linked together in a list as depicted in Figure 4, where circles are
binary mergers, rectangles are buffers, and triangles are k-mergers. The entire
structure constitutes a single binary merge tree. Roughly, the growth of k is

given by ki+1 = k
4/3
i .

More precisely, let ki and si be values defined inductively as follows,

(k1, s1) = (2, 8) ,

si+1 = si(ki + 1) ,

ki+1 = ⌈⌈si+1
1/3⌉⌉ ,

(1)

✐✛

✻

✻
��❅❅
✻ ✻

✐✛

✻

✻
�

��
❅

❅❅
✻ ✻ ✻

· ·

✛ ✛ · · · ✐✛

✻

✻
�

��
❅

❅❅
✻ ✻ ✻

· · ·

✛ ✛ · · · ✐✛

✻

✻
�

�
�

❅
❅

❅
✻ ✻ ✻

· · · ·

✛
A1

B1

S11 S12

v1 Ai vi

Bi

Ki

Si1 Si2 Siki

Link i

I

Figure 4. The priority queue based on binary mergers.

where ⌈⌈x⌉⌉ denotes the smallest power of two above x, i.e. ⌈⌈x⌉⌉ = 2⌈log x⌉.
Link i in the linked list consists of a binary merger vi, two buffers Ai and Bi,
and a ki-merger Ki with ki input buffers Si1, . . . , Siki

. We refer to Bi, Ki, and
Si1, . . . , Siki

as the lower part of the link. The size of both Ai and Bi is k3
i ,

and the size of each Sij is si. Link i has an associated counter ci for which
1 ≤ ci ≤ ki + 1. Its initial value is one. It will be an invariant that Sici

, . . . , Siki

are empty.

Additionally, the structure contains one insertion buffer I of size s1. All
buffers contain a (possibly empty) sorted sequence of elements. The structure is
laid out in memory in the order I, link 1, link 2, . . . , and within link i the layout
order is ci, Ai, vi, Bi, Ki, Si1, Si2, . . . , Siki

.

The linked list of buffers and mergers constitute one binary tree T with
root v1 and with sorted sequences of elements on the edges. We maintain the
invariant that this tree is heap-ordered, i.e. when traversing any path towards
the root, elements will be passed in decreasing order. Note that the invocation of
a binary merger maintains this invariant. The invariant implies that if buffer A1

is non-empty, the minimum element in the queue will be in A1 or in I.

To perform a DeleteMin operation, we first call Fill(v1) if buffer A1 is
empty. We then remove the smallest of the elements in A1 and I from its buffer,
and return it.

To perform an Insert operation, the new element is inserted into I while
maintaining the sorted order of the buffer. If the number of elements in I is less
than s1, we stop. If the number of elements in I becomes s1, we perform the
following Sweep(i) operation, with i being the lowest index for which ci ≤ ki.
We find i by examining the links in increasing order.

The purpose of Sweep(i) is to move the content of links 1, . . . , i − 1 to the
buffer Sici

. It may be seen as a carry ending at digit i during addition of one,
if we view the sequence c1, c2, c3, . . . as the digits of a number. More precisely,
Sweep(i) traverses the path p from A1 to Sici

in the tree T and records how
many elements each buffer on this path currently contains. During the traversal,
it also forms a sorted stream σ1 of the elements in the buffers on the part of
p from Ai to Sici

. This is done by moving the elements to an auxiliary buffer.
In another auxiliary buffer, it forms a sorted stream σ2 of all elements in links
1, . . . , i− 1 and in buffer I by marking Ai as exhausted and calling DeleteMin

repeatedly. It then merges σ1 and σ2 into a single stream σ, traverses p again
while inserting the front elements of σ in the buffers on p in such a way that
these buffers contain the same numbers of elements as before the insertion, and
then inserts the remaining part of σ in Sici

. Finally, it resets cℓ to one for
ℓ = 1, 2, . . . , i − 1 and increments ci by one.

4 Analysis

4.1 Correctness

By the discussion above, correctness of DeleteMin is immediate. For Insert,
we must show that the two invariants are maintained and that Sici

does not
overflow when calling Sweep(i).

After an Insert, the new contents in the buffers on the path p are the smallest
elements in σ, distributed exactly as the old contents. Hence, an element on this
path can only be smaller than the element occupying the same location before
the operation. It follows that the heap-order invariant is maintained.

The lower part of link i is emptied each time ci is reset to one. This implies
that the invariant requiring Sici

, . . . , Siki
to be empty is maintained. It also

implies that the lower part of link i never contains more than the number of
elements inserted into Si1, Si2, . . . , Siki

by the ki Sweep(i) operations occurring
since last time ci was reset. From the definition (1) we by induction on i get

si = s1 +
∑i−1

j=1 kjsj for all i. If follows by induction on time that the number of
elements inserted into Sici

during Sweep(i) is at most si.

4.2 Complexity

Most of the work performed is the movement of elements upwards in the tree T
during invocations of binary mergers in T . We account for the I/Os incurred
during the filling of a buffer by charging them evenly to the elements filled
into the buffer, except when an Ai or Bi buffer is not filled completely due to
exhaustion, where we account for the I/Os by other means.

We claim that the number of I/Os charged to an element during its ascent
in T from an input stream of Ki to the buffer A1 is O(1

B logM/B si), if we identify
elements residing in buffers on the path p at the beginning of Sweep(i) with
those residing at the same positions in these buffers at the end of Sweep(i).

To prove the claim, we assume that the maximal number of small links are
kept in cache always—the optimal cache replacement strategy of the cache obliv-
ious model can only incur fewer I/Os. More precisely, let ∆i be the space oc-
cupied by links 1 to i. From (1) we have si

1/3 ≤ ki < 2si
1/3, so the Θ(siki)

space usage of Si1, . . . , Siki
is Θ(ki

4), which by Lemma 1 dominates the space
usage of link i. Also from (1) we have si

4/3 < si+1 < 3si
4/3, so si and ki grows

doubly-exponentially with i. Hence, ∆i is dominated by the space usage of link i,
implying ∆i = Θ(ki

4). We let iM be the largest i for which ∆i ≤ M and assume
that links 1 to iM are kept in cache always.

Consider the ascent of an element from Ki to Bi for i > iM . By Lemma 1,

each invocation of the root of Ki incurs O(ki + ki
3

B logM/B ki
3) I/Os. From M <

∆iM +1 and the above discussion, we have M = O(ki
4). The tall cache assumption

B2 ≤ M gives B = O(ki
2), which implies ki = O(ki

3/B). As we are not counting
invocations of the root of Ki where Bi is not filled completely, i.e. where the
root is exhausted, it follows that each element is charged O(1

B logM/B ki
3) =

O(1
B logM/B si) I/Os to ascend through Ki and into Bi.

The element can also be charged during insertion into Aj for j = iM , . . . , i.

The filling of Aj incurs O(1 + |Aj |/B) I/Os. From B = O(kiM +1
2) = O(kiM

8/3)
and |Aj | = kj

3, we see that the last term dominates. Therefore an element
is charged O(1/B) per buffer Aj , as we only charge when the buffer is filled
completely. From M = O(kiM +1

4) = O(siM

16/9) = O(siM
), we by the doubly-

exponentially growth of sj get that i − iM = O(log logM si) = O(logM si) =
O(logM/B si). Hence, the ascent through Ki dominates over insertions into Aj

for j = iM , . . . , i, and the claim is proved.

To prove the I/O complexity of our structure stated in the introduction, we
note that by induction on i, at least si insertions take place between each call
to Sweep(i). A call to Sweep(i) inserts at most si elements in Sici

. We let
the last si insertions preceding the call to Sweep(i) pay for the I/Os charged
to these elements during their later ascent through T . By the claim above, this
cost is O(1

B logM/B si) I/Os per insertion. We also let these insertions pay for
the I/Os incurred by Sweep(i) during the formation and placement of streams
σ1, σ2, and σ, and for I/Os incurred by filling buffers which become exhausted.
We claim that these can be covered without altering the O(1

B logM/B si) cost
per insertion.

The claim is proved as follows. The formation of σ1 is done by a traversal of
the path p. By the specified layout of the data structure (including the layout of
k-mergers), this traversal is part of a linear scan of the part of memory between
A1 and the end of Ki. Such a scan takes O((∆i−1 + |Ai| + |Bi| + |Ki|)/B) =
O(ki

3/B) = O(si/B) I/Os. The formation of σ2 has already been accounted
for by charging ascending elements. The merge of σ1 and σ2 into σ and the
placement of σ are not more costly than a traversal of p and Sici

, and hence
also incur O(si/B) I/Os. To account for the I/Os incurred when filling buffers
which become exhausted, we note that Bi, and therefore also Ai, can only become
exhausted once between each call to Sweep(i). From |Ai| = |Bi| = ki

3 = Θ(si) it

follows that charging each call to Sweep(i) an additional cost of O(si

B logM/B si)
I/Os will cover all such fillings, and the claim is proved.

In summary, charging the last si insertions preceding a call to Sweep(i)
a cost of O(1

B logM/B si) I/Os each will cover all I/Os incurred by the data
structure. Given a sequence of operation on an initial empty priority queue, let
imax be the largest i for which Sweep(i) takes place. We have simax

≤ N , where
N is the number of insertions in the sequence. An insertion can be charged by
at most one call to Sweep(i) for i = 1, . . . , imax, so by the doubly-exponentially
growth of si, the number of I/Os charged to an insertion is

O

(

∞
∑

k=0

1

B
logM/B N (3/4)k

)

= O

(

1

B
logM/B N

)

.

The amortized number of I/Os for a DeleteMin is actually zero, as all occurring
I/Os have been charged to insertions.

5 Profile Adaptive Performance

To make the complexity bound depend on Nℓ, we make the following changes to
our priority queue. Let ri denote the number of elements residing in the lower
part of link i. The value of ri is stored at vi and will only need to be updated
when removing an element from Bi and when a call to Sweep(i) creates a new
Sij list (in the later case r1, . . . , ri−1 are reset to zero).

The only other modification is the following change of the call to Sweep(i).
Instead of finding the lowest index i where ci ≤ ki, we find the lowest index i
where either ci ≤ ki or ri ≤ kisi/2. If ci ≤ ki, Sweep(i) proceeds as described
Section 3, and ci is incremented by one. Otherwise ci = ki + 1 and ri ≤ kisi/2,
in which case we will recycle one of the Sij buffers. If there exists an input buffer
Sij which is empty, we use Sij as the destination buffer for Sweep(i). If all Sij

are nonempty, the two input buffers Sij1 and Sij2 with the smallest number of
elements contain at most si elements in total. Assume without loss of generality
min Sij1 ≥ min Sij2 , where min S denotes the smallest element in stream S. We
merge the content of Sij1 and Sij2 into Sij2 . Since minSij1 ≥ min Sij2 the heap
order remains satisfied. Finally we apply Sweep(i) with Sij1 as the destination
buffer.

5.1 Analysis

The correctness follows as in Section 4.1, except that the last induction on time
is slightly extended. We must now use that ki ≥ 2 implies kisi/2 + si ≤ kisi to
argue that Sweep(i) will not make the lower part of link i contain more than
kisi elements in the case where ci = ki + 1 and ri ≤ kisi/2.

For the complexity, we as in Section 4.2 only have to consider the case where
i > iM . We note that in the modified algorithm, the additional number of I/Os
required by Sweep(i) for locating and merging Sij1 and Sij2 is O(ki + si/B)

I/Os. As seen in Section 4.2, this is dominated by O(si

B logM/B si), which is the
number of I/Os already charged to Sweep(i) in the analysis.

We will argue that Sweep(i) collects Ω(si) elements from links 1, . . . , i − 1
that have been inserted since the last call to Sweep(j) with j ≥ i, and that for
half of these elements the value Nℓ is Ω(si). The claimed amortized complex-
ity O(1

B logM/B Nℓ) then follows as in Section 4.2, except that we now charge
the cost of Sweep(i) to these Ω(si) elements.

The main property of the modified algorithm is captured by the following
invariant:

For each i, the links 1, . . . , i contain in total at most
∑i

j=1 |Aj | =
∑i

j=1 k3
j

elements which have been removed from Ai+1 by the binary merger vi

since the last call to Sweep(j) with j ≥ i + 1.

Here, we after a call to Sweep(i + 1) define all elements in Aj to have been
removed from Aℓ for 1 ≤ j < ℓ ≤ i + 1. When an element e is removed from
Ai+1 by vi and is output to Ai, then all elements in the lower part of link i
must be larger than e. All elements removed from Ai+1 since the last call to
Sweep(j) with j ≥ i + 1 were smaller than e. These elements must either be
stored in Ai or have been removed from Ai by the merger in vi−1. It follows that
at most

∑i−1
j=1 |Aj | + |Ai| − 1 elements removed from Ai+1 are present in links

1, . . . , i. Hence, the invariant remains valid after moving e from Ai+1 to Ai. By
definition, the invariant remains valid after a call to Sweep(i).

A call to Sweep(i) will create a stream with at least s1+
∑i−1

j=1 kjsj/2 ≥ si/2

elements. By the above invariant, at least t = si/2−
∑i−1

j=1 |Aj | = si/2−
∑i−1

j=1 k3
j

= Ω(si) elements must have been inserted since the last call to Sweep(j) with
j ≥ i. Finally, for each of the three definitions of Nℓ in Section 1 we for at least
t/2 of the t elements have Nℓ ≥ t/2, because:

(a) For each of the t/2 most recently inserted elements, at least t/2 elements
were already inserted when these elements where inserted.

(b) For each of the t/2 earliest inserted elements, at least t/2 other elements
have been inserted before they themselves get deleted.

(c) The t/2 largest elements each have (maximum) rank at least t/2.

This proves the complexity stated in Section 1.

References

1. A. Aggarwal and J. S. Vitter. The input/output complexity of sorting and related
problems. Communications of the ACM, 31(9):1116–1127, Sept. 1988.

2. L. Arge. External memory data structures. In Proc. 9th Annual European Sympo-
sium on Algorithms (ESA), volume 2161 of LNCS, pages 1–29. Springer, 2001.

3. L. Arge, M. A. Bender, E. D. Demaine, B. Holland-Minkley, and J. I. Munro.
Cache-oblivious priority queue and graph algorithm applications. In Proc. 34th
Ann. ACM Symp. on Theory of Computing, pages 268–276. ACM Press, 2002.

4. R. Bayer and E. McCreight. Organization and maintenance of large ordered in-
dexes. Acta Informatica, 1:173–189, 1972.

5. M. Bender, R. Cole, E. Demaine, and M. Farach-Colton. Scanning and traversing:
Maintaining data for traversals in a memory hierarchy. In Proc. 10th Annual
European Symposium on Algorithms (ESA), 2002. To appear.

6. M. Bender, R. Cole, and R. Raman. Exponential structures for cache-oblivious
algorithms. In Proc. 29th International Colloquium on Automata, Languages, and
Programming (ICALP), volume 2380 of LNCS, pages 195–207. Springer, 2002.

7. M. Bender, E. Demaine, and M. Farach-Colton. Efficient tree layout in a multi-
level memory hierarchy. In Proc. 10th Annual European Symposium on Algorithms
(ESA), 2002. To appear.

8. M. A. Bender, E. Demaine, and M. Farach-Colton. Cache-oblivious B-trees. In
Proc. 41st Ann. Symp. on Foundations of Computer Science, pages 399–409. IEEE
Computer Society Press, 2000.

9. M. A. Bender, Z. Duan, J. Iacono, and J. Wu. A locality-preserving cache-oblivious
dynamic dictionary. In Proc. 13th Ann. ACM-SIAM Symp. on Discrete Algorithms,
pages 29–39, 2002.

10. G. S. Brodal and R. Fagerberg. Cache oblivious distribution sweeping. In Proc. 29th
International Colloquium on Automata, Languages, and Programming (ICALP),
volume 2380 of LNCS, pages 426–438. Springer, 2002.

11. G. S. Brodal, R. Fagerberg, and R. Jacob. Cache oblivious search trees via bi-
nary trees of small height. In Proc. 13th Ann. ACM-SIAM Symp. on Discrete
Algorithms, pages 39–48, 2002.

12. M. J. Fischer and M. S. Paterson. Fishspear: A priority queue algorithm. Journal
of the ACM, 41(1):3–30, 1994.

13. M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-oblivious
algorithms. In 40th Annual Symposium on Foundations of Computer Science,
pages 285–297. IEEE Computer Society Press, 1999.

14. J. S. Vitter. External memory algorithms and data structures: Dealing with mas-
sive data. ACM Computing Surveys, 33(2):209–271, June 2001.

