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ABSTRACT

Quantifying the functional similarity of genes and

their products based on Gene Ontology annotation

is an important tool for diverse applications like the

analysis of gene expression data, the prediction

and validation of protein functions and interactions,

and the prioritization of disease genes. The

Functional Similarity Matrix (FunSimMat,

http://www.funsimmat.de) is a comprehensive

database providing various precomputed functional

similarity values for proteins in UniProtKB and for

protein families in Pfam and SMART. With this

update, we significantly increase the coverage of

FunSimMat by adding data from the Gene

Ontology Annotation project as well as new func-

tional similarity measures. The applicability of the

database is greatly extended by the implementation

of a new Gene Ontology-based method for disease

gene prioritization. Two new visualization tools

allow an interactive analysis of the functional

relationships between proteins or protein families.

This is enhanced further by the introduction of an

automatically derived hierarchy of annotation

classes. Additional changes include a revised user

front-end and a new RESTlike interface for

improving the user-friendliness and online accessi-

bility of FunSimMat.

INTRODUCTION

Annotations with terms from the Gene Ontology (GO)
provide important information on the functions of genes
and gene products (1). GO consists of three hierarchically
structured vocabularies for biological process, molecular
function and cellular component. Nodes in these
ontologies represent terms and edges the relationships
between different terms. GO annotation can be leveraged
for performing functional comparisons between gene
products (2–7). Simple approaches measure the functional
similarity by counting the number of terms shared

between different gene products (4), while more sophisti-
cated methods utilize the semantic similarity between GO
terms (3,5–7). Semantic similarity methods commonly rely
on the GO structure and an annotation database for quan-
tifying the similarity between two GO terms (5,8–10).

Many diverse applications make use of semantic and
functional similarity. A number of methods were
developed for analyzing gene expression data considering
functional similarity (11–16). In the field of interactomics,
functional similarity measures were found to be particu-
larly useful for predicting and validating protein and
domain interactions (17–19). Lately, functional similarity
was incorporated into methods for prioritizing disease
gene candidates (2,20–22). The GO4genome method that
was recently introduced by Merkl and Wiezer applies
functional similarity in the comparison of genomes for
deriving a phylogeny of prokaryotic organisms (23). The
Functional Similarity Matrix (FunSimMat) was utilized
by Xie and colleagues for assessing the functional similar-
ity between the cholesteryl ester transfer protein (CETP)
and other proteins that are targeted by CETP inhibitors
(24). Faria et al. (25) investigated the protein function
space as described by GO using the concept of annotation
classes introduced by FunSimMat.

FunSimMat (http://www.funsimmat.de) is the only
publicly available comprehensive database of pre-
calculated semantic and functional similarity values (26)
for all proteins in UniProtKB (27) and protein families in
Pfam (28) and SMART (29). Since its first publication, it
has received over 1.4-million user queries. With the
current FunSimMat release 3.1, we considerably increase
the number of available GO annotations by adding data
from the Gene Ontology Annotation (GOA) project (30).
The introduction of a new hierarchy of annotation classes
and of two visualization tools (Figure 1) affords innova-
tive approaches for the analysis of functional similarity
data by the user. More functional similarity measures, a
RESTlike (31) web interface, and further performance
optimizations were implemented for enhancing the usabil-
ity of FunSimMat. Furthermore, we provide a new
method for prioritizing disease gene candidates using
FunSimMat and included information from OMIM
(32) about proteins known to be involved in diseases.
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This greatly expands the applicability of FunSimMat in
biomedical research.

DATA SETS

The current FunSimMat release 3.1 contains almost
8.4-million proteins from UniProtKB (release 15.3)
and �26.9-million GO annotations of proteins
extracted from UniProtKB and from GOA (release of
May 2009). Additionally, FunSimMat includes over
10 000 Pfam families (release 23) and 720 SMART
families (from InterPro release 20). The annotations
of protein families with GO terms were derived from
the pfam2go and smart2go mapping files (both
from April 2009). The database also contains 19 481
entries from OMIM (downloaded on 10 June 2009).

In total, release 3.1 of the FunSimMat database is
326GB in size, which is almost four times the size of the
previous release.

EXTENDING ANNOTATION CLASSES

FunSimMat eliminates data redundancy and improves
computational efficiency by introducing annotation
classes, which subsume all proteins and protein families
that are annotated with the same set of GO terms. An
annotation class is defined as a unique, lexically sorted
list of GO terms from a single ontology and can be
identified by a unique accession number, which is stable
between database releases. There are three types of anno-
tation classes: BPclass (biological process), MFclass
(molecular function) and CCclass (cellular component).

Figure 1. Different visualization options for a result set provided by FunSimMat. The figure shows some of the results obtained by the functional
comparison of GTP-binding protein YPT11 (UniProtKB P48559) with GO annotation superclasses of human proteins. (A) The results table lists all
functional similarity scores of the query protein with different GOclasses. Each table cell is colored by a gradient; white color represents no similarity
and blue color high similarity. The popup box gives all GO terms for the GOclass 397703. (B) Medusa visualization of some CCclasses contained in
the results. The classes were clustered using the k-means algorithm with k set to 20 and placed by applying a hierarchical layout. The nodes are
colored according to cluster membership. (C) Mondrian scatter plots that compare biological process similarities obtained by different semantic
similarity measures. The three plots in the first row show, for example, that the results obtained with simRel (5) are strongly correlated with Lin’s
similarity (8) (left), less correlated with Resnik’s similarity (10) (center), and only weakly correlated with scores computed using Jiang & Conrath’s
similarity (9) (right). The straight lines in the scatter plots are least-squares regression calculated by Mondrian.
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Each protein and protein family is assigned to the anno-
tation classes that exactly correspond to its annotated GO
terms. Ancestors of annotated GO terms are not included
in the annotation classes because the various functional
similarity scores account for the GO structure. A GOclass
represents a combination of one BPclass, one MFclass
and one CCclass, and each protein and protein family
is associated with the GOclass that corresponds to
its BPclass, MFclass and CCclass. The all-against-all com-
parison of proteins and protein families is performed by
computing the functional similarity values between all
possible pairs of annotation classes.
Previous releases of FunSimMat were built using

protein GO annotations from UniProtKB only. The
increased availability of GO annotations and the inclusion
of data from GOA almost doubled the number of avail-
able annotations between proteins and GO terms. This
provides a significantly larger coverage as well as an
improved functional characterization of proteins and
protein families sharing similar functions. This is signified
by the number of annotation classes in the current release,
which is four times higher than in the previous release:
47 538 BPclasses, 59 814 MFclasses, 18 753 CCclasses
and 151 151 GOclasses. Many of these classes differ by a
single term only, which results in a very high functional
similarity between them.
In order to exploit this relatedness, we introduce hier-

archically structured networks of annotation classes
for biological process, molecular function and cellular
component. In these networks, nodes represent annota-
tion classes and two classes, c1 and c2, are connected by
an edge if the following two conditions are satisfied: (i) all
terms from c1 are contained in c2, and (ii) c2 contains
exactly one additional term. The second condition restricts
the number of edges in the network and prevents it from
becoming too complex. Annotation classes consisting of
solely one term constitute the source nodes in the network.
The most specific classes that are not contained in any
other class are defined as annotation superclasses.
The newly established hierarchy of annotation classes

enables refining comparisons of a specific protein or
protein family with a list of proteins or families. The
user can restrict the query to superclasses and thus con-
centrate on the largest functional differences. By including
all annotation classes in a subsequent query, it is possible
to obtain a comprehensive overview for identifying
smaller differences in functional similarity.

TOOLS FOR VISUALIZING RESULT SETS

FunSimMat provides two basic query options:
(i) semantic all-against-all comparison of GO terms and
(ii) functional comparison of a query protein or protein
family with a list of proteins or protein families. The result
sets from both query types are summarized in a table
(Figure 1), which provides special means for easily
investigating the similarity between a pair of GO terms,
proteins, or protein families in detail. However, if the
query result set is large, a visual analysis may be advan-
tageous for quickly obtaining an overview. Therefore, we

offer two new tools for displaying and analyzing
FunSimMat results (Figure 1). The first tool Mondrian
allows a comprehensive statistical analysis of the result
set (33). It has the particular functionality of drawing dif-
ferent types of plots, for instance, scatter plots, bar charts,
box plots, and histograms. Various plots can be opened
simultaneously and compared directly, which can be used
to investigate the correlation between different functional
similarity scores in a specific result set. Data points
selected in one plot are highlighted instantly in all
other plots, which aids in studying an interesting subset
of results from various perspectives. The second tool
Medusa visualizes the hierarchical relationships between
the annotation classes contained in the result set from
functional comparisons (34). Users can apply different
layout and cluster algorithms for discovering relationships
between annotation classes in the result set. Furthermore,
it is possible to search for all classes that contain selected
GO terms. The original implementations of both tools
were modified to enable their deployment using Java
Web Start. Both are started by clicking on the correspond-
ing link on the results page, and the result set is then
loaded. Plots generated by both tools can be saved in
various bitmap and vector image formats.

NEW FUNCTIONAL SIMILARITY MEASURES

Previously, most functional similarity scores were based
on semantic similarity between GO terms. In this
update, we included two recently published scores that
are based on the number of overlapping terms, the term
overlap (TO) and the normalized term overlap (NTO).
For two proteins p and q that are annotated with the
GO term sets GOp and GOq, respectively, the term
overlap score is defined as follows (4):

simTO ¼ jgp \ gqj,

where gp and gq are the sets of GO terms in the ontology
subgraphs induced by GOp and GOq, respectively,
excluding the root terms. The NTO score is defined as
term overlap divided by the size of the smaller one of
the two GO term sets (4):

simNTO ¼
jgp \ gqj

min jgpj, jgqjð Þ
,

where gp and gq are defined as in the case of the TO score.
Both scores range from 0, for no similarity to positive
infinity, and larger scores indicate higher similarity.

DISEASE GENE PRIORITIZATION

Recently, we developed a new method for prioritizing
disease gene candidates based on functional similarity
(Schlicker et al., submitted). Our MedSim approach
exploits GO annotation of genes or proteins known to
be involved in a disease of interest and uses functional
similarity for ranking candidate genes or proteins.
Briefly, MedSim prioritizes candidates in two steps.
First, GO terms are transferred automatically from
UniProtKB proteins cross-referenced to OMIM diseases
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to the corresponding OMIM entry. Second, the list of
candidates is ranked by functional similarity between the
candidate proteins and the disease of interest. Candidates
with higher functional similarity are more likely to be
involved in the disease of interest. In order to implement
our prioritization method in FunSimMat, each disease
was mapped to the annotation classes matching the
transferred GO terms, and all functional similarity
values between human proteins and the diseases were
precomputed. This allows the use of FunSimMat for the
fast prioritization of a list of candidates by entering the
OMIM accession number of the disease of interest and
the list of UniProtKB accessions of the candidate proteins.

FURTHER IMPROVEMENTS

RESTlike interface

Two different interfaces have been available for accessing
FunSimMat, the web front-end for manual queries and
the XML-RPC interface for automatically accessing
FunSimMat. In addition, we now provide a RESTlike
interface, which supports the same query options as the
other two front-ends, but all query parameters are
specified inside an URL. In this way, web links for
querying FunSimMat can be added easily to other web
sites and services. A detailed description of the available
URL parameters is given in the online documentation of
FunSimMat.

More technical optimizations

A functional similarity query in FunSimMat compares a
query protein to a list of proteins. This list can be defined
in several ways, for instance, by entering the correspond-
ing accession numbers or by selecting a specific taxon.
Additionally, it is now possible to compare the query
protein to all proteins associated with an OMIM entry
by entering the accession number of the disease.
To focus on certain results, users can choose to receive a
specified number of results with the highest similarity.

Furthermore, we added a link to the results page for
modifying a previous query. After clicking on the link,
the query form is loaded with all the information that
was previously entered for performing the query. This
also enables sharing the query link with colleagues or
bookmarking specific queries and re-running them, for
instance, after a database update. Further improvements
of the FunSimMat web site concern the use of the results
table and the online documentation.

Internal programmatic optimizations accelerate consid-
erably building and accessing the FunSimMat database.
Thus the response time to large user queries was reduced
from several minutes to seconds. Although the database
size almost quadrupled to currently over 300GB, the com-
putation time for updating FunSimMat was decreased
from about one week to only two days. This will allow
frequent database updates in the future even if the number
of available GO annotations continues to rise.

CONCLUSIONS

The expanding availability and accumulation of GO
annotation will provide increasingly detailed functional
information on genes and gene products. The described
inclusion of the GOA project as a new source of GO anno-
tation in FunSimMat increases significantly its coverage of
functional annotation. Notably, the achieved performance
improvements in database design and access allow
FunSimMat to efficiently cope with the expected future
increase in functional annotation. The additional imple-
mentation of a new method for disease gene prioritization
and of functional similarity measures also broadens the
scope and applicability of FunSimMat considerably.
Furthermore, the introduction of a hierarchy of annota-
tion classes and of visual analysis tools affords innovative
ways of analyzing large sets of functional similarity
results, while the new RESTlike interface now supports
accessing FunSimMat simply by parameterized query
URLs.
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