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Further accuracy and convergence results on the modeling of flows down
inclined planes by weighted-residual approximations

Christian Ruyer-QuiIa) and Paul Manneville |
Laboratoire d’HydrodynamiqueUMR CNRS 7646, &le polytechnique, 91128 Palaiseau, France

(Received 5 October 2000; accepted 2 October 2001

We study the reliability of two-dimensional models of film flows down inclined planes obtained by
us [Ruyer-Quil and Manneville, Eur. Phys. J. 15, 357 (2000] using weighted-residual methods
combined with a standard long-wavelength expansion. Such models typically involve the local
thicknessh of the film, the local flow ratey, and possibly other local quantities averaged over the
thickness, thus eliminating the cross-stream degrees of freedom. At the linear stage, the predicted
properties of the wave packets are in excellent agreement with exact results obtained by Brevdo
et al. [J. Fluid Mech.396, 37 (1999]. The nonlinear development of waves is also satisfactorily
recovered as evidenced by comparisons with laboratory experiments gt alu Phys. Fluids?,
55(1995] and with numerical simulations by Ramaswastyal.[J. Fluid Mech.325 163(1996)].

Within the modeling strategy based on a polynomial expansion of the velocity field, optimal models
have been shown to exist at a given order in the long-wavelength expansion. Convergence towards
the optimum is studied as the order of the weighted-residual approximation is increased. Our models
accurately and economically predict linear and nonlinear properties of film flows up to relatively
high Reynolds numbers, thus offering valuable theoretical and applied study perspective802©
American Institute of Physics[DOI: 10.1063/1.1426103

I. INTRODUCTION cosity) and g sin3 (streamwise gravity acceleratiprwhere

) o - _ B is the angle made by the plane with the horizontal (
The long wavelength interfacial instability modes of vis- =cotp). The Kapitza numbeF = y/[ p»*¥(g sin 8)*?] com-

cous film flows down inclined planes have attracted muchy,req surface tensiop to viscosity and gravity. In this for-
interest since the pioneering work of Kapitzen practice, at 1y jation, the control parameter is the heigktof the film in
low to moderate Reynolds numbers the space—time evolutiofy pasic state. which corresponds to a flow with a time-

of films are slow and internal fluctuations remain mostlyjygependent spatially uniform thickness and a semiparabolic
enslaved to the local film thickneds so that the initially  ye|ocity profile called the Nusselt solution. A perhaps more

three-dimensional free-boundary problem can be dramatigagitional presentation makes use of a Reynolds number
cally simplified by the elimination of the cross-streay) ( pased on the film thickness and the flow speed at the inter-
dependence of the velocity field leading to a simpler tWo-;ce and a Weber number to measure the strength of surface

dimensional, streamwisex) and spanwise 7), problem;  tansion effects. These two numbers are defined in terms of
and even to a one-dimensional streamwise problem wheﬂN andT asR= %hﬁ andW=F/hﬁ,. The resulting Benney

taking into account Squire's theorehas long as secondary equation has of course strictly the same structurélasThe

instabilities do not introduce spanwise modulations, WhiChadvantage of using the Kapitza number, defined only in

shall be assumed in all what follows. These features call fofams of the fluid properties and the geometry of the experi-

the derjvation of models with reduced dimens'ion.ality able Oment, is somewhat compensated by the fact that, from a
deal with the dynamics of the film at a quantitative level.

) ) VS physical point of view, the effects of surface tension have to
_ The cleanest modeling strategy is clearly by defining &6 compared to inertia effects, which the Weber number does
film parametere~|dsh|/h and performing an expansion in appropriately.

terms of e, then truncating it at some level. All the flow At any rate, Eq(1) cannot be a good model of unstable
variables are then asymptotically enslaved to the evolution ofy, ith ‘space—time modulated thickness since, unfortu-
the film th|cknesst1(>§,t),, which yields a one-equation de- pately not far beyond threshold, its solutions experience
scription of the film's dynamics in the formaih e time blow u despite the regularizing effects of sur-
=G(h"dxmh,), the prototype of which is the Benney ;06 tension that enter the problemia the term
equatiofl o (h30,,h), active at lowest order owing to the implicit
gh+h29,h+ 20, [ (2h®—Bh3)a,h+Th3,,h]=0. (1) a_ssumptionl“ez=(9(1). _ Truncating t_he € expansi(_)n at
higher orders does not improve the situation but this behav-
Here, space—time scales are defined usirginematic vis- jor can be cured by a Padesummation techniqueThe
procedure is, however, not fully satisfactory since it leads to

daddress: Laboratoire FAST-UMR CNRS 7608, Campus universitaire,undere_Stimating the CharaCteriSt(‘mnp"t_Ude and speéabf
91405 Orsay, France. the solitary wave solution@Ref. 7, see Fig. 2 Therefore, it
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does not seem possible to describe the dynamics of the fility profile makes our modeling reliable in a wide range of
sufficiently far from threshold in terms of a single evolution Reynolds numbers above threshold by comparing quantita-
equation forh and one is led to consider systems of severatively the results of a conventional linear stability analysis,
equations for the film thicknedsand other average quanti- here amounting to a simple study of an explicit, polynomial,
ties, the most obvious one being the local flow rgfe,t) dispersion relation, with the output of the exact analysis per-
= [Du(y,x,t)dy. formed by Brevdcet al’? In this respect, the comparison of
By assuming a streamwise parabolic velocity profile results for the full and simplified second-order models turns
oc?— %? whereyzy/h, h being a function of time and out to be specially instructive. Section IV is devoted to an
space, and integrating the streamwise momentum equatidhustration of the nonlinear dynamics of the simplified
along they direction (Polhausen—von-Keaman averaging second-order model mimicking an unstable film with the
method also called thimtegral methodl Shkado§ obtained =~ Same characteristics as those used by Liu and Gollub in their

for the local flow rateq the following equation: experiments’ or by Ramaswamgt al.in their simulations;?
and showing that the quantitative agreement obtained at the
q 12q linear level is also achieved at the nonlinear level. The con-
Q= h=Bhoh+Thoxh= 3? 5 hAd vergence of the weighted-residual techniques toward optimal
models as the number of basis functions is increased is also a
6 g° subject of interest. We examine this problem in Sec. V
ts ﬁaxh , (20 where, for the sake of simplicity, we restrict ourselves to the

case of the simplified second-order for which we need to
which, when completed by the kinematic condition at thestudy only one equation for one single supplementary field.
interface written in conservative form as Taking advantage of this situation we compare the efficiency
o Rt 9.0=0 3) of several weighting strategigs, showing that the be_st te(_:h-
t x4=0 nique seems to be the classical Galerkin approach in which
whereq is the local flow rate introduced above, forms the weight functions are taken in the same set as the basis func-
first closed two-equation model of film flow, often called the tions. Some concluding remarks are presented in Sec. VI.
integral boundary layefiBL) model.
The main limitation of this model can be noticed just by ||. THE POLYNOMIAL EXPANSION APPROACH
performing a gradient expansion of the flow rafe-q(® ., )
+q®---, then truncating it at first order and solvingitfor ~ 1he Polhausen—von-Kamen averaging method can be
This yields a Benney-like equation but with a coefficient 1/3Viewed as a special case of more general methods of
for the h®-term instead of the exact factor 2/5(b). The first ~ Weighted residuals. Let the problem at hand be formally
visible consequence of this difference is an erroneous estifitten as&(U) =0 for some set of field variabled. The
mation of the linear instability threshotqi'B") —B instead of Solution to it is searched for in 'Fhe form of a series expansion
(W_58  as obtained from botH1) or a direct Orr— U=Zj=0""gfj, where thef;, j=0,...]ma are test func-
Sommerfeld stability analysis. In the case of a vertical planelions and thea; their amplitudes. Weight functionw;, j
B= /2 henceB=0, the model trivially predicts the correct — O»-imax, @ré next chosen as ingredients of a projection
result that the flow is unstable at all Reynolds numbers bufule defining - the residuals:R;, =(w;/[£(Zaf))), |
the limitation immediately shows up at the nonlinear stage. 1= 0+ max- Canceling the residuai;, thus yields a system
has been attempted to cure this deficiency by adding highef© P€ solved for the amplitudes . The search for an accu-
order term$ or surface-tension correcticfbut the incorrect  "ate solution is achieved by increasing the truncation order
IBL threshold prediction was reobtained. This failure can bel max: whereas m_odelmg relies mostly on Ipw-order approxi-
traced back to the lack of flexibility of the assumed velocity Mations. Many different methods follow this general scheme
profile, either the simple parabolic profile or some otherPut differ by the specification of the projection rule. _
fixed profile function ofy/h (called similar by reference to In the present problem, the slow space—time dynamics
the theory of boundary layerswhile corrections to it are of the film suggests_a natural .separanon o_f variables with the
known to exist, already at first order, from the long- (X:t) dependence included in the amplitudas and the
wavelength expansion. cross-stream dependence accounted for by test functions in
In Sec. II, we first recall the methodology and main re-terms of the reduced variabje=y/h. The use ofy, instead
sults of our systematic modeling atterhpsing a weighted-  Of simply 'y, accounts from the start for the fact that the flow
residual methott based on a polynomial expansion of the profile is locally enslaved to the thicknesstrivially for the
velocity profile combined to the classical long-wavelengthflat film Nusselt solution, but also less trivially through its
expansion. Optimal modeling consistent at fitcondl or- ~ Space—time derivatives when the interface height is no
der in the long-wavelength expansion was further shown tdonger uniform, as becomes obvious from the long-
involve one(threg field(s) in addition to the thickness. A~ wavelength expansich>° Indeed, within this expansion
simplified second-order model obtained by adiabatic elimithe streamwise velocity field can be written in the form
nation of two of the three fields of the full optimal second- =Ee”Gn,j(hk,ax|h)Pn'j(y), where G, ; are functions ofh
order model was suggested to be a valuable intermediaind its gradients anB,, ; are polynomials.
with much less complexity and still sufficient accuracy. In We begin the review of our previous wdrk by writing
Sec. lll, we prove that the flexibility introduced in the veloc- down the equations corresponding to the two-dimensional
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(x,y) film flow problem at first order in the gradient expan- to solve at ordeg, the derivatives of the fields;, j=1, are
sion, which parallels the boundary layer theory leading to thequantities of higher order that can be dropped in the evalua-
Prandtl equation. From the continuity condition tion of the residuals. The cancellationjgf,,+ 1 residuals for
Jmaxt 1 test functions then leads to a system of equations
where theg;, j=1, enter linearly and undifferentiated, while
where d,u is of order e, it appears that the cross-streama, appear either linearly or quadraticalljffrom ud,u
velocity v is also of ordere. Lowest order terms in the +wvdyu in Eq. (5)] together with its derivatives with respect
cross-stream momentum equatiéire., for v) are then of toxort. The system governing all the amplitudgsexcept
order € and inertial termsjv +ud,v +vdyv, of order €, ag, can then be written as

can be dropped to get the pressure at okdby integrating
the remains of this equation ovgr(see Ref. 16 for details
The streamwise pressure gradient is then obtained,ps
=Bd,h—T"d,,,h which, upon insertion in the streamwise

du+dyw =0, (4)

Jmax

2 ajj/aj':Bj(hvaovo’)thvaxhvo"taOIO’)XaO)1
=1

momentum equatiofi.e., foru), leads to

dyu+1=3du+udu+vdu+Bah—Tdy,h, (5)

j :1a---:jmaxv

where the matriq «;;.] is invertible. Solving for thea;, |
=1, and inserting their expression in the residual &r

where it is immediately checked that every term on the rightyields a nonlinear equation linking, to its gradients and

hand side is of ordes under the assumptidine?= O(1). As
to the boundary conditions, a classical no-slip condition

holds at the solid plang=0, hence

those ofh (see Ref. 7 for details

However,a, has no physical meaning and it is prefer-

able to turn to the local flow ratg(x,t) that is directly

involved in the mass conservation equati8). From its
definitionq==3;_,/'m=h aféfi(y) dy, one can exchange, for
g using(3) and taking into account the expressions ofahe
j=1. We obtain

ulo=0, (6a)
vo=0, (6b)

whereas at the interface=h one gets

_ 5 5q 17q¢
v|n=ath+ulpd;h, (73 30= 5 (=BNA+TNieoh) =5 — = = 10,
(?yu|h:0, (7b)

2
where (78 accounts for the kinematics of the interface and + ; q—zﬁxh , (8)
h

(7b) for the continuity of the tangential stress at the free
surface. This set of equations is completed (By which Eq. (3) closing the system.

helps us determine from u when needed, and K@) where The complete derivatidnshows that the corrections to
g is the local flow rate introduced earlier and which replaces,o parabolic profile are strictly slaved o g, and their

(78) using (4) once integrated ovey. , _ gradients and, by simple power counts, that polynomials up
Our specific modeling strategy starts with an expansion, gegree 6 have to be included in the expansion in order to
of the velocity fieldu=ZXa;(x,t)f;(y) in terms of polyno-  optain a consistent account of the film's dynamics at oegler
mial test functions. This choice was made upon four considstarting with a correct determination of the linear instability
erations:(i) The flat film solution has a parabolic velocity threshold!? Model [(3), (8)] has been termedptimal at first
profile; (i) polynomials form a closed set with respect to grder in the sense that the polynomial velocity field recon-
products and differentiationdjii) corrections to the para- structed from the coefficients; fulfills (5) exactly and not
bolic profile appearing in the Benney expansion are preciselynly in average, so that the Benney equation is recovered
polynomials; (iv) this choice allows simple algebraic ma- through the appropriate expansion. Accordingly, any other
nipulations. Once the test functiofis and the weight func-  model based on weighted residuals and polynomial test func-
tions wj(y) have been defined, the application of thetions will thus converge to it when the size of the basis is
weighted-residual technique is straightforward. The systenmncreased, as shown in Sec. V.
of equations to solve for the amplitudasof the streamwise In order to be consistent at ordet, Eq.(5) and bound-
velocity fieldu are provided by the boundary conditiof@—  ary condition(7b) have to be completed to read
(7) and the projection of the momentum equatidndefined

by the weighting rules. The effectiveness of several such &WLH1:(9tu+uaXquvﬂyu_Zﬁxxu_axwxum

rules is considered later in Sec. V. +Bah—T dyih, 9
For convenience, the first polynomi is chosen to be
the semi-parabolic profile corresponding to the flat film so  dyUln=4dxhdxuln—dyvlp. (10

that f=y-2y°. Now, the technically important fact is that, All supplementary terms originate from viscous dissipation
when the film is flat, one haa;=0, for all j=1, whereas effects whereas Eq&3), (4), (6), and(7a) remain unchanged.
when it is (slowly) modulated, these coefficients are at leastThe derivation of the model becomes much more cumber-
of the order of the space and time gradient§.dh the same some because corrections to the parabolic profile are no
time, a is a zeroth order quantity that enters the expansiofonger enslaved to the dynamics af and become free
together with its gradients. Therefore, truncating the problenvariables’ Consistency requires the introduction of polyno-
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mials up to degree 14 because the complete expression of thes before, this set of equations is closed (By.

velocity field at ordere is a polynomial of degree 6. Out of The complete expression of the optimal second-order
the corresponding 15 amplitudes, only three are independemodel [(3), (11)—(13)] is hardly tractable and a simplified
variables. One is, associated to the semiparabolic profile version would be welcome. As a matter of fact, standard
as previously, the two others are specific polynomial correclinear stability analysis shows that the relaxation times,of
tions to the basic velocity profile of degree 4 and 6, respecands, are much shorter than thoseg$o that their adiabatic
tively. They were slaved t@, at ordere but their space— elimination seems legitimate. Admitting that, apart from cor-
time derivatives contribute at ordef. The result is a system rections of order higher thag?, their values are, at every
of three equations for three unknowigsand two supplemen- instant, enforced by the instantaneous local value of fields
tary variables, called; ands,, measuring the relevant cor- andq we obtain the approximate second-order model
rections to the flow rate

2
27 8lq s; 3069s, 12qs;d4h 5 59 17q 99° 5
= h—— -~ - _ dq==zh— - —— =+ J,9+| =z ——=Bh|dh
aq zgh 28 h2 3@ 28 B2 5 2 4=73 2h2 7 h xd 7h2 6 X

126q52(9xh+ 1231(9Xq+ 17132(9Xq+ 12 qd,s; +4g(§ h)2—i(9 a0 heedy h+§a q
% K2 5 h 65 h 5 h h2' 7 2h T Thee 2

. 1017qdys, . 6 q2dsh  12q4,q . 5025q(dyh)? " Erhﬁxxxh- (14)
455 h '5 p2 5 h | 896 2 6
50554,q9d4sh  10851qd,,h 2027 Comparing this equation @), one can trace back the origin

86 h 1792 h 448 Id of the new terms, all on the second line, to the effects of

viscous dissipation at second order, i.e., from the terms

-~ 2_7 2_7 — 20, u—d(dyUl,) in the momentum equatioq9) and
ZSBh axht 28”107)‘)‘)‘h ' (1 49,h d,ulp— dyv |y in the boundary conditiofil0). As a mat-
) ter of fact, their presence in any second-order two-equation
(%Sl:ih— 3 9 309%h 126s, 126s, model involvingh andq and their gradients is easily under-
100 10n2 35 p2 5 h? 5 p? stood from the fact thad,,q, d.q(ash/h), q(dsh/h)? and
d(dyh/h) are the only homogeneous terms, lineagiand
1 g9, 108gs;d5h  5022gs,dsh formally of second order i, . This will be illustrated later
35 h ' 55 p2 5005 B2 in Sec. V where, according to the weighting strategy, they
will appear in the models derived there with different coef-
1035195  9657s20,0 39 QdySy ficients which will be shown to converge to their values in
55 h 5005 h 55 h (14) as the approximation level is increased. A more accurate
two-equation model should also contain second-order terms
N 10557qdys, 93 q(ah)® 69 dxhd,q of inertial origin, thus formally quadratic ig, but it will be
10010 h 40 p2 40 h seen in the two next sections that the drastic simplification
made to obtain(14) is already effective. Mod€](3), (14)]
+Eq&xxh_ga —iBh& h will accordingly be called the “simplified second order
80 h 40747 10" model” in all what follows.
Any evaluation of the range of validity of models based
+ irha h, (12) on the Iong—wavelength expaqsioq is difficult. owing to
100 supplementary assumptions which link the amplitude of the
gradients to the intensity of the regularizing effects of sur-
(9t32:1_3 — 1_3 a._ ? S _118172_ i aS:9xh face tension through some least degeneracy princlpég,
420 140h2 5 p2 140 p2 11 p? =0O(1) for first-order models anfl e=O(1) at second or-
der. Whenl" is large, allowed gradients are small and a trun-
18qs0sh 2 0,0 1989, 6 qdysy cation of thee expansion at a low order is expected to give
11 K2 33 h 11 h 55 h reasonable results for waves with lengths large when com-
pared to the basitNusselj film thickness, but a direct check
288qdys, 3211q(d4h)? 26134,ha,q of the accuracy would be welcome. To this aim, linear sta-
385 h 4480 p2 4480 h bility predictions from our three models, optimal first-order,
optimal second-order, approximate second-order, are quanti-
2847qdh 559 13 tatively confronted to the exact results of Brevepal'? in

Bhd,h the next section. The development of forced waves trains

obtained by numerical simulation of our models is then com-
pared to observations by Liat al'® and direct numerical
simulations by Ramaswanst al*

—_ + [ —
8960 h | 2240797 220

13
+ 4__20Fh‘9xxxh . (13
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IIl. LINEAR STABILITY RESULTS 5 332 9 29360 2)
C=—B+—-—<=R+w|5i+ =iBR———=IiR
Following common practice, we first discuss the film 3 429 239 851351
flow stability in terms of the dispersion relation linking, in ( 35 1 136
. )

9
i L T pR2_
the fuI_Iy complex case, t_he_V\_/ave_z number k,+ |I_<I and the 1456R+ 1001BR 11711
pulsation o= w,+iw; of infinitesimal perturbations to the

Nusselt flat film solutionh=hy, i.e., varying as exp(kx 2027 ., ,
—wt)]. Temporally growing(decaying modes thus corre- " 864 864|R o,
spond tow;>0 (w;<0), downstream(upstream growing
modes tok;<0 (ki>0), and neutral waves t&;= w;=0. . 608 608
Linearization of mode[(3), (8)] aroundh=hy andq= %hﬁ D=—-4i- 9009'BRJF 39039'R
yields
vul - 12 205R— 32 R2. 1472 R3
5 5 17h3 “| ~35036% 27027°1 ' 3864861

i—2w+w2+ _iE_ 51 w) 3439

N + iR%w?

786 240 '
+Eh (—E+3h3 kZ—EFh k*=0 (15)
2N 3 35N 6 N 10331 592 128

3

= + 2_
. . L _ E 96 096R 1756 75? R 3864 861R
In view of the comparisons to be made, it is more convenient

to turn to a scaling based on the film thickndsgand the 3] 4591, 4.
flow velocity at the interfacesy, hence the transformation B §W+w - 1756 75§R * @IWR
k—k/hy and w—hyw/2 so that(15) now reads
— WRw?,
i 30+ Rw?+(—5i — $Rw)k+ (- 3B+ IR)k?— 3WK'=0, 1001
"o F 197 iR? 008 iWR 32 WR?
in which definitionsR= th3 andW=TI"/h? have been intro- 390390 9009 27027
duced. Canceling the imaginary part of the dispersion rela- 592
tion for realk yields the marginal conditiofsubscript “m”) G=——WR.
on= 2Ky, hence a phase velocit= 2. The real part in turn 1756755
yields A comparison of(18) and (19) shows that all the terms in
(18) are also in(19). The terms independent & are merely
(14 identical. Those linear iR are recovered with slightly dif-
K= wisR"B/ A7 ferent coefficients and all other terms(it9) haveR at some

power =1 in factor, which accounts for the fact that the
which is nothing but what can be predicted from the Benneysecond-order model includes inertial corrections not present
equation, exact foR~R.= 3B only. In the case of the sim- in the simplified models.

plified second-order modé(3), (14)], using the same scal- Controlled experiments devoted to the detection of mar-
ings, the dispersion relation reads ginal conditions are generally performed by forcing the film
at the inlet, either its thickness or its flow rate, at some fre-
i 30+ Rw?+ (—5i — 2Rw)k+ (— 3B+ 4R+i Jw)k? guency and by detecting the cut-off frequenfty beyond
which the film remains flat. Frequendy is thus determined
—4ik®— 5WK'=0, (18)  from the dispersion relation by imposing that the spatial

. . ] growth rate, i.e., the imaginary pait of the complex wave
which differs from (16) by two terms accounting for the yectork, of a mode with given real pulsatiom,=w just

contribution of the viscous dispersive effects. Finally, linear-cancels, which yields the Reynolds number as a function of
ization of the full second-order modg3), (11)—-(13)] leads  the frequencyw/2m=f., together with the marginal wave
to vectork,, from which the phase velocity of the waves can be
derived. The curves obtained from the simplified and full

A+ Bk+Ck?+Dk*+ Ek*+ Fk®+Gk°=0, (19 second-order dispersion relatiofi8) and(19), displayed in
. . Fig. 1 as a thin and thick solid line respectively, compare
in which equally well with the experimental data by Léi al 18 within
5 15 o5 5 error bars. The increasing discrepancy between the first-order
A=i—w+ —Rw?2— —iR203— ——R3p* prediction (17) corresponding to the dashed line in Fig.
2 13 2 3861 ' 1—Shkadov’s mode{dot—dashed linedoing even worse in
predicting an erroneous threshold—and the experiment can
B=_5i_ 290 ot 4—90iR2w2+iR3w3 therefore be attributed mainly to the neglect of the stream-

14 3861 3003 ' wise viscous dissipation and the subsequent phase velocity
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FIG. 1. Cut-off frequency . as a function of the Reynolds nhumtein the
conditions of Liu et al. (Ref. 18 (glycerin-water mixture,3=4°, T’
=2341). Experimental resultddiamond$ compared to predictions from
Shkadov's model(dot—dashey first-order model (dashed, simplified
second-order modéthin solid), and full second-order modéthick solid).

FIG. 2. Spatial branchds, in the (k; ,k;) plane for dispersion relatiof19)
with w;=0.02 (top) and w; =0.0 (bottom). R=40, 8=4.6°, W=41.46 (U
=769.8). Left: overall view of the diagram. Right: zoom on the neighbor-
hood of the origin in the complek plane.

oy ) , oot ) second-order modd3), (11)—(13)] and its simplified ver-
change,” in agreement with Chang's conjectureNotice  gjon[(3), (14)] since the first-order modé(3), (8)] fails to

that, in Fig. 1, the cut-off frequency is given in physical units o o4 ce the marginal stability conditions correctly due to
(_Hz), whereas .the implicit time scale m_the dlgper5|on rela-he neglect of viscous dispersion. Whereas for Navier—
tions and their consequences, especidlly), is Nn/Un  stokes equations, the dispersion relation is obtained from the
=2hy. At large 53eyno|ds number and fixed Kapitza num-,merical solution of a differential problem in the cross-
ber, R/'W~hy~R®" so that the estimatioil?) yields an  gyeam coordinate, here it is just a polynomial equatiok in
asymptotic behavior of. in R”’® for the two first-order mod- and » that can easily be solvehough not explicitly in the

els, hence a seemingly linear behavior for the corresponding,se of the full second-order model since it is of degree six in

CUIVES. - k and, in practice, also in the other case where it is of degree
A more sensitive check of the accuracy of the models, only).

can be obtained from the study of the linear dynamics of
wave packets, for which exact numerical results of Brevdo_ 4 I'=769.8, 3=4.6°, corresponding to experiments by
etal,’ obtained using the full linearized Navier—Stokes i, et a12!in order to be able to compare our model predic-
equations, are available. As is well kn_O\J\?rD_(k,w):O. be-  tions with results depicted in Fig. 3 of Ref. 12. Spatial
ing the formal expression of the dispersion relation, the,.anches in thek| ,k,) plane are displayed in Figs. 2 and 3
asymptotic behavior of an infinitesimal perturbation initiated¢, dispersion relationg19) and (18), respectively. Their

at positionx=0 and timet=0, as observed at the limit  ,5t5 ink are computed as, is varied for different values of
— in a frame moving at speed with respect to t‘he labo- . The agreement between results using the full second-
ratory (i.e., x=V1), is determined by the root ke Cof the o qer gispersion relatiol9) and the exact results is truly
systemD (k,w+Vk)=0 and D (k,o+VK) =0 which has emarkable. All the branches observed by Breedal, as

the largest imaginary pat; and further satisfies a so-called || as their change as, is varied from 0.02Fig. 2, top to
“collision criterium.”?° This criterium, which follows from (bottom, are recovered. Small departures from the exact

causality (film uniformly flat for any t<0), states that, in  gqytions are only noticeable far from the origfig. 2, lefb.
order to be physically relevant, the solution has to arise from

the pinching of two spatial branches coming from different

As done by Brevdcet al,, we consider first the cade

sides of the real axik;=0. Considering the casé=0, i.e., L T . . 0.02 T T T T
in the laboratory frame, the instability is further termed 05 u 4 001 F L
“convective” if the disturbance vanishes on the spot of ini- 1 ok ]
tiation and “absolute” in the opposite case. In the convective = 05 ﬁ 4] 001 b ]
case, the flow behaves as a noise amplifier responding to th ' . . =00 N
upstream disturbances. In the absolute case, the flow behave ;7 45 ¢ os 1 0200 02 0 02 o4

T T

as an oscillator having is own dynamics. The convective— 1% U R L L
absolute nature of the instability can be determined from the 05 : 4 0011 .
sign of the maximum of the,; corresponding to th&-roots .

s 0 : 0
of D(k,w)=0 verifying the collision criterium. Comforting o5k ’ o 001 F AN ]
experimental evidence, Brevda al'? have shown that the . L e - L gm0 ]
T w05 00 05 1
k

. . . . 20.02 1 1 1
flow over inclined planes is convectively unstable at least up 7 04 02 0 02 04
to very large Reynolds numbers and contrary to some mode: i
predictions. Here we examine h_OW far our m0(_jels €an reprog|g. 3. spatial branchds, for dispersion relatiori18). Same conditions as
duce the exact results, restricting our attention to the fulin Fig. 2.
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TABLE |. Comparison of the saddle point positions between solutions of the dispersion relation of the second-
order model, Eq(19), of the simplified model, Eq.18) and solutions of the linearized Navier—Stokes problem
by Brevdoet al. (Ref. 12 (R=200, 8=4.6°, andl'=769.8).

Branch Ky ki , ;
V=1.15
Brevdoet al. | 0.17 -0.178 0.0182 0.0062
Eqg. (19 | 0.172 —-0.176 0.0182 0.006 27
Brevdoet al. 1] 0.043 —0.046 0.01 0.0073
Eq. (19 1] 0.040 —0.046 0.0107 0.0073
Eq. (18 0.0478 —0.0387 0.0099 0.007 25
V=1.16
Brevdoet al. | 0.19 —0.165 0.015 0.0079
Eqg. (19 | 0.181 —0.163 0.0165 0.007 96
Brevdoet al. 1] 0.045 —0.048 0.01 0.0078
Eqg. (19 1] 0.0430 —0.0475 0.0103 0.007 77
Eq. (18 0.0516 —0.0385 0.0098 0.007 64

The agreement turns to excellent when approaching the orproduces exact results up to at le&t 200 in the experi-
gin k=0 (right), in line with the expectations from the long- mental conditions of Liu and Gollub, including the very pe-
wavelength assumption underlying our modeling. Upon de<uliar change of dominant saddle-point documented in Ref.
creasing the imaginary pari;, of the frequency from 12, see Table 1 The simplified model turns out to remain
positive to negative values, no pinching of the spatialaccurate only up to abol®=100, an already respectable
branches, is observed before; becomes negative, which value. As a matter of fact, beyorf@= 100 the latter model
is a clear indication of the convective nature of the instabil-does not succeed in reproducing the two branches. However,
ity. Expression(19) may accordingly be seen as an expansionit seems to interpolate smoothly between them, predicting
of the true dispersion relation in the limt w<<1. the totalV-width of the unstable band and all other charac-
The behavior of the spatial branches corresponding taeristics of the instability ¢, , w;, k;, k;) satisfactorily as a
the simplified second-order dispersion relatid®) is dis-  function of V. The reason of this semisuccess lies in the fact
played in Fig. 3. The operatd is a polynomial of degree that, while the function basis used in the Galerkin method is
four in k so that all the branches obtained by Brewetal.  not large enough to fully account for the flow properties, a
cannot be recovered. However, Branch 2 in Fig. 3 clearlyprojection on its first element only already contains most of
seems to result from the hybridization of Branches 2 and 3 iithe physics at a near-quantitative level.
Fig. 2 and the physically most relevant branch, namely = We end this section by considering the spatial stability
Branch 1, is quantitatively close to those obtained using eiproblem (@ € R, ke C). The spatial growth rate-k; and the
ther the full second-order modéFig. 2) or the primitive  wave numbelk, are displayed for the second-order model
equationgFig. 3 in Ref. 12. and the simplified model as a function of the signalling pul-
The agreement between model and exact results founshtionw in Figs. 4 and 5, respectively. The results obtained
for the casev=0 extends to the casé+0. A detailed ac- in a wide range of Reynolds numbers using the second-order
count will be the subject of a separate publication. Let us jusbrder model are again in excellent agreement with those ob-
mention that the full second-order model quantitatively re-tained by Brevdcet al., whereas the simplified model pre-
dicts growth rates somewhat too small at large Reynolds
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FIG. 4. (a) Growth rate—k; and(b) wave numbek, of spatially amplified

waves as functions of signalling frequenay for the full second-order  FIG. 5. (a) Growth rate—k; and(b) wave numbek, of spatially amplified
model.I'=769.8, 5=4.6°, R=10 (dotted, R=R, (Curve ), R=20 (2), waves as functions of signalling frequeney for the simplified model.
R=40 (3), R=60 (4), R=100(5), R=200 (6). Parameters as in Fig. 4.
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FIG. 6. Experimentsleft) and simulation of the simplified modéight) in the experimental conditions of Liu and Goll¢Ref. 13 (glycerin-water mixture,
B=6.4°, R=29, '=524.4). Snapshots of the film thickness at three different locations from upsttepnio downstreanbottom) at forcing frequency
f=4.5 Hz and forcing amplitudé&=0.03.

number R= 100 andR=200), though continuing to predict simplified version of the downstream free-boundary condi-

the wave vector correctly. Agreement with exact results is otion has been used in order to keep a banded matrix of con-
course lost for both models whétis set to very high values. stant width. The so-introduced numerical inaccuracy turned
For example atR=4100, B=4°, andW=1.983 the pre- outto remain confined to a small downstream boundary layer
dicted range of unstable signalling frequency is 25—30 timeshat never grew upstream, owing to the convective nature of
wider than that obtained by Brevdet al, but we cannot the instability. The flow rate at the entrance has been modu-
expect that the assumptions made to derive the models alated according to

still valid in such ranges of parameters.
g(Ot)=qgn[1+Acoq27ft)], (20

IV. NONLINEAR DYNAMICS OF A PERIODICALLY in line with experiments in Ref. 13 in which sinusoidal per-

FORCED FILM turbations were applied to the filma the pressure manifold
We now turn to numerical simulations results relative toat the inlet. Parameters corresponding to the same experi-
model[(3), (14)] in the nonlinear regime beyond threshold, mental conditions have been chosen, namBly 29, I’
aiming at a semiquantitative comparison with the experi-=524.4, and3=6.4°.
ments performed by Liu and Gollliband the direct numeri- The results of our simulations fof=4.5 Hz andf
cal simulations of Ramaswanst al'* =1.5 Hz are compared to experimental snapshots of the film
Depending on the forcing frequency, laboratory thickness in Figs. 6 and 7. Because the length of the expo-
experiments’ as well as simulatiort§ have revealed two dif- nential growth region depends on the forcing amplitude, we
ferent kinds of two-dimensional film evolutiofwithout  have chosen to set it arbitrarily #9=0.03 and to compare
modulations in the spanwise directiar). In the high- the waves at corresponding amplitude levels rather than at
frequency regime, downward the initial exponential growthcorresponding distances from the inlet. In the high-frequency
domain, the waves saturated through a complicated nonlineaegime atf=4.5 Hz, the simplified model seems to repro-
process and trains of multipeaked waves were observed. lduce the nonlinear multipeaked wave evolution reported in
the low-frequency regime, the exponential growth was dithe experiment quite faithfully. In particular, the growth of a
rectly followed by the formation of trains of solitary-like secondary peak, the phase locking that follows, and the
waves. modulation of the waves are all recovered. The length, am-
A second-order finite-difference quasi-linearized Crank—plitude, and shape of the waves obtained sufficiently far
Nicholson schenfé has been implemented to study the non-downstream are in very good agreement with their experi-
linear response of the film submitted to a periodic forcing. Amental counterparts. At lower frequendy: 1.5 Hz, though



178 Phys. Fluids, Vol. 14, No. 1, January 2002 C. Ruyer-Quil and P. Manneville

1'6 { T 1 1 1 1 i 1 ]

1.3 -

bih,

1.0 -

0.7 VIR W W Y RN SRR SR R |
45
1.6

1.3}

b/h,

1.0

0.7 o.
85 0s 105 115 125 135 %5 o5 105 115 125 135
1.6

1.3} - 1.3}

h/ho

I.O = - 1.0

0.7 1 ! 1 1 1 i 1 1 1 0_?20

120 130 140 150 160 170

130 140 150 160 170

FIG. 7. Experimentgleft) and simulation of the simplified modélight) for f=1.5 Hz. Other parameters as in Fig. 6.

the direct nonlinear evolution to solitary wavetrains is recov-like in laboratory experimentS, the nonlinear evolution of

ered, the simplified model predicts a wave of slightly largerthe film is complicated and three main regions can be iden-

amplitude than in experiments. The amplitude of the rippledified, corresponding to the initial exponential growth, the

preceding the main hump also seems to be overestimatetbrmation of the multipeaked waves, and the final wavetrain

These features, already observed with our earlier mdflels, modulation. Results displayed Fig. @ight column, ob-

can also be noted in the direct numerical simulations pertained with a forcing amplitud@&=0.03, are quite similar to

formed by Ramaswamet al,* which suggests that, in fact, those presented by Ramaswaetyal. in their Fig. 16. Even

the phase-sensitive averaging technique used in experimerttse radiation of a hole-like pulse by the leading front wave

could have somehow smoothed the wave profiles and partlyisible in the direct numerical simulation can be observed

erased their steepest parts. here. Modulations of the saturated wavetrains are, however,
Comparison has also been attempted with direct numerisomewhat smaller here than in Ref. 14, an observation that

cal simulations provided by Ramaswarayal. The spatio- does not seem to be changed by varying the forcing ampli-

temporal diagrams corresponding to Figs. 14 and 16 in Refude A.

14 are presented in Fig. 8. At low frequency, in the solitary-

Ilkg wavetram_reglme, the steepening of the |n|t|glly smg—v COMPARISON OF WEIGHTED RESIDUAL

soidal waves is followed by the development of ripples 'nTECHNIQUES

front of each saturated main hump. The front wave is seen to

move faster and to have a larger size than its followers. Both Let us now turn to the convergence properties of

of these features have been observed by Ramasvearaly  weighted-residual methods applied to film flow modeling. It

who force on the film thicknedsrather than on the flow rate has been shown by a detailed algebraic argufmtat in-

g as done here. The amplitude was setAte 0.15 for the  creasing the level of truncation of any weighted-residual

simulation shown in Fig. §left column which reproduces method based on polynomial test functions always lead to

results displayed in Fig. 14 of Ref. 14 rather closely. Differ-the same “optimal” system of equation&) and (8) at first

ent amplitudes have been tried and, though the transient evorder ine and (3), (11)—(13) at second order ir. Conver-

lution of the first front is different, the final regime is not gence towards the first-order optimal model was further stud-

modified except for the length of the exponential growthied in Ref. 24, in which it was shown that the standard Galer-

region which is longer for smaller forcing amplitudes. We kin method (weight functions identical to basis functions

may, therefore, conclude that the direct formation of solitarywas the most efficient one, in producif® already at level

waves at low frequency is robust and does not depend on th& The study of convergence towards the full second-order

amplitude of the forcing, or the way it is applied. model, in addition to being very cumbersome, would prob-
At larger frequency, in the multipeaked wave regime,ably not be much illuminating since that model involves



Phys. Fluids, Vol. 14, No. 1, January 2002 Modeling of flows down inclined planes 179

e v
2.5 ' 2.5p——— AN VW WY
= =
=LA 2ECCCAAY
1SR 15—
L g
0.5 0.5
0 0
0 2IO 4IO 6IO Sb( )160 150 1:10 160 0 2|O 4IO 6I0 " 8I0( )160 150 14110 160
space cm space (cm
5.5t 5.5¢
S = Qoo
i == L""ﬂ.‘f—v" " i O
e QAR e
_ “L— = — ; Qe b
45 === 45 IR 4 =
C ‘, ‘ ‘ 7 @ ’QMQWW
R = N Y
A A - (AR 0 Y,
SEEC g
s =G s
3 ==t 3
2020 40 60 8b( )160 120 10 160 >0 20 40 60 8b( )160 120 140 160
space (cin space (Cm
9.5r
of NN
(e  (w (e P AR RRAAAS
CECCCt R
A AR TAAAARAA)
8.5E o W Y
o “’t‘%’&—’@t‘%’t‘%’ DA A
A A BT,
2 A A e, K
265 e AA—AAAA 2 (AR AAAAR B AR A SRR
: .‘-1“‘ Y
A A AR RS
6 s " AR AAAS
A A A — e
A ddtdddddiiditdddls
55 e 7 ‘q’w;}ﬁ?ﬁ%%%'
AAAA—— A
50 2I0 4b Gb 8‘0( )160 léO 1;10 160 6'50 2.0 4I0 60 o 8l()( )160 léO 1:10 160
space cm space (cm
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TABLE II. Method of subdomains.

C. Ruyer-Quil and P. Manneville

J max K1 K2 K3 Ka Ks Kg K7

0 S-12  2rL-09s8 25=0933  9i-225 ¥-2  3t=075 £5=0.778
1 g=12  ¥f=0988  2{=0933 3;=1125 1 fi=1125 52111
2 18=101 B¥L~1008 2Bi~102 23~0947 333~0.982 1 882 1.006
3 1 12L~10008  335~1.004 1 1 1 1

4 1 28 ~1.00006 To515~1.0003 1 1 1 1

5 1 1 1 1 1 1 1

three equations with many coefficients. Here we rather conThe continuity of the tangential stress at the free surface,

sider the slightly different, but still instructive, problem of
convergence towards the second-order simplified mddg!

expressed by10), is a nontrivial condition which, in general,
cannot be fulfilled at second order as long as the set of test

In order to obtain this model, a supplementary adiabatidunctions is reduced to its first elemefy sincea;fo|l:O
elimination step has to be performed, which comes to théy contrast, constraintl0) can be implemented as soon as

neglect of inertia terms in the momentum equatlon every

imac=1. At such an approximation level, we hayg,,+1

time they are second-order in the long-wavelength expandnknown amplitudes;, for which we need ,.+1 equa-

sion. So, to be rigorous, convergence of the weighted

tions, hencq . independent conditions of the for(@3) in

residual approach to the film flow problem is studied in thisaddition to that issued froril0). Neglecting inertia at sec-
restricted context, which is however easy to implement abnd order comes to setting derivatives of amplitudes 1

each approximation levels.
An appropriate set of basis functions is

fo=y-3y2, f;=y ", 1<) <jmac (21)

so thatf, corresponds to the flat film velocity profile and
other functions verifies the no-slip boundary conditi@)
from the start[f;(0)=0]. When truncated abovg,,=

this set forms a complete basis for polynomials of degree u
to jmaxt 1 included. Expanding the streamwise velocity we
write

Jmax

u=j§o aj(x,t)fj(y), (22

where amplituden, is of order unity, amplitudes;, 1<j

<jmax, Deing smaller, and their first-order time—space de-

rivatives even smaller. The cross-stream velogcitys then
evaluated by integrating the continuity equati@h, i.e., v
— J¥a.u dy. Weight functionsw;. (y) being specified, re-

siduals are obtained by integrating the streamwise momen-

tum equation over the depth

h
fo Wi (y/h)(du+udu+vdyu—dyu—24yu) dy

1 .
=(h+hax[axu|h]—Bhaxh+rhaxxxh)f wj(y) dy.
0

<] <] max Strictly to zero in these equations, which leaves us
with a system that can be solved for them, and from which
an equation fo is finally derived.

As discussed in Sec. I, whatever the weighting strate-
gies and the approximation levels, the equation expressing
momentum conservation in all two-equation models tior
andqg obtained in this way always has the same structure as
I§14) and can be specified by the coefficients in factor of each
term. Comparison between approximation levels can thus be
made on the basis of coefficients defined by writing it in
the form

5 a) 17 ¢
atngKl h—Bhﬂxh‘l‘FhaXXXh—Sﬁ —7KZHF7XC]
2
q q , 9
+7K3ﬁ(9xh+4K4ﬁ((9xh) 2h K519Xq0') h
q 9
_GKGHaXXh+ §K7(9qu, (24)

and studying the convergence of the coefficieqtso intro-
duced towards 1 as the truncation level increases. For ex-
ample, the ability of a given model to capture the instability
mechanism can be appreciated framthat turns out to mea-

(23 sure the ratio of the linear threshold to the exact theoretical

TABLE IIl. Collocation method.

J max K1 K2 K3 Ky Ks Ke K7

0  3%~107 Bi~o0978 FL=0875 Fi=267 F5~207 Hi~0778 Pi~0741

1 %2~107 f-o0978 3i=0875 =167 Pi=119 Pi-111 Hi~104

486 26697 4737 3121 3002 2662

2 512=0.944 120499871—;=1 0009 ?25?7_1'005 T 1=1.28 F15=1.09 1 15=0.969

3 1 T02417=1.004  {5549=1.02 1 1 1 1

4 1 1 1 1 1 1
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TABLE IV. Integral-collocation method.

J max K1 K2 K3 Ky Ks Kg K7

0 8=12  ¥15=0988 £5=0933 0}=225  G5=2  3§=075 355=0.778

1 S-12 %2L-0988 £l~0933 32i-1.125 Zi=1125 s5i=111
(a) Derivatives evaluated at=0

2 £18=087 &17=094 £e4=068 114=164 $95=121 1 138=0.929

3 1 F5=108  F§5=146 1 1 1 1

4 1 VL0978 2i~0875 1 1 1 1

5 1 1 1 1 1 1 1
(b) Derivatives evaluated at=h

2 1 2%=0824 1%=0.778 0 22~0556 5:i=0833 %5=0.926

17 I3 29 6 69
3&4 1 315=103  3f=117 1 1 1
1 1 1 1 1 1 1

value, k;=0./q™ . Other coefficients would affect nonlin- C-. Integral-collocation method
ear predictions such as the amplitude and speed of nonlinear |p this method, a simple averaging of EE) is supple-

solitary waves beyond threshold. mented by additional conditions generally placed at the
] boundaries. As an example, we test here the conditions cho-
A. Method of subdomains sen in Ref. 16, namely

This is a generalization of the integral method leading to dyk(du+udu+vdyu—dyu—2d,,u)=0, at y=0.
Shkadov’s model: Integrating the momentum equation over (25
the depth using jusfiy and a uniform weight, and neglecting shkadov's integral method is recovered at level 0. Boundary
terms formally of ordere® (coefficientsiys67=0) indeed  condition (10) is added at level 1 while at higher levels the
yields (2). For jma,=1, the condition emanating frofd0) is et of residuals is completed 1685) for k=1,...j nm—1. Re-
added to the same integrated equation. FQf>1, the  gyits are given in Table I§&). Those corresponding to the
y-interval[0,1] is cut intoj ma €qual adjacent subintervals by same conditions but evaluated at the interfeeh are given
imax—1 (e.g., equally distributgdoreak points. The velocity as (b) in the same table. In spite of our expectations, the
profile u is expanded onto the firgt,,+1 basis functions in  integral-collocation method initially developed in Ref. 16
(21) and further inserted int@9) which is integrated over has thus pretty poor convergence properties, especially when
each of these subintervals. The resulting linear system for thghe additional collocation conditions are situated at the plane.
a; is then solved as sketched above. Corresponding coeffiFhe situation is slightly better when they are set at the inter-
cients x; appearing in(24) are given in Table If° Linear  face, which might be related to the fact that the instability
properties are recovered fop,=3 (x;=1). Convergence mechanism involves processes that take place at the interface
is nearly achieved already fQg,,,=3 but =5 is neces- (energy transfer in the bulk flow through the work of the

sary for complete nonlinear agreement. shear at the interfaé®.
B. Collocation method D. Method of moments
The weight functionsv; are nowdé-functions peaked at The weights used at the projection step are monomials of

specific points in the intervdl0,1]. The cancellation of re- increasing degrewkzw. The equation is fulfilled “in prob-
siduals correspond to the exact fulfilment of the equation ahbility” by canceling its successive moments. Level 0, with
those locations. Whefma=0, the residual corresponds to wo=1 again corresponds to simple averaging, thus leading
the evaluation of9) aty=1/2. Otherwise, boundary condi- to Shkadov's model, coefficients; ,3, plus some second
tion (10) is completed by computing the residual jatax  order terms involving coefficients, s ¢ 7. As far ask; , s are
equally spaced collocation points, which results in E4)  concerned, at level 1 usinfg andf, as test functions yields
with coefficients given in Table Ill. Full convergence is ob- the same result. The convergence of the method is rather fast,
served at leve] =4 as seen from results collected in Table V.

TABLE V. Method of moments.

J max Ky K2 K3 Ky Ks Ke K7

0 2=12  %f=0988 2{=0933 9i-225 %=2 23=0.75  45~0.778
1 S-12  $L~0988 2L-0933 Ii-1125 1 Zi=1125 s52=111
2 Ree101 BL-1001 3B~1007 53=0947 22-0.982 1 882_1.006
3 1 1 1 1 1 1 1
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E. Galerkin method As early noticed by Changyiscous dispersion is ex-
. . I ignifi I itative level. -
The test nctons hemsees arenow taken a5 weigrSE°0 © DY 3 S0UEAr 0 e e e, Con
functions, w;=f;. As shown in Ref. 7, the simplified y 9 9 P

. . : |{1$ufficient to takes this into account, which calls for our
second-order model is obtained already at level 0. This fast " . .
timal second-order modélThe latter involves two slowly

convergence property is not a miracle but can be understoodP ™" ! ; . :
from the consideration of5). Indeed, its left-hand side varying fields in addition tdh andgq, hence four equations

(.h.s) of order unity and its right-hand sidg.h.s) is for- 3), (11?_(13)' It appgrently contains all Wha’F is needed t(.) fit
mally small. Therefore, the variables(x,t), i=1, them- exact linear properties at least up =200 in the experi-
selves small, can appear in the residu@jsonly through the mental conditions of Litet al,'****!as seen from the com-
integralsf[}wj(?)ayyu dy on the Lh.s. of(5). For j=0, an parison with the wave packet analysis of Breveball?

integration by part making use ¢£0) aty=h directly leads _Smce |t§ nonlinear propertles were alsq found satisfactitry,
to is certainly the best possible choice. It is however somewhat

difficult to handle?* which gives all its interest to the sim-
h plification made by adiabatically eliminating the two addi-
fo fo(y/h)éyyu dy:_ﬁ' (26)  tional fields necessary to have full consistence at second
order?’ The remaining moddi(3), (14)], which includes vis-
which involvesq and not thea; separately. The formulation cous dispersion but neglects second-order inertia effects,
is thus already closed at this stage, which brings the resulttyrns out to give reliable results up to more tHas 100 in
the same experimental conditions, and thus can be a good
F. Remarks choice for a semiquantitative exploration of a large range of

When looking at the tables, one observes that the variacontrol parametersg=cotp, film thicknesshy and Kapitza
tions of the coefficients are not monotonic as the approximapumberI” or Reynolds numbeR and Weber numbew).
tion level is increased, and that the limit can be reachedNow, the disposal of effective models helps us tracing back
“from above” as well as “from below,” which is not surpris- the deficiencies of some previous atteripts*’to a lack of
ing since the full problem has no underlying variational flexibility of the velocity profile, to an inappropriate account
structuret* More interestingly, the sub-domain method andof viscous dispersion effects or to the introduction of higher
the collocation method are seen to display similarly sloworder terms that turn out to be inessential.
convergence properties, a fact to be put in relation with their ~ Finally, it happens that the simplified model can be ob-
“finite-difference” type of approximation. By contrast, the tained by applying a genuine Galerkin method to the mo-
method of moments and the Galerkin method converge fastanentum equatior{5) with a single test functiorf,. Up to
owing to their “spectral” flavor. The latter, involving basis now we have considered streamwise modulations Gthlg
functions well adapted to the problem, turns out to be theso-called two-dimensional caselhe extension of the sim-
most efficient. plified model to three dimensions, thus involving also span-

wise perturbations, is straightforwafd* It should share the

same interesting properties and will be the subject of future

In this paper, we first reviewed our approach to the mod- _ When compared to other flows, thin films display inter-
eling of fluid films flowing along inclined planes using esting specificities. First, slow space—time interface modula-

weighted-residual methods combined to a long-wavelengtfonS develop in a super-critical context and are well de-
expansior; ¢ Let us first list some criteria that, in our opin- scribed by simplified formulations resting on Iow orcjers of a
ion, should be met by a useful model, being understood thatyStematic long-wavelength expansion of the primitive equa-
it must be much easier to study than the primitive free-tions. Next, the basic flow profile is simply parabolic and
surface Navier—Stokes equations. These @yein accurate polynomial functions form a closed set with respect to dif-
prediction of the linear instability properties, to begin with ferentiation and nonlinear couplings. These circumstances
the thresholdcoefficientx; =1 in the table} (ii) the exis- make it easier to build models by means of weighted-residual
tence of solutions sufficiently far from threshold, ideally for methods with a well controlled level of accuracy. The ambi-
all the range of Reyn0|ds numbers for which the approacﬁion of mOdeling is often to obtain qualitative and not quan-
resting on the long-wavelength expansion is reasonable, arfiative results, especially when the structure of the model is
(iii) a quantitative restitution of the properties of the periodicforced by phenomenological considerations while some free-
and solitary wavegspeed, amplitude, bifurcation diagram dom is left for the values of its parameters. Our study sug-
In this respect, Shkadov’s model improves over one-equatiogests that optimal parameter sets yielding truly quantitative
models such as the Benney equation only with respect to thegsults can be determined without much additional effort by
occurrence of finite-time singularities beyond threshdidit ~ an appropriate choice of weighted-residual methods taking
is not accurate enough as far as linear and nonlinear quantiito account the specificities of the problem at hand. We
tative properties are concerned. Our first-order model clearlpelieve that it might be interesting to follow a similar ap-
improves over Shkadov's modeby correcting its behavior proach in less well suited cases, especially in subcritical
close to threshold but rapidly reveals insufficient as the Reyeases such as plane Poiseuille or Couette flow, as an alterna-
nolds number is increased. tive to direct numerical simulations.
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