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Further accuracy and convergence results on the modeling of flows down
inclined planes by weighted-residual approximations

Christian Ruyer-Quila) and Paul Manneville
Laboratoire d’Hydrodynamique–UMR CNRS 7646, E´cole polytechnique, 91128 Palaiseau, France

~Received 5 October 2000; accepted 2 October 2001!

We study the reliability of two-dimensional models of film flows down inclined planes obtained by
us @Ruyer-Quil and Manneville, Eur. Phys. J. B15, 357 ~2000!# using weighted-residual methods
combined with a standard long-wavelength expansion. Such models typically involve the local
thicknessh of the film, the local flow rateq, and possibly other local quantities averaged over the
thickness, thus eliminating the cross-stream degrees of freedom. At the linear stage, the predicted
properties of the wave packets are in excellent agreement with exact results obtained by Brevdo
et al. @J. Fluid Mech.396, 37 ~1999!#. The nonlinear development of waves is also satisfactorily
recovered as evidenced by comparisons with laboratory experiments by Liuet al. @Phys. Fluids7,
55 ~1995!# and with numerical simulations by Ramaswamyet al. @J. Fluid Mech.325, 163~1996!#.
Within the modeling strategy based on a polynomial expansion of the velocity field, optimal models
have been shown to exist at a given order in the long-wavelength expansion. Convergence towards
the optimum is studied as the order of the weighted-residual approximation is increased. Our models
accurately and economically predict linear and nonlinear properties of film flows up to relatively
high Reynolds numbers, thus offering valuable theoretical and applied study perspectives. ©2002
American Institute of Physics.@DOI: 10.1063/1.1426103#
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I. INTRODUCTION

The long wavelength interfacial instability modes of vi
cous film flows down inclined planes have attracted mu
interest since the pioneering work of Kapitza.1 In practice, at
low to moderate Reynolds numbers the space–time evolu
of films are slow and internal fluctuations remain mos
enslaved to the local film thicknessh so that the initially
three-dimensional free-boundary problem can be dram
cally simplified by the elimination of the cross-stream (y)
dependence of the velocity field leading to a simpler tw
dimensional, streamwise (x) and spanwise (z), problem,2

and even to a one-dimensional streamwise problem w
taking into account Squire’s theorem,3 as long as secondar
instabilities do not introduce spanwise modulations, wh
shall be assumed in all what follows. These features call
the derivation of models with reduced dimensionality able
deal with the dynamics of the film at a quantitative level.

The cleanest modeling strategy is clearly by defining
film parametere;u]xhu/h and performing an expansion i
terms of e, then truncating it at some level. All the flow
variables are then asymptotically enslaved to the evolutio
the film thicknessh(x,t), which yields a one-equation de
scription of the film’s dynamics in the form] th
5G(hn,]xmh,), the prototype of which is the Benne
equation4

] th1h2]xh1 1
3]x@~

2
5h

62Bh3!]xh1Gh3]xxxh#50. ~1!

Here, space–time scales are defined usingn ~kinematic vis-

a!Address: Laboratoire FAST–UMR CNRS 7608, Campus universita
91405 Orsay, France.
1701070-6631/2002/14(1)/170/14/$19.00
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cosity! and g sinb ~streamwise gravity acceleration!, where
b is the angle made by the plane with the horizontalB
5cotb). The Kapitza numberG5g/@rn4/3(g sinb)1/3# com-
pares surface tensiong to viscosity and gravity. In this for-
mulation, the control parameter is the heighthN of the film in
its basic state, which corresponds to a flow with a tim
independent spatially uniform thickness and a semiparab
velocity profile called the Nusselt solution. A perhaps mo
traditional presentation makes use of a Reynolds num
based on the film thickness and the flow speed at the in
face, and a Weber number to measure the strength of sur
tension effects. These two numbers are defined in term
hN and G as R5 1

2hN
3 and W5G/hN

2 . The resulting Benney
equation has of course strictly the same structure as~1!. The
advantage of using the Kapitza number, defined only
terms of the fluid properties and the geometry of the exp
ment, is somewhat compensated by the fact that, from
physical point of view, the effects of surface tension have
be compared to inertia effects, which the Weber number d
appropriately.

At any rate, Eq.~1! cannot be a good model of unstab
film with space–time modulated thickness since, unfor
nately not far beyond threshold, its solutions experien
finite-time blow up5 despite the regularizing effects of su
face tension that enter the problemvia the term
1
3G]x(h

3]xxxh), active at lowest order owing to the implic
assumptionGe25O(1). Truncating the e expansion at
higher orders does not improve the situation but this beh
ior can be cured by a Pade´ resummation technique.6 The
procedure is, however, not fully satisfactory since it leads
underestimating the characteristics~amplitude and speed! of
the solitary wave solutions~Ref. 7, see Fig. 2!. Therefore, it
,

© 2002 American Institute of Physics
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 This a
does not seem possible to describe the dynamics of the
sufficiently far from threshold in terms of a single evolutio
equation forh and one is led to consider systems of seve
equations for the film thicknessh and other average quant
ties, the most obvious one being the local flow rateq(x,t)
5*0

hu(y,x,t)dy.
By assuming a streamwise parabolic velocity profileu

} ȳ2 1
2ȳ

2 where ȳ5y/h, h being a function of time and
space, and integrating the streamwise momentum equa
along the y direction ~Polhausen–von-Ka´rmán averaging
method also called theintegral method! Shkadov8 obtained
for the local flow rateq the following equation:

] tq5h2Bh]xh1Gh]xxxh23
q

h2
2

12

5

q

h
]xq

1
6

5

q2

h2
]xh , ~2!

which, when completed by the kinematic condition at t
interface written in conservative form as

] th1]xq50, ~3!

whereq is the local flow rate introduced above, forms t
first closed two-equation model of film flow, often called th
integral boundary layer~IBL ! model.

The main limitation of this model can be noticed just
performing a gradient expansion of the flow rateq5q(0)

1q(1)•••, then truncating it at first order and solving it forh.
This yields a Benney-like equation but with a coefficient 1
for theh6-term instead of the exact factor 2/5 in~1!. The first
visible consequence of this difference is an erroneous e
mation of the linear instability thresholdqc

(IBL) 5B instead of
qc

(th)5 5
6B, as obtained from both~1! or a direct Orr–

Sommerfeld stability analysis. In the case of a vertical pla
b5p/2 henceB50, the model trivially predicts the correc
result that the flow is unstable at all Reynolds numbers
the limitation immediately shows up at the nonlinear stage
has been attempted to cure this deficiency by adding hig
order terms9 or surface-tension corrections10 but the incorrect
IBL threshold prediction was reobtained. This failure can
traced back to the lack of flexibility of the assumed veloc
profile, either the simple parabolic profile or some oth
fixed profile function ofy/h ~called similar by reference to
the theory of boundary layers!, while corrections to it are
known to exist, already at first order, from the lon
wavelength expansion.

In Sec. II, we first recall the methodology and main r
sults of our systematic modeling attempt7 using a weighted-
residual method11 based on a polynomial expansion of th
velocity profile combined to the classical long-waveleng
expansion. Optimal modeling consistent at first~second! or-
der in the long-wavelength expansion was further shown
involve one~three! field~s! in addition to the thicknessh. A
simplified second-order model obtained by adiabatic eli
nation of two of the three fields of the full optimal secon
order model was suggested to be a valuable intermed
with much less complexity and still sufficient accuracy.
Sec. III, we prove that the flexibility introduced in the velo
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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ity profile makes our modeling reliable in a wide range
Reynolds numbers above threshold by comparing quan
tively the results of a conventional linear stability analys
here amounting to a simple study of an explicit, polynomi
dispersion relation, with the output of the exact analysis p
formed by Brevdoet al.12 In this respect, the comparison o
results for the full and simplified second-order models tu
out to be specially instructive. Section IV is devoted to
illustration of the nonlinear dynamics of the simplifie
second-order model mimicking an unstable film with t
same characteristics as those used by Liu and Gollub in t
experiments13 or by Ramaswamyet al. in their simulations,14

and showing that the quantitative agreement obtained at
linear level is also achieved at the nonlinear level. The c
vergence of the weighted-residual techniques toward opti
models as the number of basis functions is increased is a
subject of interest. We examine this problem in Sec.
where, for the sake of simplicity, we restrict ourselves to
case of the simplified second-order for which we need
study only one equation for one single supplementary fie
Taking advantage of this situation we compare the efficie
of several weighting strategies, showing that the best te
nique seems to be the classical Galerkin approach in wh
weight functions are taken in the same set as the basis f
tions. Some concluding remarks are presented in Sec. V

II. THE POLYNOMIAL EXPANSION APPROACH

The Polhausen–von-Ka´rmán averaging method can b
viewed as a special case of more general methods
weighted residuals.11 Let the problem at hand be formall
written asE(U)50 for some set of field variablesU. The
solution to it is searched for in the form of a series expans
U5( j 50

j maxaj f j , where thef j , j 50,...,j max, are test func-
tions and theaj their amplitudes. Weight functionswj , j
50,...,j max, are next chosen as ingredients of a project
rule defining the residuals:Rj 85^wj 8uE((aj f j )&, j 8
50,...,j max. Canceling the residualsRj 8 thus yields a system
to be solved for the amplitudesaj . The search for an accu
rate solution is achieved by increasing the truncation or
j max, whereas modeling relies mostly on low-order appro
mations. Many different methods follow this general sche
but differ by the specification of the projection rule.

In the present problem, the slow space–time dynam
of the film suggests a natural separation of variables with
(x,t) dependence included in the amplitudesaj and the
cross-stream dependence accounted for by test function
terms of the reduced variableȳ5y/h. The use ofȳ, instead
of simply y, accounts from the start for the fact that the flo
profile is locally enslaved to the thicknessh, trivially for the
flat film Nusselt solution, but also less trivially through i
space–time derivatives when the interface height is
longer uniform, as becomes obvious from the lon
wavelength expansion.4,15,16 Indeed, within this expansion
the streamwise velocity field can be written in the formu
5(enGn, j (h

k,]xlh)Pn, j ( ȳ), where Gn, j are functions ofh
and its gradients andPn, j are polynomials.

We begin the review of our previous work7,16 by writing
down the equations corresponding to the two-dimensio
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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 This a
(x,y) film flow problem at first order in the gradient expa
sion, which parallels the boundary layer theory leading to
Prandtl equation. From the continuity condition

]xu1]yv50, ~4!

where ]xu is of order e, it appears that the cross-strea
velocity v is also of ordere. Lowest order terms in the
cross-stream momentum equation~i.e., for v) are then of
order e and inertial terms] tv1u]xv1v]yv, of order e2,
can be dropped to get the pressure at ordere by integrating
the remains of this equation overy ~see Ref. 16 for details!.
The streamwise pressure gradient is then obtained as]xp
5B]xh2G]xxxh which, upon insertion in the streamwis
momentum equation~i.e., for u), leads to

]yyu115] tu1u]xu1v]yu1B]xh2G]xxxh, ~5!

where it is immediately checked that every term on the ri
hand side is of ordere under the assumptionGe25O(1). As
to the boundary conditions, a classical no-slip condit
holds at the solid planey50, hence

uu050, ~6a!

vu050, ~6b!

whereas at the interfacey5h one gets

vuh5] th1uuh]xh, ~7a!

]yuuh50, ~7b!

where~7a! accounts for the kinematics of the interface a
~7b! for the continuity of the tangential stress at the fr
surface. This set of equations is completed by~4! which
helps us determinev from u when needed, and by~3! where
q is the local flow rate introduced earlier and which replac
~7a! using ~4! once integrated overy.

Our specific modeling strategy starts with an expans
of the velocity fieldu5(aj (x,t) f j ( ȳ) in terms of polyno-
mial test functions. This choice was made upon four cons
erations:~i! The flat film solution has a parabolic velocit
profile; ~ii ! polynomials form a closed set with respect
products and differentiations;~iii ! corrections to the para
bolic profile appearing in the Benney expansion are precis
polynomials; ~iv! this choice allows simple algebraic ma
nipulations. Once the test functionsf j and the weight func-
tions wj ( ȳ) have been defined, the application of t
weighted-residual technique is straightforward. The sys
of equations to solve for the amplitudesaj of the streamwise
velocity fieldu are provided by the boundary conditions~6!–
~7! and the projection of the momentum equation~5! defined
by the weighting rules. The effectiveness of several s
rules is considered later in Sec. V.

For convenience, the first polynomialf 0 is chosen to be
the semi-parabolic profile corresponding to the flat film

that f 0[ ȳ- 1
2ȳ

2. Now, the technically important fact is tha
when the film is flat, one hasaj[0, for all j >1, whereas
when it is ~slowly! modulated, these coefficients are at le
of the order of the space and time gradients ofh. In the same
time, a0 is a zeroth order quantity that enters the expans
together with its gradients. Therefore, truncating the prob
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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to solve at ordere, the derivatives of the fieldsaj , j >1, are
quantities of higher order that can be dropped in the eva
tion of the residuals. The cancellation ofj max11 residuals for
j max11 test functions then leads to a system of equati
where theaj , j >1, enter linearly and undifferentiated, whil
a0 appear either linearly or quadratically@from u]xu
1v]yu in Eq. ~5!# together with its derivatives with respec
to x or t. The system governing all the amplitudesaj except
a0 , can then be written as

(
j 851

j max

a j j 8aj 85b j~h,a0 ,] th,]xh,] ta0 ,]xa0!,

j 51,...,j max,

where the matrix@a j j 8# is invertible. Solving for theaj , j
>1, and inserting their expression in the residual fora0

yields a nonlinear equation linkinga0 to its gradients and
those ofh ~see Ref. 7 for details!.

However,a0 has no physical meaning and it is prefe
able to turn to the local flow rateq(x,t) that is directly
involved in the mass conservation equation~3!. From its
definitionq5( i 50

j maxh ai*0
1fi(ȳ) dȳ, one can exchangea0 for

q using~3! and taking into account the expressions of theaj ,
j >1. We obtain

] tq5
5

6
~h2Bh]xh1Gh]xxxh!2

5

2

q

h2
2

17

7

q

h
]xq

1
9

7

q2

h2
]xh , ~8!

Eq. ~3! closing the system.
The complete derivation7 shows that the corrections t

the parabolic profile are strictly slaved toh, q, and their
gradients and, by simple power counts, that polynomials
to degree 6 have to be included in the expansion in orde
obtain a consistent account of the film’s dynamics at ordee,
starting with a correct determination of the linear instabil
threshold.17 Model @~3!, ~8!# has been termedoptimalat first
order in the sense that the polynomial velocity field reco
structed from the coefficientsaj fulfills ~5! exactly and not
only in average, so that the Benney equation is recove
through the appropriate expansion. Accordingly, any ot
model based on weighted residuals and polynomial test fu
tions will thus converge to it when the size of the basis
increased, as shown in Sec. V.

In order to be consistent at ordere2, Eq. ~5! and bound-
ary condition~7b! have to be completed to read

]yyu115] tu1u]xu1v]yu22]xxu2]x@]xuuh#

1B]xh2G]xxxh , ~9!

]yuuh54]xh]xuuh2]xvuh . ~10!

All supplementary terms originate from viscous dissipati
effects whereas Eqs.~3!, ~4!, ~6!, and~7a! remain unchanged
The derivation of the model becomes much more cumb
some because corrections to the parabolic profile are
longer enslaved to the dynamics ofa0 and become free
variables.7 Consistency requires the introduction of polyn
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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mials up to degree 14 because the complete expression o
velocity field at ordere is a polynomial of degree 6. Out o
the corresponding 15 amplitudes, only three are indepen
variables. One isa0 , associated to the semiparabolic profi
as previously, the two others are specific polynomial corr
tions to the basic velocity profile of degree 4 and 6, resp
tively. They were slaved toa0 at ordere but their space–
time derivatives contribute at ordere2. The result is a system
of three equations for three unknowns,q and two supplemen
tary variables, calleds1 ands2 , measuring the relevant co
rections to the flow rate

] tq5
27

28
h2

81

28

q

h2
233

s1

h2
2

3069

28

s2

h2
2

12

5

qs1]xh

h2

2
126

65

qs2]xh

h2
1

12

5

s1]xq

h
1

171

65

s2]xq

h
1

12

5

q]xs1

h

1
1017

455

q]xs2

h
1

6

5

q2]xh

h2
2

12

5

q]xq

h
1

5025

896

q~]xh!2

h2

2
5055

896

]xq]xh

h
2

10851

1792

q]xxh

h
1

2027

448
]xxq

2
27

28
Bh ]xh1

27

28
Gh]xxxh , ~11!

] ts15
1

10
h2

3

10

q

h2
2

3

35

q2]xh

h2
2

126

5

s1

h2
2

126

5

s2

h2

1
1

35

q]xq

h
1

108

55

qs1]xh

h2
2

5022

5005

qs2]xh

h2

2
103

55

s1]xq

h
1

9657

5005

s2]xq

h
2

39

55

q]xs1

h

1
10557

10010

q]xs2

h
1

93

40

q~]xh!2

h2
2

69

40

]xh]xq

h

1
21

80

q]xxh

h
2

9

40
]xxq2

1

10
Bh]xh

1
1

10
Gh]xxxh , ~12!

] ts25
13

420
h2

13

140

q

h2
2

39

5

s1

h2
2

11817

140

s2

h2
2

4

11

qs1]xh

h2

1
18

11

qs2]xh

h2
2

2

33

s1]xq

h
2

19

11

s2]xq

h
1

6

55

q]xs1

h

2
288

385

q]xs2

h
2

3211

4480

q~]xh!2

h2
1

2613

4480

]xh]xq

h

2
2847

8960

q]xxh

h
1

559

2240
]xxq2

13

420
Bh]xh

1
13

420
Gh]xxxh . ~13!
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As before, this set of equations is closed by~3!.
The complete expression of the optimal second-or

model @~3!, ~11!–~13!# is hardly tractable and a simplifie
version would be welcome. As a matter of fact, stand
linear stability analysis shows that the relaxation times ofs1

ands2 are much shorter than those ofq so that their adiabatic
elimination seems legitimate. Admitting that, apart from co
rections of order higher thane2, their values are, at ever
instant, enforced by the instantaneous local value of fieldh
andq we obtain the approximate second-order model

] tq5
5

6
h2

5

2

q

h2
2

17

7

q

h
]xq1S 9

7

q2

h2
2

5

6
BhD ]xh

14
q

h2
~]xh!22

9

2h
]xq]xh26

q

h
]xxh1

9

2
]xxq

1
5

6
Gh]xxxh. ~14!

Comparing this equation to~8!, one can trace back the origi
of the new terms, all on the second line, to the effects
viscous dissipation at second order, i.e., from the ter
22]xxu2](]xuuh) in the momentum equation~9! and
4]xh ]xuuh2]xvuh in the boundary condition~10!. As a mat-
ter of fact, their presence in any second-order two-equa
model involvingh andq and their gradients is easily unde
stood from the fact that]xxq, ]xq(]xh/h), q(]xh/h)2 and
q(]xxh/h) are the only homogeneous terms, linear inq and
formally of second order in]x . This will be illustrated later
in Sec. V where, according to the weighting strategy, th
will appear in the models derived there with different coe
ficients which will be shown to converge to their values
~14! as the approximation level is increased. A more accur
two-equation model should also contain second-order te
of inertial origin, thus formally quadratic inq, but it will be
seen in the two next sections that the drastic simplificat
made to obtain~14! is already effective. Model@~3!, ~14!#
will accordingly be called the ‘‘simplified second orde
model’’ in all what follows.

Any evaluation of the range of validity of models bas
on the long-wavelength expansion is difficult owing
supplementary assumptions which link the amplitude of
gradients to the intensity of the regularizing effects of s
face tension through some least degeneracy principle,Ge2

5O(1) for first-order models andGe5O(1) at second or-
der. WhenG is large, allowed gradients are small and a tru
cation of thee expansion at a low order is expected to gi
reasonable results for waves with lengths large when c
pared to the basic~Nusselt! film thickness, but a direct chec
of the accuracy would be welcome. To this aim, linear s
bility predictions from our three models, optimal first-orde
optimal second-order, approximate second-order, are qu
tatively confronted to the exact results of Brevdoet al.12 in
the next section. The development of forced waves tra
obtained by numerical simulation of our models is then co
pared to observations by Liuet al.18 and direct numerical
simulations by Ramaswamyet al.14
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III. LINEAR STABILITY RESULTS

Following common practice, we first discuss the fil
flow stability in terms of the dispersion relation linking, i
the fully complex case, the wave numberk5kr1 ik i and the
pulsation v5v r1 iv i of infinitesimal perturbations to the
Nusselt flat film solution,h[hN , i.e., varying as exp@i(kx
2vt)#. Temporally growing~decaying! modes thus corre
spond tov i.0 (v i,0), downstream~upstream! growing
modes toki,0 (ki.0), and neutral waves toki5v i50.
Linearization of model@~3!, ~8!# aroundh5hN andq5 1

3hN
3

yields

i
5

2hN
2

v1v21S 2 i
5

2
2

17hN
2

21
v D k

1
5

2
hNS 2

B

3
1

2

35
hN

3 D k22
5

6
GhNk450. ~15!

In view of the comparisons to be made, it is more conveni
to turn to a scaling based on the film thicknesshN and the
flow velocity at the interfaceuN , hence the transformatio
k°k/hN andv°hNv/2 so that~15! now reads

i 5
2v1Rv21~25i 2 34

21Rv!k1~2 5
3B1 4

7R!k22 5
3Wk450,

~16!

in which definitionsR5 1
2hN

3 andW5G/hN
2 have been intro-

duced. Canceling the imaginary part of the dispersion re
tion for realk yields the marginal condition~subscript ‘‘m’’!
vm52km, hence a phase velocityc52. The real part in turn
yields

km5A 1

W S 4

5
R2BD , ~17!

which is nothing but what can be predicted from the Benn
equation, exact forR'Rc5

5
4B only. In the case of the sim

plified second-order model@~3!, ~14!#, using the same scal
ings, the dispersion relation reads

i 5
2v1Rv21~25i 2 34

21Rv!k1~2 5
3B1 4

7R1 i 9
2v!k2

24ik32 5
3Wk450, ~18!

which differs from ~16! by two terms accounting for the
contribution of the viscous dispersive effects. Finally, line
ization of the full second-order model@~3!, ~11!–~13!# leads
to

A1Bk1Ck21Dk31Ek41Fk51Gk650, ~19!

in which

A5 i
5

2
v1

15

13
Rv22

25

429
iR2v32

2

3861
R3v4,

B525 i 2
290

143
Rv1

490

3861
iR2v21

4

3003
R3v3,
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3
B1

332

429
R1vS 9

2
i 1

4

39
iBR2

29 360

351 351
iR2D

1v2S 359

1456
R1

1

1001
BR22

136

117 117
R3D

2
2027

864 864
iR2v3 ,

D524 i 2
608

9009
iBR1

608

39039
iR2

1vS 2
12 205

36 036
R2

32

27 027
BR21

1472

3 864 861
R3D

1
3439

786 240
iR2v2 ,

E5
10 331

96 096
R1

592

1 756 755
BR22

128

3 864 861
R3

2
5

3
W1vS 2

4591

1 756 755
iR21

4

39
iWRD

1
1

1001
WR2v2 ,

F5
197

390 390
iR22

608

9009
iWR2

32

27 027
WR2v ,

G5
592

1 756 755
WR2 .

A comparison of~18! and ~19! shows that all the terms in
~18! are also in~19!. The terms independent ofR are merely
identical. Those linear inR are recovered with slightly dif-
ferent coefficients and all other terms in~19! haveR at some
power >1 in factor, which accounts for the fact that th
second-order model includes inertial corrections not pres
in the simplified models.

Controlled experiments devoted to the detection of m
ginal conditions are generally performed by forcing the fi
at the inlet, either its thickness or its flow rate, at some f
quency and by detecting the cut-off frequencyf c beyond
which the film remains flat. Frequencyf c is thus determined
from the dispersion relation by imposing that the spa
growth rate, i.e., the imaginary partki of the complex wave
vector k, of a mode with given real pulsationv r5v just
cancels, which yields the Reynolds number as a function
the frequencyv/2p5 f c , together with the marginal wave
vectorkm from which the phase velocity of the waves can
derived. The curves obtained from the simplified and f
second-order dispersion relations~18! and~19!, displayed in
Fig. 1 as a thin and thick solid line respectively, compa
equally well with the experimental data by Liuet al.18 within
error bars. The increasing discrepancy between the first-o
prediction ~17! corresponding to the dashed line in Fi
1—Shkadov’s model~dot–dashed line! doing even worse in
predicting an erroneous threshold—and the experiment
therefore be attributed mainly to the neglect of the strea
wise viscous dissipation and the subsequent phase velo
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change,16 in agreement with Chang’s conjecture.2 Notice
that, in Fig. 1, the cut-off frequency is given in physical un
~Hz!, whereas the implicit time scale in the dispersion re
tions and their consequences, especially~17!, is hN /uN

52/hN . At large Reynolds number and fixed Kapitza num
ber, R/W;hN

5;R5/3 so that the estimation~17! yields an
asymptotic behavior off c in R7/6 for the two first-order mod-
els, hence a seemingly linear behavior for the correspond
curves.

A more sensitive check of the accuracy of the mod
can be obtained from the study of the linear dynamics
wave packets, for which exact numerical results of Brev
et al.,12 obtained using the full linearized Navier–Stok
equations, are available. As is well known,19 D(k,v)50 be-
ing the formal expression of the dispersion relation,
asymptotic behavior of an infinitesimal perturbation initiat
at positionx50 and timet50, as observed at the limitt
→` in a frame moving at speedV with respect to the labo
ratory ~i.e., x5Vt), is determined by the root inkPC of the
systemD(k,v1Vk)50 and]kD(k,v1Vk)50 which has
the largest imaginary partv i and further satisfies a so-calle
‘‘collision criterium.’’ 20 This criterium, which follows from
causality~film uniformly flat for any t,0), states that, in
order to be physically relevant, the solution has to arise fr
the pinching of two spatial branches coming from differe
sides of the real axiski50. Considering the caseV50, i.e.,
in the laboratory frame, the instability is further terme
‘‘convective’’ if the disturbance vanishes on the spot of in
tiation and ‘‘absolute’’ in the opposite case. In the convect
case, the flow behaves as a noise amplifier responding to
upstream disturbances. In the absolute case, the flow beh
as an oscillator having is own dynamics. The convectiv
absolute nature of the instability can be determined from
sign of the maximum of thev i corresponding to thek-roots
of D(k,v)50 verifying the collision criterium. Comforting
experimental evidence, Brevdoet al.12 have shown that the
flow over inclined planes is convectively unstable at least
to very large Reynolds numbers and contrary to some mo
predictions. Here we examine how far our models can rep
duce the exact results, restricting our attention to the

FIG. 1. Cut-off frequencyf c as a function of the Reynolds numberR in the
conditions of Liu et al. ~Ref. 18! ~glycerin-water mixture,b54°, G
52341). Experimental results~diamonds! compared to predictions from
Shkadov’s model~dot–dashed!, first-order model ~dashed!, simplified
second-order model~thin solid!, and full second-order model~thick solid!.
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second-order model@~3!, ~11!–~13!# and its simplified ver-
sion @~3!, ~14!# since the first-order model@~3!, ~8!# fails to
reproduce the marginal stability conditions correctly due
the neglect of viscous dispersion. Whereas for Navie
Stokes equations, the dispersion relation is obtained from
numerical solution of a differential problem in the cros
stream coordinate, here it is just a polynomial equation ik
andv that can easily be solved~though not explicitly in the
case of the full second-order model since it is of degree si
k and, in practice, also in the other case where it is of deg
four only!.

As done by Brevdoet al., we consider first the caseR
540, G5769.8, b54.6°, corresponding to experiments b
Liu et al.21 in order to be able to compare our model pred
tions with results depicted in Fig. 3 of Ref. 12. Spat
branches in the (kr ,ki) plane are displayed in Figs. 2 and
for dispersion relations~19! and ~18!, respectively. Their
roots ink are computed asv r is varied for different values of
v i . The agreement between results using the full seco
order dispersion relation~19! and the exact results is trul
remarkable. All the branches observed by Brevdoet al., as
well as their change asv i is varied from 0.02~Fig. 2, top! to
0 ~bottom!, are recovered. Small departures from the ex
solutions are only noticeable far from the origin~Fig. 2, left!.

FIG. 2. Spatial brancheskn in the (kr ,ki) plane for dispersion relation~19!
with v i50.02 ~top! andv i50.0 ~bottom!. R540, b54.6°, W541.46 (G
5769.8). Left: overall view of the diagram. Right: zoom on the neighb
hood of the origin in the complexk plane.

FIG. 3. Spatial brancheskn for dispersion relation~18!. Same conditions as
in Fig. 2.
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TABLE I. Comparison of the saddle point positions between solutions of the dispersion relation of the se
order model, Eq.~19!, of the simplified model, Eq.~18! and solutions of the linearized Navier–Stokes proble
by Brevdoet al. ~Ref. 12! (R5200, b54.6°, andG5769.8).

Branch kr ki v r v i

V51.15
Brevdoet al. I 0.17 20.178 0.0182 0.0062
Eq. ~19! I 0.172 20.176 0.0182 0.006 27
Brevdoet al. II 0.043 20.046 0.01 0.0073
Eq. ~19! II 0.040 20.046 0.0107 0.0073
Eq. ~18! 0.0478 20.0387 0.0099 0.007 25

V51.16
Brevdoet al. I 0.19 20.165 0.015 0.0079
Eq. ~19! I 0.181 20.163 0.0165 0.007 96
Brevdoet al. II 0.045 20.048 0.01 0.0078
Eq. ~19! II 0.0430 20.0475 0.0103 0.007 77
Eq. ~18! 0.0516 20.0385 0.0098 0.007 64
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The agreement turns to excellent when approaching the
gin k50 ~right!, in line with the expectations from the long
wavelength assumption underlying our modeling. Upon
creasing the imaginary part,v i , of the frequency from
positive to negative values, no pinching of the spa
brancheskn is observed beforev i becomes negative, whic
is a clear indication of the convective nature of the insta
ity. Expression~19! may accordingly be seen as an expans
of the true dispersion relation in the limitk,v!1.

The behavior of the spatial branches corresponding
the simplified second-order dispersion relation~18! is dis-
played in Fig. 3. The operatorD is a polynomial of degree
four in k so that all the branches obtained by Brevdoet al.
cannot be recovered. However, Branch 2 in Fig. 3 clea
seems to result from the hybridization of Branches 2 and
Fig. 2 and the physically most relevant branch, nam
Branch 1, is quantitatively close to those obtained using
ther the full second-order model~Fig. 2! or the primitive
equations~Fig. 3 in Ref. 12!.

The agreement between model and exact results fo
for the caseV50 extends to the caseVÞ0. A detailed ac-
count will be the subject of a separate publication. Let us
mention that the full second-order model quantitatively

FIG. 4. ~a! Growth rate2ki and~b! wave numberkr of spatially amplified
waves as functions of signalling frequencyv r for the full second-order
model. G5769.8, b54.6°, R510 ~dotted!, R5Rc ~Curve 1!, R520 ~2!,
R540 ~3!, R560 ~4!, R5100 ~5!, R5200 ~6!.
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produces exact results up to at leastR5200 in the experi-
mental conditions of Liu and Gollub, including the very p
culiar change of dominant saddle-point documented in R
12, see Table I.22 The simplified model turns out to remai
accurate only up to aboutR5100, an already respectab
value. As a matter of fact, beyondR5100 the latter model
does not succeed in reproducing the two branches. Howe
it seems to interpolate smoothly between them, predict
the totalV-width of the unstable band and all other chara
teristics of the instability (v r , v i , kr , ki) satisfactorily as a
function ofV. The reason of this semisuccess lies in the f
that, while the function basis used in the Galerkin method
not large enough to fully account for the flow properties
projection on its first element only already contains most
the physics at a near-quantitative level.

We end this section by considering the spatial stabi
problem (vPR, kPC). The spatial growth rate2ki and the
wave numberkr are displayed for the second-order mod
and the simplified model as a function of the signalling p
sationv in Figs. 4 and 5, respectively. The results obtain
in a wide range of Reynolds numbers using the second-o
order model are again in excellent agreement with those
tained by Brevdoet al., whereas the simplified model pre
dicts growth rates somewhat too small at large Reyno

FIG. 5. ~a! Growth rate2ki and~b! wave numberkr of spatially amplified
waves as functions of signalling frequencyv r for the simplified model.
Parameters as in Fig. 4.
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FIG. 6. Experiments~left! and simulation of the simplified model~right! in the experimental conditions of Liu and Gollub~Ref. 13! ~glycerin-water mixture,
b56.4°, R529, G5524.4). Snapshots of the film thickness at three different locations from upstream~top! to downstream~bottom! at forcing frequency
f 54.5 Hz and forcing amplitudeA50.03.
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number (R5100 andR5200), though continuing to predic
the wave vector correctly. Agreement with exact results is
course lost for both models whenR is set to very high values
For example atR54100, b54°, and W51.983 the pre-
dicted range of unstable signalling frequency is 25–30 tim
wider than that obtained by Brevdoet al., but we cannot
expect that the assumptions made to derive the models
still valid in such ranges of parameters.

IV. NONLINEAR DYNAMICS OF A PERIODICALLY
FORCED FILM

We now turn to numerical simulations results relative
model @~3!, ~14!# in the nonlinear regime beyond threshol
aiming at a semiquantitative comparison with the expe
ments performed by Liu and Gollub13 and the direct numeri-
cal simulations of Ramaswamyet al.14

Depending on the forcing frequencyf, laboratory
experiments13 as well as simulations14 have revealed two dif-
ferent kinds of two-dimensional film evolution~without
modulations in the spanwise directionz). In the high-
frequency regime, downward the initial exponential grow
domain, the waves saturated through a complicated nonli
process and trains of multipeaked waves were observed
the low-frequency regime, the exponential growth was
rectly followed by the formation of trains of solitary-lik
waves.

A second-order finite-difference quasi-linearized Cran
Nicholson scheme23 has been implemented to study the no
linear response of the film submitted to a periodic forcing
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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simplified version of the downstream free-boundary con
tion has been used in order to keep a banded matrix of c
stant width. The so-introduced numerical inaccuracy turn
out to remain confined to a small downstream boundary la
that never grew upstream, owing to the convective nature
the instability. The flow rate at the entrance has been mo
lated according to

q~0,t !5qN@11A cos~2p f t !# , ~20!

in line with experiments in Ref. 13 in which sinusoidal pe
turbations were applied to the filmvia the pressure manifold
at the inlet. Parameters corresponding to the same exp
mental conditions have been chosen, namelyR529, G
5524.4, andb56.4°.

The results of our simulations forf 54.5 Hz and f
51.5 Hz are compared to experimental snapshots of the
thickness in Figs. 6 and 7. Because the length of the ex
nential growth region depends on the forcing amplitude,
have chosen to set it arbitrarily toA50.03 and to compare
the waves at corresponding amplitude levels rather tha
corresponding distances from the inlet. In the high-freque
regime atf 54.5 Hz, the simplified model seems to repr
duce the nonlinear multipeaked wave evolution reported
the experiment quite faithfully. In particular, the growth of
secondary peak, the phase locking that follows, and
modulation of the waves are all recovered. The length, a
plitude, and shape of the waves obtained sufficiently
downstream are in very good agreement with their exp
mental counterparts. At lower frequency,f 51.5 Hz, though
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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FIG. 7. Experiments~left! and simulation of the simplified model~right! for f 51.5 Hz. Other parameters as in Fig. 6.
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the direct nonlinear evolution to solitary wavetrains is reco
ered, the simplified model predicts a wave of slightly larg
amplitude than in experiments. The amplitude of the ripp
preceding the main hump also seems to be overestima
These features, already observed with our earlier mode16

can also be noted in the direct numerical simulations p
formed by Ramaswamyet al.,14 which suggests that, in fac
the phase-sensitive averaging technique used in experim
could have somehow smoothed the wave profiles and pa
erased their steepest parts.

Comparison has also been attempted with direct num
cal simulations provided by Ramaswamyet al. The spatio-
temporal diagrams corresponding to Figs. 14 and 16 in R
14 are presented in Fig. 8. At low frequency, in the solita
like wavetrain regime, the steepening of the initially sin
soidal waves is followed by the development of ripples
front of each saturated main hump. The front wave is see
move faster and to have a larger size than its followers. B
of these features have been observed by Ramaswamyet al.
who force on the film thicknessh rather than on the flow rate
q as done here. The amplitude was set toA50.15 for the
simulation shown in Fig. 8~left column! which reproduces
results displayed in Fig. 14 of Ref. 14 rather closely. Diffe
ent amplitudes have been tried and, though the transient
lution of the first front is different, the final regime is no
modified except for the length of the exponential grow
region which is longer for smaller forcing amplitudes. W
may, therefore, conclude that the direct formation of solit
waves at low frequency is robust and does not depend on
amplitude of the forcing, or the way it is applied.

At larger frequency, in the multipeaked wave regim
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like in laboratory experiments,13 the nonlinear evolution of
the film is complicated and three main regions can be id
tified, corresponding to the initial exponential growth, t
formation of the multipeaked waves, and the final wavetr
modulation. Results displayed Fig. 8~right column!, ob-
tained with a forcing amplitudeA50.03, are quite similar to
those presented by Ramaswamyet al. in their Fig. 16. Even
the radiation of a hole-like pulse by the leading front wa
visible in the direct numerical simulation can be observ
here. Modulations of the saturated wavetrains are, howe
somewhat smaller here than in Ref. 14, an observation
does not seem to be changed by varying the forcing am
tudeA.

V. COMPARISON OF WEIGHTED RESIDUAL
TECHNIQUES

Let us now turn to the convergence properties
weighted-residual methods applied to film flow modeling.
has been shown by a detailed algebraic argument7 that in-
creasing the level of truncation of any weighted-resid
method based on polynomial test functions always lead
the same ‘‘optimal’’ system of equations,~3! and ~8! at first
order ine and ~3!, ~11!–~13! at second order ine. Conver-
gence towards the first-order optimal model was further st
ied in Ref. 24, in which it was shown that the standard Ga
kin method ~weight functions identical to basis functions!
was the most efficient one, in producing~8! already at level
0. The study of convergence towards the full second-or
model, in addition to being very cumbersome, would pro
ably not be much illuminating since that model involv
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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FIG. 8. Film thickness evolution in the experimental conditions of Liu and Gollub~Ref. 13!. Left: f 51.5 Hz, A50.15. Right: f 54.5 Hz, A50.03. For
comparison with Figs. 14 and 16 in Ref. 14, respectively.
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TABLE II. Method of subdomains.

j max k1 k2 k3 k4 k5 k6 k7

0 6
551.2

12
5

7
17.0.988

6
5

7
950.933 9

1
452.25 9

2
952

9
2

1
650.75

7
2

2
9.0.778

1 6
551.2

12
5

7
17.0.988

6
5

7
950.933

9
2

1
451.125 1 27

4
1
651.125 5

2
9.1.11

2 16
19

6
551.01

1851
760

7
17.1.003

993
760

7
9.1.02

72
19

1
4.0.947

84
19

2
9.0.982 1 86

19
2
9.1.006

3 1 175
72

7
17.1.0008

31
24

7
9.1.004 1 1 1 1

4 1 2487
1024

7
17.1.00 006

1317
1024

7
9.1.0003 1 1 1 1

5 1 1 1 1 1 1 1
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three equations with many coefficients. Here we rather c
sider the slightly different, but still instructive, problem o
convergence towards the second-order simplified model~14!.
In order to obtain this model, a supplementary adiaba
elimination step has to be performed, which comes to
neglect of inertia terms in the momentum equation eve
time they are second-order in the long-wavelength exp
sion. So, to be rigorous, convergence of the weight
residual approach to the film flow problem is studied in t
restricted context, which is however easy to implement
each approximation levels.

An appropriate set of basis functions is

f 05 ȳ- 1
2ȳ

2 , f j5 ȳ j 11 , 1< j < j max, ~21!

so that f 0 corresponds to the flat film velocity profile an
other functions verifies the no-slip boundary condition~6!
from the start@ f j (0)50#. When truncated abovej max>1
this set forms a complete basis for polynomials of degree
to j max11 included. Expanding the streamwise velocity w
write

u5(
j 50

j max

aj~x,t ! f j~ ȳ! , ~22!

where amplitudea0 is of order unity, amplitudesaj , 1< j
< j max, being smaller, and their first-order time–space
rivatives even smaller. The cross-stream velocityv is then
evaluated by integrating the continuity equation~4!, i.e., v
52*0

y]xu dy. Weight functionswj 8( ȳ) being specified, re-
siduals are obtained by integrating the streamwise mom
tum equation over the depth

E
0

h

wj 8~y/h!~] tu1u]xu1v]yu2]yyu22]xxu! dy

5~h1h]x@]xuuh#2Bh]xh1Gh]xxxh!E
0

1

wj 8~ ȳ! dȳ .

~23!
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The continuity of the tangential stress at the free surfa
expressed by~10!, is a nontrivial condition which, in genera
cannot be fulfilled at second order as long as the set of
functions is reduced to its first elementf 0 since] ȳ f 0u150.
By contrast, constraint~10! can be implemented as soon
j max>1. At such an approximation level, we havej max11
unknown amplitudesaj , for which we needj max11 equa-
tions, hencej max independent conditions of the form~23! in
addition to that issued from~10!. Neglecting inertia at sec
ond order comes to setting derivatives of amplitudesaj , 1
< j < j max, strictly to zero in these equations, which leaves
with a system that can be solved for them, and from wh
an equation forq is finally derived.

As discussed in Sec. II, whatever the weighting stra
gies and the approximation levels, the equation expres
momentum conservation in all two-equation models forh
andq obtained in this way always has the same structure
~14! and can be specified by the coefficients in factor of ea
term. Comparison between approximation levels can thus
made on the basis of coefficientsk i defined by writing it in
the form

] tq5
5

6
k1S h2Bh]xh1Gh]xxxh23

q

h2D 2
17

7
k2

q

h
]xq

1
9

7
k3

q2

h2
]xh14k4

q

h2
~]xh!22

9

2h
k5]xq]xh

26k6

q

h
]xxh1

9

2
k7]xxq , ~24!

and studying the convergence of the coefficientsk i so intro-
duced towards 1 as the truncation level increases. For
ample, the ability of a given model to capture the instabil
mechanism can be appreciated fromk1 that turns out to mea-
sure the ratio of the linear threshold to the exact theoret
TABLE III. Collocation method.

j max k1 k2 k3 k4 k5 k6 k7

0 8
9

6
5.1.07

19
8

7
17.0.978

9
8

7
950.875

32
3

1
4.2.67

28
3

2
9.2.07

14
3

1
6.0.778

10
3

2
9.0.741

1 8
9

6
5.1.07

19
8

7
17.0.978

9
8

7
950.875

20
3

1
4.1.67

16
3

2
9.1.19

20
3

1
6.1.11

14
3

2
9.1.04

2 48
61

6
5.0.944

2669
1098

7
17.1.0009

473
366

7
9.1.005

312
61

1
4.1.28

300
61

2
9.1.09 1 266

61
2
9.0.969

3 1 2497
1024

7
17.1.004

1347
1024

7
9.1.02 1 1 1 1

4 1 1 1 1 1 1 1
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TABLE IV. Integral-collocation method.

j max k1 k2 k3 k4 k5 k6 k7

0 6
551.2

12
5

7
17.0.988

6
5

7
9.0.933 9

1
452.25 9

2
952

9
2

1
650.75

7
2

2
9.0.778

1 6
551.2

12
5

7
17.0.988

6
5

7
9.0.933

9
2

1
451.125 1 27

4
1
651.125 5

2
9.1.11

~a! Derivatives evaluated aty50
2 8

11
6
5.0.87

126
55

7
17.0.94

48
55

7
9.0.68

72
11

1
4.1.64

60
11

2
9.1.21 1 46

11
2
9.0.929

3 1 21
8

7
17.1.08

15
8

7
9.1.46 1 1 1 1

4 1 19
8

7
17.0.978

9
8

7
9.0.875 1 1 1 1

5 1 1 1 1 1 1 1
~b! Derivatives evaluated aty5h

2 1 2
7

17.0.824 1
7
9.0.778 0 5

2
2
9.0.556 5

1
6.0.833

25
6

2
9.0.926

3 & 4 1 5
2

7
17.1.03

3
2

7
9.1.17 1 1 1 1

1 1 1 1 1 1 1
-
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fast,
value,k15qc /qc
(th) . Other coefficients would affect nonlin

ear predictions such as the amplitude and speed of nonli
solitary waves beyond threshold.

A. Method of subdomains

This is a generalization of the integral method leading
Shkadov’s model: Integrating the momentum equation o
the depth using justf 0 and a uniform weight, and neglectin
terms formally of ordere2 ~coefficientsk4,5,6,7[0) indeed
yields ~2!. For j max51, the condition emanating from~10! is
added to the same integrated equation. Forj max.1, the
ȳ-interval@0,1# is cut into j max equal adjacent subintervals b
j max21 ~e.g., equally distributed! break points. The velocity
profile u is expanded onto the firstj max11 basis functions in
~21! and further inserted into~9! which is integrated over
each of these subintervals. The resulting linear system for
aj is then solved as sketched above. Corresponding co
cients k i appearing in~24! are given in Table II.25 Linear
properties are recovered forj max53 (k151). Convergence
is nearly achieved already forj max53 but j max55 is neces-
sary for complete nonlinear agreement.

B. Collocation method

The weight functionswj are nowd-functions peaked a
specific points in the interval@0,1#. The cancellation of re-
siduals correspond to the exact fulfillment of the equation
those locations. Whenj max50, the residual corresponds t
the evaluation of~9! at ȳ51/2. Otherwise, boundary cond
tion ~10! is completed by computing the residual atj max

equally spaced collocation points, which results in Eq.~24!
with coefficients given in Table III. Full convergence is o
served at levelj max54.
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C. Integral-collocation method

In this method, a simple averaging of Eq.~9! is supple-
mented by additional conditions generally placed at
boundaries. As an example, we test here the conditions
sen in Ref. 16, namely

]yk~] tu1u]xu1v]yu2]yyu22]xxu!50, at y50.
~25!

Shkadov’s integral method is recovered at level 0. Bound
condition ~10! is added at level 1 while at higher levels th
set of residuals is completed by~25! for k51,...,j max21. Re-
sults are given in Table IV~a!. Those corresponding to th
same conditions but evaluated at the interfacey5h are given
as ~b! in the same table. In spite of our expectations,
integral-collocation method initially developed in Ref. 1
has thus pretty poor convergence properties, especially w
the additional collocation conditions are situated at the pla
The situation is slightly better when they are set at the in
face, which might be related to the fact that the instabil
mechanism involves processes that take place at the inte
~energy transfer in the bulk flow through the work of th
shear at the interface26!.

D. Method of moments

The weights used at the projection step are monomial
increasing degreewk5 ȳk. The equation is fulfilled ‘‘in prob-
ability’’ by canceling its successive moments. Level 0, w
w0[1 again corresponds to simple averaging, thus lead
to Shkadov’s model, coefficientsk1,2,3, plus some second
order terms involving coefficientsk4,5,6,7. As far ask1,2,3 are
concerned, at level 1 usingf 0 and f 1 as test functions yields
the same result. The convergence of the method is rather
as seen from results collected in Table V.
TABLE V. Method of moments.

j max k1 k2 k3 k4 k5 k6 k7

0 6
551.2

12
5

7
17.0.988

6
5

7
950.933 9

1
452.25 9

2
952

9
2

1
650.75

7
2

2
9.0.778

1 6
551.2

12
5

7
17.0.988

6
5

7
950.933

9
2

1
451.125 1 27

4
1
651.125 5

2
9.1.11

2 16
19

6
5.1.01

231
95

7
17.1.001

123
95

7
9.1.007

72
19

1
4.0.947

84
19

2
9.0.982 1 86

19
2
9.1.006

3 1 1 1 1 1 1 1
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E. Galerkin method

The test functions themselves are now taken as we
functions, wj[ f j . As shown in Ref. 7, the simplified
second-order model is obtained already at level 0. This
convergence property is not a miracle but can be unders
from the consideration of~5!. Indeed, its left-hand side
~l.h.s.! of order unity and its right-hand side~r.h.s.! is for-
mally small. Therefore, the variablesai(x,t), i>1, them-
selves small, can appear in the residualsRj only through the
integrals*0

hwj ( ȳ)]yyu dy on the l.h.s. of~5!. For j 50, an
integration by part making use of~10! at y5h directly leads
to

E
0

h

f 0~y/h!]yyu dy52
q

h2
, ~26!

which involvesq and not theaj separately. The formulation
is thus already closed at this stage, which brings the res

F. Remarks

When looking at the tables, one observes that the va
tions of the coefficients are not monotonic as the approxim
tion level is increased, and that the limit can be reach
‘‘from above’’ as well as ‘‘from below,’’ which is not surpris-
ing since the full problem has no underlying variation
structure.11 More interestingly, the sub-domain method a
the collocation method are seen to display similarly sl
convergence properties, a fact to be put in relation with th
‘‘finite-difference’’ type of approximation. By contrast, th
method of moments and the Galerkin method converge fa
owing to their ‘‘spectral’’ flavor. The latter, involving basi
functions well adapted to the problem, turns out to be
most efficient.

VI. CONCLUSION

In this paper, we first reviewed our approach to the m
eling of fluid films flowing along inclined planes usin
weighted-residual methods combined to a long-wavelen
expansion.7,16 Let us first list some criteria that, in our opin
ion, should be met by a useful model, being understood
it must be much easier to study than the primitive fre
surface Navier–Stokes equations. These are:~i! An accurate
prediction of the linear instability properties, to begin wi
the threshold~coefficientk151 in the tables!, ~ii ! the exis-
tence of solutions sufficiently far from threshold, ideally f
all the range of Reynolds numbers for which the appro
resting on the long-wavelength expansion is reasonable,
~iii ! a quantitative restitution of the properties of the perio
and solitary waves~speed, amplitude, bifurcation diagram!.
In this respect, Shkadov’s model improves over one-equa
models such as the Benney equation only with respect to
occurrence of finite-time singularities beyond threshold,5 but
is not accurate enough as far as linear and nonlinear qu
tative properties are concerned. Our first-order model cle
improves over Shkadov’s model8 by correcting its behavior
close to threshold but rapidly reveals insufficient as the R
nolds number is increased.
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As early noticed by Chang,2 viscous dispersion is ex
pected to play a significant role at a quantitative level. Co
sistency at first order in the long-wavelength expansion
insufficient to takes this into account, which calls for o
optimal second-order model.7 The latter involves two slowly
varying fields in addition toh and q, hence four equations
~3!, ~11!–~13!. It apparently contains all what is needed to
exact linear properties at least up toR5200 in the experi-
mental conditions of Liuet al.,13,18,21as seen from the com
parison with the wave packet analysis of Brevdoet al.12

Since its nonlinear properties were also found satisfactory7 it
is certainly the best possible choice. It is however somew
difficult to handle,24 which gives all its interest to the sim
plification made by adiabatically eliminating the two add
tional fields necessary to have full consistence at sec
order.27 The remaining model@~3!, ~14!#, which includes vis-
cous dispersion but neglects second-order inertia effe
turns out to give reliable results up to more thanR5100 in
the same experimental conditions, and thus can be a g
choice for a semiquantitative exploration of a large range
control parameters (B5cotb, film thicknesshN and Kapitza
numberG or Reynolds numberR and Weber numberW).
Now, the disposal of effective models helps us tracing ba
the deficiencies of some previous attempts8–10,17to a lack of
flexibility of the velocity profile, to an inappropriate accou
of viscous dispersion effects or to the introduction of high
order terms that turn out to be inessential.

Finally, it happens that the simplified model can be o
tained by applying a genuine Galerkin method to the m
mentum equation~5! with a single test functionf 0 . Up to
now we have considered streamwise modulations only~the
so-called two-dimensional case!. The extension of the sim
plified model to three dimensions, thus involving also spa
wise perturbations, is straightforward.7,24 It should share the
same interesting properties and will be the subject of fut
study.

When compared to other flows, thin films display inte
esting specificities. First, slow space–time interface modu
tions develop in a super-critical context and are well d
scribed by simplified formulations resting on low orders o
systematic long-wavelength expansion of the primitive eq
tions. Next, the basic flow profile is simply parabolic an
polynomial functions form a closed set with respect to d
ferentiation and nonlinear couplings. These circumstan
make it easier to build models by means of weighted-resid
methods with a well controlled level of accuracy. The am
tion of modeling is often to obtain qualitative and not qua
titative results, especially when the structure of the mode
forced by phenomenological considerations while some fr
dom is left for the values of its parameters. Our study s
gests that optimal parameter sets yielding truly quantita
results can be determined without much additional effort
an appropriate choice of weighted-residual methods tak
into account the specificities of the problem at hand.
believe that it might be interesting to follow a similar a
proach in less well suited cases, especially in subcrit
cases such as plane Poiseuille or Couette flow, as an alte
tive to direct numerical simulations.
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