Further Algorithmic Aspects of the Local Lemma,

Michael Molloy* Bruce Reed*
Department of Computer Science Equipe Combinatoire
University of Toronto CNRS
Toronto, Canada Université Pierre et Marie Curie
molloy@cs.toronto.edu Paris, France
reed@lug.ibp.fr

February 8, 2001

Abstract

We provide a method to produce an efficient algorithm to find an object whose existence is guaranteed by
the Lovész Local Lemma. We feel that this method will apply to the vast majority of applications of the
Local Lemma, unless the application has one of four problematic traits. However, proving that the method
applies to a particular application may require proving two (possibly difficult) concentration-like properties.

1 Introduction

The probabilistic method is used to prove the existence of objects with desirable properties by showing that a
randomly chosen object from an appropriate probability distribution has the desired properties with positive
probability.

For example, it has been used to prove the existence of efficient routing procedures [15, 6], good sorting
networks [1] and various types of graph colourings [12, 13, 14, 17, 18]. Often, the probability that a randomly
chosen object has the desired properties is reasonably large and hence the method yields a randomized
algorithm for constructing a object with the desired properties: we simply pick objects at random until
we find one. Under fairly general conditions, such a method can be derandomized using, for example, the
method of conditional probabilities due to Erdés and Selfridge [7].

More sophisticated tools, such as the Lovéasz Local Lemma [9], allow us to prove the existence of objects
with properties which occur with exponentially small probability. To turn such proofs into algorithms,
even random ones, requires more refined approaches. In [5], Beck showed that certain applications of the
Local Lemma led to polynomial-time construction algorithms (with some sacrifices made with regards to the
constants in the original application). Alon[3] provided a parallel variant of the algorithm and remarked that
it was not clear how widely applicable the technique was, citing Acyclic Edge Colouring (defined below) as
one of the applications of the Local Lemma for which it seemed difficult to find a corresponding algorithm.

In this paper we

1. Provide a general set of conditions, similar to those of the Local Lemma, such that for any problem
satisfying these conditions we can not only guarantee the existence of the desired object, we can actually
construct such a object in polynomial-time.

2. Introduce a technique to develop constructive versions of applications of the Local Lemma which do
not meet the first set of conditions. We show how this variant can be applied to develop algorithms

*This work was supported by NATO Collaborative Research Grant #CRG950235. The work of the first author is supported
by an NSERC Research Grant.

© ACM, 1998. This is the author's version of the work. It ii posted here by permission of ACM for your personal use.
Not for redistribution. The definitive version was published in Conference Proceedings of the Annual ACM
Symposium on Theory of Computing, (1998) http://doi.acm.org/10.1145/276698.276866

for previously intractable applications of the Local Lemma such as Acyclic Edge Colouring, and we
outline a set of conditions which will allow this technique to be applied.

We remark that this first set of conditions is satisfied by a wide variety of problems. For example, it holds for
the applications of the Local Lemma in [12, 13, 14, 17, 18] and yields efficient algorithms for the corresponding
construction problems. Furthermore, proving that a certain application satisfies these conditions is typically
fairly straightforward.

In contrast, the second set of conditions, while more general than the first, are much harder to verify. We
pinpoint the difficulty later in the paper. Nevertheless, we believe that the vast majority of the applications
of the Local Lemma can be made algorithmic by an appropriate application of the second theorem, unless
the application has one of four problematic traits outlined in Section 7.

2 The Local Lemma

First we state the Local Lemma in a rather general form.

The Local Lemma Suppose that A = {Ay,...,A,} is a set of random events, such that each A; is
mutually independent of A — ({A;}UD;), for some D; C A. Suppose further that we have x1, ...,z,, € [0,1)
such that

Pr(d) <z [[-2z 1<i<n (1)
A;€D;
Then
Pr (A A..ANA,) >0.

Two common forms of the Local Lemma are obtained by replacing (1) by the following conditions:
Simple Asymmetric Case

1 1 ,
Pr(4;) < 3 and Z Pr(4;) < 7 1<i<n. (2)
A;€D;
Symmetric Case
1
d = max |D;|,p = max Pr(4;), and pd < T (3)

That (2) suffices follows by setting z; = 4Pr(4;). That (3) suffices follows from the fact that (2) suffices
and that the case d = 1 is trivial.

In a typical application of the Local Lemma, we construct an object (eg. a colouring of a graph or
a routing network) via a random procedure. Typically A is a set of “bad” events, and our procedure is
successful if none of them hold. Unfortunately, while the Local Lemma guarantees the existence of the
desired object, the probability that our procedure is successful can be exponentially small in n, and so the
proof does not immediately yield an efficient constructive algorithm, not even a randomized one.

We now present two applications which illustrate the uses of various forms of the Local Lemma. Both of
these applications can be made constructive using the techniques of Sections 4 and 5.

2.1 Frugal Colouring

We say that a proper vertex-colouring of a graph is -frugal, if for each vertex v and colour ¢, the number
of times that ¢ appears in N,, the neighbourhood of v, is less than 5. Frugal colouring was introduced in
[10] and played an important role in the bound on the total chromatic number in [11].

Counsider any fixed 8. Alon (see [10]) has shown that for each A, there exist graphs with maximum degree
A which require Q(AHﬁ) colours in any S-frugal colouring. We provide here the proof from [10] that this
is best possible.

Theorem 2.1 If G has mazimum degree A > (%1 then G has a 3-frugal proper vertex colouring using at
1
most 12A5=1 colours.

Proof Set C' = 12AM 57, We assign to each vertex of G a uniformly random colour from {1, ..., C'}.
For each edge (u,v) we define the Type A event A, , to be the event that w,v both receive the same colour.
For each {uy,...,ug} all in the neighbourhood of one vertex, we define the Type B event Buy,,....us to be the
event that wus,...,ug all receive the same colour. Note that if none of these events hold, then our random
procedure has successfully found a S-frugal colouring of G.

The probability of any Type A event is at most 1/C, and the probability of any Type B event is at most
1/CP~'. Note that each event is mutually independent of all but at most SA Type A events and BA (Bél)
Type B events. Thus this application satisfies (2) but not (3). |

2.2 Acyclic Edge Colouring

We say that a proper edge colouring of a graph is acyclic if the union of any two colour classes is a forest.
The following result was proved in [4].

Theorem 2.2 If G has mazimum degree A then G has an acyclic proper edge colouring using at most 16A
colours.

Proof Set C'= 16A. We assign to each edge of G a uniformly random colour from {1,...,C}. For
each pair of incident edges e, f, we define the Type 1 event A, ¢ to be the event that e, f both receive the
same colour. For each 2k-cycle C, we define the Type k event A to be the event that the edges of C' become
properly 2-coloured. If none of these events hold, then the resulting colouring is proper and acyclic.

The probability of each Type 1 event is 1/C and the probability of each Type k event, k > 2,is 1/C?(*~1),
It is straightforward to show that for each k > 2, no edge lies in more than A2(*=1) different 2k-cycles. Each
Type k event, k > 1 is mutually independent of all but at most 4kA Type 1 events and 2k x A2(!=1) Type
¢ events, ¢ > 2. It is readily seen that this application does not satisfy (2). However, by setting x, , = 2/C
for each edge (u,v), and zc = (2/C)**~Y for each k-cycle C, we satisfy (1). O

3 The First Algorithmic Version

In this section, we present a theorem which seems to capture all applications to which Beck’s technique in
[5] will apply.

In what follows, F = {fi,..., fm} is a set of independent random trials. A = {A;,...,A,} is a set of
events such that each A; is determined by the outcome of the trials in F; C F. We say that F; intersects Fj
and A; intersects Aj (A; ~ Aj) if F; N F; # 0.

For any fj,, ..., fj, € F; and any wj,, ..., wj, in the domains of fj,, ..., fj, respectively, we define Pr*(4;|f;, —
Wy, .y fjx = Wj,) to be the probability of A; conditional on the event that the outcomes of f;,, ..., f;, are
Wj, , ..., wj, respectively. We sometimes just say Pr*(A;) if it causes no ambiguity, always meaning fj,, ..., fj,
to be the set of trials already carried out and wj,,...,wj, to be their outcomes. We allow & = 0 in which
case Pr*(4;) = Pr(4;).

Theorem 3.1 If we have the following:

1. for each 1 < i <n,Pr(4;) <p;
each F; intersects at most d other Fj’s;
pd® < 1/8;

for each 1 < i < n,|F;| < w;

for each 1 < j < m, the size of the domain of f; is at most v, and we can carry out the random trial
mn time ty;

6. for each 1 <1 <n, fj,.., fj, € F; and wj,,...,w;, in the domains of f; ,..., . respectively, we can
compute Pr*(A;) in time to;
then we have a randomized O(m X d x (t; + t3) +m x y“8108 ™) _time algorithm which will find outcomes
of
fi, - fm such that none of the events in A hold.

So, for example, if d,w,y = O(logl/3 m), t; = poly(7), and to = O(y¥ X poly(w)) (see Remark 3 below),

then the running time of our algorithm is O(m).

Remarks:

1. Each f; lies in at most d + 1 Fj’s, and so n < m(d + 1)/w. Therefore our expression of the running
time depends implicitly on n.

2. Note that in condition 4 we can always assume w < d.

3. Taking k = |F}| in condition 6 implies that given any set of possible outcomes to all the trials in Fj,
we need to be able to test whether A; holds within time tl2 < ty. Given that we can carry out this test
in time t’Q, we can usually take to = O(y¥ X t;) by simply testing each of the possible combinations of
outcomes for the remaining trials.

4. In many applications (see for example [5], [3], [10]) we can replace the O(y~?1°€1°8™) term in the
running time by an O(2!°81°8™) term, thus yielding a polynomial running time for d,w,~ arbitrarily
large. We will elaborate on this in a full version of the paper.

Thus, roughly speaking, as long as an application of the Local Lemma is in some sense well-behaved, and
we can replace “pd < %” by “pd® < %”, then condition 3 holds and so we can apply Theorem 3.1 to obtain an
efficient constructive algorithm. While the exponent 9 in condition 3 can be somewhat improved, we don’t
expect that it be made to be near 1 using this algorithm or a simple variant. Thus, condition 3 indicates
the approximate limits of the original technique of [5].

As mentioned earlier, Theorem 3.1 can be applied to the main results in [12, 13, 14, 17, 18], as well as
many others to obtain, for example, an efficient algorithm to produce a A + O(1) total colouring of any
graph on n vertices and with maximum degree A = o(logl/ 3 n). However, it is not strong enough to apply
to Theorems 2.1 and 2.2. For these, we must apply the techniques in later sections.

The algorithm and proof are essentially the same as those in [5] (see also [3]). The only new ideas are
to consider the conditional probabilities Pr*(A;) and to occassionally “undo” a trial. We include an outline
here for completeness and to introduce the ideas required in later sections.

Proof In our First Sweep, we carry out the trials fi,..., f; in sequential order. After each trial f;,
we compute Pr*(A;) for each i such that f; € Fj. If Pr*(A;) > p?/?, then we say that A; is dangerous, and
we (a) “undo” f; - i.e. we cancel its outcome and carry out the trial again at a later time; (b) freeze f;
and all other remaining trials in F; - i.e. we will not carry out those trials during this sweep and so when it
comes to their turn we will skip them.

Note that at the end of the First Sweep, Pr*(4;) < p?/? for all i. Therefore, by the Local Lemma,
(Symmetric Case), upon carrying out the remaining trials, Pr*(A; A...AA,) > 0. That is, there is a feasible
solution extending the partial solution given by the trials that have already been carried out. We will see
that so few of the events became dangerous, that it is now nearly feasible to find the good set of outcomes
for the remaining trials using exhaustive search.

Claim 3.2 For each 1 < i < n, the probability that A; becomes dangerous is at most p'/>.

Proof If the probability that Pr*(4;) will ever exceed p?/? is greater than p'/?, then Pr(A4;) > p.
O

We denote by #H the hypergraph with V(#) = F, and E(H) = {Fi, ..., F,}, and we denote by £ the line
graph of H. £(*?) is the graph with vertex set V(L) (= E(#)), and where two vertices are adjacent iff they
are at distance exactly a or bin L.

Following the notation of [5, 3], we call T C E(H) a (1,2)-tree if the subgraph induced by T in £(1?) is
connected. We call T C E(H) a (2,3)-tree if the subgraph induced by T in £(>%) is connected and no two
vertices of T' are adjacent in £ (i.e. no two vertices intersect in 7). We call an (a, b)-tree dangerous if all of
its vertices correspond to dangerous events.

The key observation is this: No A; intersects two events which “belong” to different maximal danger-
ous (1,2)-trees. Thus, we can deal with the frozen trials contained in each maximal dangerous (1,2)-tree
independently, and so as long as they are sufficiently small, an exhaustive search for each tree of all the
combinations of possible outcomes of the corresponding trials is feasible. |

Claim 3.3 With probability at least %, there are no dangerous (1,2)-trees of size greater than dlog, m.

Proof The proof follows that of Lemma 2.1 of [3], and we refer the reader to that paper for more
details.

It is straightforward to show that every dangerous (1,2)-tree of size dK contains a dangerous (2, 3)-tree
of size K. For each f;, the number of (2,3)-trees of size K in H that f; lies in is at most (ed®)X. The
hyperedges F; of H lying in any such tree are disjoint. Therefore, by Claim 3.2, the probability that all of
the events A; corresponding to these hyperedges become dangerous is at most (pl/B)K. Thus, the expected
number of dangerous (2, 3)-trees of size K is at most m(ed®p'/?)¥ which is less than 1 for K = logm. The
claim now follows from Markov’s Inequality. a

If after the First Pass we have any dangerous (1, 2)-trees of size greater than dlog, m, then we repeat the
First Pass. The expected number of repetitions is constant, and each repetition takes time O(m xd X (t1 +t2)).
At this point, an exhaustive search for the satisfactory outcomes to the frozen trials corresponding to each
dangerous (1,2)-tree takes time O(y~4!°8™) Thus, if d,v,w are constant, this can be done in polynomial
time. To improve the running time, we run a Second Pass in the same manner as the First Pass, where
we carry out the frozen events in sequence, and an event becomes dangerous if its conditional probability
exceeds p'/3. Within an expected linear number of repetitions of the Second Pass, there will be no dangerous
(1,2)-trees of size greater than dloglogm, and so we can complete our exhaustive search of each one in time
O(ywdleslogm) Thus the total expected running time is O(m x d X t; X ty +m x y~dloglogm), O

4 b-Frugal Colouring
41 B=3

We now find an algorithm to construct 3-frugal colourings as guaranteed by Theorem 2.1. That is, a polytime
algorithm which will provide a 3-frugal colouring of any graph G on n vertices and with maximum degree
A = O(log!/® n), using O(A3/2) colours. We first observe that Theorem 3.1 fails to apply here since Condition
3 fails to hold.

We proceed as follows. We begin with 20A3/2 colours and assume A to be sufficiently large. For each
vertex v we maintain lists Bad, of forbidden colours and L, of available colours.

During Phase 1, we colour the vertices one-at-a-time, giving each vertex v in turn a uniformly random
colour from L,. When v receives a colour ¢, we place ¢ into Bad,, for each uncoloured u € N,,, and if neccesary,
we remove ¢ from L,, replacing it with a new colour. More specifically, we initialize L, = {1, ..., 12A3/2}
for each v, and whenever a colour ¢ is added to Bad,, if ¢ € L, then we remove ¢ from L, and add to L,
the lowest colour in {1, ...,20A%/2} — (L, UBad,). Note that this guarantees that no 2 adjacent vertices will
receive the same colour, i.e. no Type A events will hold.

We prevent Type B events from holding in a similar manner. For each {u1,u2,us} in a common neigh-
bourhood, if 2 of them, say u1,us2 ever receive the same colour ¢, then we place ¢ in Bad,, and update L,
accordingly.

The only concern here is that Bad, might grow too large for some vertex v; if |Bad,| > 8A%/? then we
will no longer be able to keep |L,| = 12A%/2. Note that at most A colours will enter Bad, because of Type A
events, but it is possible that every colour enters Bad, because of Type B events. In fact, if enough colours

were available, up to # could enter Bad,. However, the expected number which will enter is at most

A(D) X 1oism = %2/2, and in fact we can show that the probability that |Bad,| exceeds A%/? is less than
—0(A)

e .

We say that v is dangerous if |Bad,| > 3A3/2. If a vertex becomes dangerous, then we undo the last trial
and freeze it along with v and all vertices within distance 2 of v, delaying their colourings until later phases.
Note that this ensures that Bad, will not increase any further during Phase 1.

The algorithm then proceeds similarly to that in Section 2. In Phase 2 we repeat this process on
uncoloured vertices, this time v becomes dangerous if |Bad,| exceeds 6A3/2 and again in this case we freeze

all vertices within distance 2. In Phase 3 we use exhaustive search to find a satisfactory colouring for the
remaining uncoloured vertices. The following property is important:

Property 4.1 Suppose that at the end of either Phase 1 or Phase 2, we assign to each uncoloured vertex
v, a uniformly random colour from L,. Then the probability of any Type A event is either 0 or 1/(12A3/2),
and the probability of any Type B event is either 0 or 1/(12A3%/2)2.

Proof Pr*(A4,.,) = 1/(12A%/2) if either u or v is uncoloured and Pr*(4,,) = 0 otherwise. Pr*(Buy, us.us) =
1/(12A3/2)2 if at most one of uy, uz,us is coloured and Pr*(By, u,.u;) = 0 otherwise. 0

Property 4.1 implies the existence of a satisfactory completion of our colouring, as in the proof of Theorem
2.1.

The analysis of Phase 1 is a little more delicate than that in Section 2. Recall that it was important in
the proof of Claim 3.3 that if F; ,..., F;, are disjoint then the events that A;,, ..., 4;, become dangerous
are independent. The analogous property does not hold here. The problem is that the colour assigned to v
affects L,, for each u adjacent to v, and so can eventually affect L, for every vertex u in the graph. Thus
the choices of colours assigned to (virtually) any two vertices in the graph are dependent. Nevertheless, we
can still prove:

Claim 4.2 If vy,...,vx are all at distance at least 5 then the probability that they all become dangerous

. . L AB3/2
during a Phase is at most (m)

Proof For each v;, at most A colours can enter Bad,, because they appear on a neighbour of v;.
Therefore, if v; becomes dangerous, then there must be at least 2A%/2 < 3A3/2 — A colours ¢, ooy Chnas

such that each ¢} appears on two vertices u%, w} both in the neighbourhood of the same neighbour of v;.

Furthermore, because vi, ..., vk are all at distance 5, the uf, w?} are all distinct.

For any choice of ¢f,ut,w},...,c5 /s, ul\s/2, Wi\ a/2, the probability that each u},v? both get ¢! is at
most 3/
(575)2 KX2877 " Therefore, the expected number of sets of such colours and vertices for vy, ..., vx is at

12A3/2
20A3/2 K A A Kx283/2 1 2K x 2A3/2
2A3/2 “\ 2 (12A3/2)

most:
20437\ ¢ 1 \Kxeat
< | 2ns2 (%)

10e K x2A3/2
< (2 X 288)
1 KxA3/2
< (i) ’
and so the Claim follows from Markov’s Inequality. m|

For any vertex v, there are at most A? vertices within distance 4 of v. Since for A sufficiently large,

3/2
(ﬁ)A x (A*)® < 1, the analysis in the proof of Theorem 3.1 applies here to show that with high

probability the completion of the colouring in Phase 3 can be found by exhaustive search.

4.2 B>4

For 8 > 4, we apply essentially the same algorithm as for § = 3, to obtain a [-frugal colouring using
1 1

O(A'™7T) colours. (Recall from the proof of Theorem 2.1 that € = 12A'*#-1.) There is one major

complication: the analogue of Claim 4.1 does not hold. This is because if exactly 1 <7 < 8 —2 of uq,...,ug

are coloured, all with the same colour, then Pr*(By,,....u,) = 1/(12A%/2)8=% This makes it difficult to
ensure that it is possible to successfully complete the colouring at the end of Phase 1. For example, it is
possible that we have #(A?) mutually intersecting Type B events each of which has conditional probability
1/C? = O(A_(H%)) (i.e. each of which corresponds to a set of vertices all but two of which have the same
colour). If this happens, the Local Lemma will not apply.

There are 2 ways to handle this problem. First we present the easy way:

Method 1: At the beginning of each Phase, we start with a new set of 20A T colours, thus using a

total of 60A =T colours. Note that the analogue of Property 4.1 now holds as if at least one of ui, ..., ug
are coloured then Pr*(By,,... ;) = 0.

This method applies very well to many graph colouring problems.
Now we describe the difficult way. The reason that we present it is that we feel that the technique will
apply to most applications of the Local Lemma.

Method 2: Consider any set ui,...,ug all lying in a common neighbourhood. Suppose that exactly
1 <i < B —2 of them are coloured. Roughly speaking (i.e. ignoring any conditioning on the fact that
exactly i of them are coloured), the probability that all i receive the same colour is at most 1/C?, and
so Pr*(By,,....u;) is equal to 1/CP~% with probability at most 1/C?, and is equal to 0 otherwise. Thus,
Exp(Pr*(Bu,,..uy)) < 1/C° = Pr(Bu,.u,).

For each event E (Type A or Type B), we denote by Fg the set of vertices which determine E (and so
|Fr| = 2 or B) and we denote by Hp the set of events which intersect E, that is the events E' such that
FeNFp #0.) At any step of the algorithm, we define Pr*(E) to be 1/CP=I=! if none of Fr has been
coloured; 1/C \Fel=i if exactly i > 1 of the vertices in Fg have been coloured and all have received the same
colour; 0 otherwise, i.e. if some two vertices in Fg have different colours.

Initially, for A sufficiently high,) . Hp Pr(E’) < 11—2 It follows that, roughly speaking, the expected
value of Pp =) 5 cqy Pr*(E') at the end of Phase 1 is at most . Furthermore, this sum is a function of
O(A?) colour assignments and so for large A, we can show that it is highly concentrated around its expected
value.

We follow the same algorithm as in Section 3.1, with one modification: if Py, ever exceeds & then we call
E dangerous, uncolour the most recently coloured vertex, and freeze all uncoloured vertices in Ugr oo, Fpr -

(Of course, we also treat a vertex v as being dangerous if |Bad,| ever exceeds 3ATET)

The second phase follows in the same manner, this time treating F as dangerous if Pj, ever exceeds i.
Note that at the end of each phase, p}, < % for each E and so the Simple Asymmetric Case of the Local
Lemma implies the existence of a successful completion of our vertex colouring. All we need is to prove
that with high probability, all the “clumps” of uncoloured vertices are small enough that we can find this

completion using exhaustive search. This follows from the following analogues of Claim 4.2

Claim 4.3 If vy,...,vx are all at distance at least 5 then the probability that they all become dangerous
K

N
during a Phase is at most {(ﬁ) }

Claim 4.4 If E1, ..., Ex are all Type B events no two of which correspond to vertices of distance less than
1+% K
5 apart then the probability that they all become dangerous during a Phase is at most {(ﬁ)A }

Note that each of these lemmas is essentially a proof of the concentration of a set of random variables.
The proof of Claim 4.3 follows along the same lines as the proof of Claim 4.2. The proof of Claim 4.4 is
much more difficult, and we omit it here, saving it for a full version of the paper.

5 A Sequential Approach

Method 2 of Section 4.2 is very general, and we expect that it will apply to the vast majority of applications
of the Local Lemma. However, proving that it applies may often be difficult. In a typical application of the
Local Lemma, proving that this method yields an efficient algorithm reduces to proving two concentration
results analogous to Claims 4.3 and 4.4, which will usually be intuitively true but might be very difficult to
prove. In this section we place the method in a more general setting.

Suppose that we have a set F = {fi, ..., fm } of independent random trials and events Ay, ..., A,, each A;
determined by the outcomes of the trials in F; C F (sometimes also referred to as F4,. For each A;, we set
H; = Up;nr,2z0F; to be the set of all trials which determine events on which A; is dependent.

The key is to carry the trials out sequentially in a manner that none of the A; can hold. To do this,
we will have to occasionally change the distribution of a trial f; (eg. modify the lists Bad, and L,). In
particular, upon carrying out a trial fi, we may have to change the distributions of some of the trials f; for
which f;, fr both lie in some F;. Sometimes the distribution of some f; will become so skewed (eg. Bad,
becomes too large) that we must declare the trial to be dangerous, undo the previous trial and freeze all
events in Uy, e 4, F;. More specifically, for each trial f;, we have a set Good; of good distributions for f;. If
the distribution of f; ever leaves Good; then we declare f; to be dangerous. Note that this ensures that the
distribution of every f; will always be good.

Earlier, we defined Pr*(4;) to be the probability of A; conditional on the outcomes of any previous trials.
However, here we must be a little more careful as the distributions of the trials are shifting. Here, for any
event E we define PR(E) to be the maximum probability of E over all choices of good distributions for the
trials in Fig. Similarly, we define PR*(E) to be the maximum conditional probability of E over all choices
of good distributions for the uncompleted trials in Fpg.

Recall that to ensure the ezistence of a set of outcomes to F for which none of the A; hold, it is enough
that for each i we have EFJ_QFH&@ Pr(4;) < %. Here, to be able to efficiently find such a set of outcomes, we

will require 35 r. 2o PR(4;) < 15. (In fact, ; will suffice here rather than 75, but we use 75 for ease of
exposition.)

During the First Pass, we will declare A; to be dangerous if P} = FyAF 0 PR*(4;) ever exceeds g,
and we will then undo the previous trial and freeze all the trials in #;. Similarly, during the Second Pass,
we declare 4; to be dangerous if P;* exceeds {. Note that this ensures that at the end of the First Pass
Py < & for every i and at the end of the Second Pass P} < 1 for every i. This in turn ensures that at the
end of the Second Pass, it will be possible to choose outcomes for the uncompleted trials such that none of
the events A; hold.

The main work is to show that with high probability, we can find these outcomes efficiently using ex-

haustive search. To do this, it suffices to prove the following two lemmas for suitable values of py, ps:
Lemma 5.1 For any set of trials f;,, ..., fi, all sufficiently far apart,
PR(fi,,..., fi, all become dangerous) < p}

Lemma 5.2 For any set of events A;,, ..., A;, such that
Hiy ..., Hi, are all disjoint,
PR(A;,,..., A;, all become dangerous) < pb

Typically, we require pi,p> to be relatively small compared to the maximum number of #;’s that any
H; intersects.

Note that roughly speaking, for any A4;, at any point during Phase 1 Exp(P}) < % and so Lemma 5.2 is
essentially a concentration result. Furthermore, P/ is typically a function of a large number of trials each of
which has a small effect on P}, and so it should be very highly concentrated. Thus, Lemma 5.2 will usually
be at least intuitively true for a very small value of p,. However, these concentration results can often be
notoriously difficult to prove.

Generally, the distribution of a trial f; is altered by removing values from their domains. Lemma 5.1
is essentially a statement about the concentration of the number of values removed, or more generally the
‘amount’ by which the distribution must be altered. Again, in a typical application it is intuitively clear
that Lemma 5.1 should hold, but proving it can be difficult.

6 A few quick remarks

The method of Sections 4 and 5 applies to provide an efficient algorithm for finding an acyclic edge colouring
of a graph with maximum degree A using at most 20A colours. The proof is very similar to that in Section
4, but is more difficult. One of the complications is in adjusting the technique to apply to the general form
of the Local Lemma. We postpone the details for a full version of the paper.

The guarantee that with high probability the algorithms perform well is based on a first moment analysis.
Thus, in most cases, the algorithm can be derandomised using the method of conditional probabilities
introduced by Erdés and Selfridge [7] to yield polytime deterministic algorithms.

The methods presented in this paper can all be implemented efficiently as parallel algorithms. Again, we
postpone the details for a full version of the paper.

7 Shortcomings of the methods

It should be noted that the running time of these algorithms is a polynomial in the number of bad events
(see Remark 1 following Theorem 3.1). There are applications of the Local Lemma, most notably to Ramsey
Theory, in which the number of bad events is exponential in the size of the input. In such cases, these
methods do not yield algorithms which are polynomial in the size of the input.

The other case in which these methods may not apply well is when some bad events are determined by
a relatively large number of random trials, i.e. when ~ is too large in Theorem 3.1. This is the case, for
example, in [6]. Often this problem can be overcome, as mentioned in Remark 4 following Theorem 3.1.

Of course, these methods may not apply if the probability space being considered is not easily expressed
as a large set of independent random trials.

Finally, these techniques do not seem to apply to applications of the Lopsided Local Lemma (see [8], [2],
and [16]).

References

[1] M. Ajtai, J. Komlés and E. Szemerédi, An O(nlogn) sorting network, Proceedings of the 15th ACM
Symposium on Theory of Computing (1983), 1 - 9.

[2] M. Albert, A. Frieze and B. Reed, Multicoloured Hamilton Cycles, Electronic Journal of Combinatorics
2 (1995) #R10.

[3] N. Alon, A parallel algorithmic version of the Local Lemma, Random Structures and Algorithms, 2
(1991), 367 - 378.

[4] N. Alon, C. McDiarmid and B. Reed, Acyclic colouring of graphs, Random Structures and Algorithms
2 (1991) 277 - 288.

[5] J. Beck, An algorithmic approach to the Lovdsz Local Lemma, Random Structures and Algorithms, 2
(1991), 343 - 365.

[6] A. Broder, A. Frieze and E. Upfal, Static and Dynamic Path Selection on Ezpander Graphs: A Random
Walk Approach, Proceedings of the 29th ACM Symposium on Theory of Computing (1997), 531 - 539.

[7] P. Erd6s and J. Selfridge, On a combinatorial game, J. Comb. Th. (A) 14 (1973), 298 - 301.

[8] P. Erdds and J. Spencer, Lopsided Lovdsz Local Lemma and Latin transversals, Disc. App. Math. 30
(1990) 151 154.

[9] P. Erdos and L. Lovéasz, Problems and results on 3-chromatic hypergraphs and some related questions,
in: “Infinite and Finite Sets” (A. Hajnal et. al. Eds), Colloq. Math. Soc. J. Bolyai 11, North Holland,
Amsterdam, 1975, pp. 609-627.

[10] H. Hind, M. Molloy and B. Reed, Colouring a graph frugally, Combinatorica, to appear.

10

[11] H. Hind, M. Molloy and B. Reed, Total colouring with A + poly(log A) colours. SIAM J. of Comp., to
appear.

[12] A. Johansson, The choice number of sparse graphs, manuscript.
[13] J. Kahn, Asymptotically good list-colorings, J. Combinatorial Th. (A), 73 (1996), 1 - 59.

[14] J.H. Kim, On Brooks’ Theorem for sparse graphs, Combinatorics, Probability and Computing 4 (1995),
97-132.

[15] F. T. Leighton, B. Maggs and S. Rao Packet routing and job-shop scheduling in O(congestion + dilation)
steps, Combinatorica 14 (1994), 167 - 180.

[16] C. McDiarmid, Hypergraph colouring and the Lovdsz Local Lemma, manuscript.
[17] M. Molloy and B. Reed, A bound on the total chromatic number, submitted.

[18] B. Reed, x, A, and w, Journal of Graph Theory, to appear.

11

