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Abstract

We consider the application of multilevel Monte Carlo methods to elliptic PDEs with ran-
dom coefficients. We focus on models of the random coefficient that lack uniform ellipticity
and boundedness with respect to the random parameter, and that only have limited spatial
regularity. We extend the finite element error analysis for this type of equation, carried out
in [6], to more difficult problems, posed on non–smooth domains and with discontinuities in the
coefficient. For this wider class of model problem, we prove convergence of the multilevel Monte
Carlo algorithm for estimating any bounded, linear functional and any continuously Fréchet
differentiable non–linear functional of the solution. We further improve the performance of
the multilevel estimator by introducing level dependent truncations of the Karhunen–Loève
expansion of the random coefficient. Numerical results complete the paper.

Keywords: PDEs with stochastic coefficients, log-normal random fields, non–uniformly elliptic,
multilevel Monte Carlo, truncated Karhunen-Loève expansion, output functionals, discontinuous
coefficients and corners.

1 Introduction

Monte Carlo type methods are widely used in a range of scientific applications. The dimension inde-
pendent convergence rate of the sampling error makes these methods attractive for high-dimensional
problems, which often can not be approximated well by other types of methods. However, even
though dimension independent, the convergence rate of conventional Monte Carlo methods is very
slow, and getting to high accuracies is often not computationally feasible.

To improve on the convergence of conventional Monte Carlo methods, one can make use of
a variety of variance reduction techniques, such as control variates and antithetic sampling. A
particular variance reduction technique which has gotten a lot of attention recently, is the multilevel
Monte Carlo (MLMC) method. It was first introduced by Heinrich [26] for the computation of
high-dimensional, parameter-dependent integrals, and has since been applied in many areas of
mathematics related to differential equations. In particular, a lot of research has been done in
stochastic differential equations [10, 15, 16, 27, 29] and several types of partial differential equations
(PDEs) with random coefficients [2, 6, 8, 17, 19, 22].

In this paper, we are concerned with the application of multilevel Monte Carlo methods to ellip-
tic PDEs with random coefficients. In particular, we will focus on rough coefficients, which cannot
be uniformly bounded in the random parameter and only have Hölder continuous trajectories. This
type of problem arises, for example, in stochastic groundwater flow modelling, where log-normal
∗Department of Mathematical Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK. Email:

R.Scheichl@bath.ac.uk, A.L.Teckentrup@bath.ac.uk and E.Ullmann@bath.ac.uk
†Mathematical Institute, University of Oxford, 24-29 St Giles, Oxford OX1 3LB, UK. Email:

Mike.Giles@maths.ox.ac.uk

1



random coefficients are frequently used. A fundamental analysis of the multilevel Monte Carlo
algorithm applied to this type of model problem was recently done in [6], and also [8] demonstrates
numerically the effectiveness of multilevel Monte Carlo methods applied to elliptic PDEs with log–
normal coefficients. The purpose of this paper is to extend the analysis to cover more situations of
practical interest, and to expand on some of the issues raised in [6] and [8].

The analysis in [6] addresses the convergence of the multilevel Monte Carlo method for simple
output functionals, e.g. the L2 or the H1 norm of the solution. In practical situations, however,
one is often interested in more complicated functionals, such as the outflow through parts of the
boundary or the position of particles transported in the flow field. Here, we therefore extend
the convergence analysis to cover bounded linear, as well as continuously Fréchet differentiable
nonlinear functionals of the solution.

Another issue, raised both in [8] and [6], is the influence of the rough nature of our model
problem on the performance of the multilevel Monte Carlo estimator. The oscillatory nature and
the short characteristic length scale of the random coefficients puts a bound on how coarse the
coarsest level in the multilevel estimator can be. Asymptotically, as the required accuracy goes
to 0, this does not have any effect on the cost of the MLMC estimator. For a fixed tolerance,
however, it restricts the gain that we can expect compared to a standard Monte Carlo estimator.
In this paper, we propose a solution to this problem by using smoother approximations of the
random coefficient on the coarse levels of the estimator. This allows us to choose the coarsest
level independent of the length scale on which the random coefficient varies. See also [19] for a
similar strategy in the context of the related Brinkman problem. In [19] the decay rate for the FE
error with respect to the number of KL-modes K was assumed. Here we make no such assumption
and instead use the decay rates established in [5, 6] for certain log-normal fields and covariance
functions.

Finally, we extend the theoretical aspects of [6] to more challenging model problems. This
includes problems posed on polygonal domains, which are frequently used in connection with finite
element methods, as well as problems where the random coefficient has a jump discontinuity. It is
well known that these type of model problems do not always exhibit full global regularity, which
directly influences the convergence rates of the finite element error.

The outline of the rest of the paper is as follows. In §2, we present the model problem, together
with the main results on its regularity and finite element error estimates. This follows closely the
work in [6]. The proof of the new regularity result for polygonal /polyhedral domains is postponed
to §5. For the reader’s convenience, we also briefly recall the multilevel Monte Carlo algorithm and
the abstract convergence theorem. In §3, we prove convergence of the MLMC algorithm for a wide
class of (linear and nonlinear) output functionals, including boundary fluxes and local averages of
the pressure. In §4, we improve on the performance of the MLMC estimator by using smoother
approximations of the random coefficient on coarser levels. The gains possible with this approach
are verified both theoretically and numerically. Finally, in §5, we give a detailed proof of the
regularity result stated in §2, and extend the results further to certain classes of discontinuous
coefficients.

The key task in this paper is to keep track of how the constants in the bounds and estimates
depend on the coefficient a(ω, x) and on the mesh size h. Hence, we will almost always be stating
constants explicitly. Constants that do not depend on a(ω, x) or h will not be explicitly stated.
Instead, we will write b . c for two positive quantities b and c, if b/c is uniformly bounded by a
constant independent of a(ω, x) and of h.
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2 Background

2.1 Problem setting and basic finite element error analysis

Given a probability space (Ω,A,P) and ω ∈ Ω, we consider the following linear elliptic partial
differential equation (PDE) with random coefficients, posed on a bounded, Lipschitz polygo-
nal/polyhedral domain D ⊂ Rd, d = 2, 3, and subject to Dirichlet boundary conditions: Find
u : Ω×D → R such that

−∇ · (a(ω, x)∇u(ω, x)) = f(ω, x), for x ∈ D, (2.1)
u(ω, x) = φj(ω, x), for x ∈ Γj .

The differential operators ∇· and ∇ are with respect to x ∈ D, and Γ := ∪mj=1Γj denotes the
boundary of D, partitioned into straight line segments in 2D and into planar polygonal panels in
3D. We assume that the boundary conditions are compatible, i.e. φj ≡ φk, if Γj ∩ Γk 6= ∅. We
also let φ ∈ H1(D) be an extension of the boundary data {φj}mj=1 to the interior of D whose trace
coincides with φj on Γj .

Let us formally define, for all ω ∈ Ω,

amin(ω) := min
x∈D

a(ω, x) and amax(ω) := max
x∈D

a(ω, x). (2.2)

We make the following assumptions on the input data:

A1. amin ≥ 0 almost surely and 1/amin ∈ Lp(Ω), for all p ∈ (0,∞).

A2. a ∈ Lp(Ω, Ct(D)), for some 0 < t ≤ 1 and for all p ∈ (0,∞).

A3. f ∈ Lp∗(Ω, Ht−1(D)) and φj ∈ Lp∗(Ω, Ht+1/2(Γj)), j = 1, . . . ,m, for some p∗ ∈ (0,∞].

Here, the space Ct(D) is the space of Hölder–continuous functions with exponent t, Hs(D) is the
usual fractional order Sobolev space, and Lq(Ω,B) denotes the space of B-valued random fields, for
which the qth moment (with respect to the measure P) of the B–norm is finite, see e.g [6]. A space
which will appear frequently in the error analysis is the space Lq(Ω, H1

0 (D)), which denotes the
space of H1

0 (D)–valued random fields with the norm on H1
0 (D) being the usual H1(D)–seminorm

| · |H1(D). We will weaken Assumption A2 in §5.2, and assume only piecewise continuity of a(ω, ·),
but chose not to do this here for ease of presentation. For the same reason, we do not choose to
weaken Assumptions A1 and A2 to 1/amin and ‖a‖Ct(D) having finite moments of order pa, for some
pa ∈ (0,∞), although this is possible. Finally, note that since amax(ω) = ‖a‖C0(D), Assumption A2
implies that amax ∈ Lp(Ω), for any p ∈ (0,∞).

To simplify the notation in the following, let 0 < Ca,f,φj <∞ denote a generic constant which
depends algebraically on Lq(Ω)–norms of amax, 1/amin, ‖a‖Ct(D), ‖f‖Ht−1(D) and ‖φj‖Ht+1/2(Γj)

,
with q < p∗ in the case of ‖f‖Ht−1(D) and ‖φj‖Ht+1/2(Γj)

. Two additional random variables related
to output functionals will be added to this notation later.

An example of a random field a(ω, x) that satisfies Assumptions A1 and A2, for all p ∈ (0,∞),
is a log-normal random field a = exp(g), where the underlying Gaussian field g has a Hölder–
continuous mean and a Lipschitz continuous covariance function. For example, g could have con-
stant mean and an exponential covariance function, given by

E
[
(g(ω, x)− E[g(ω, x)])(g(ω, y)− E[g(ω, y)])

]
= σ2 exp(−‖x− y‖/λ) (2.3)

where σ2 and λ are real parameters known as the variance and correlation length, and ‖ · ‖ denotes
a norm on Rd. If ‖ · ‖ = ‖ · ‖p, we will call it a p-norm exponential covariance.
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If we denote by H1
φ(D) := {v ∈ H1(D) : v − φ = 0 on Γ}, then the variational formulation of

(2.1), parametrised by ω ∈ Ω, is to find u ∈ H1
φ(D) such that

bω
(
u(ω, ·), v

)
= Lω(v) , for all v ∈ H1

0 (D). (2.4)

The bilinear form bω and the linear functional Lω (both parametrised by ω) are defined as usual,
for all u, v ∈ H1(D), by

bω(u, v) :=
∫
D
a(ω, x)∇u(x) · ∇v(x) dx and Lω(v) := 〈f(ω, ·), v〉Ht−1(D),H1−t

0 (D) , (2.5)

where H1−t
0 (D) is the closure of C∞0 (D) in the H1−t(D)-norm. We say that for any ω ∈ Ω,

u(ω, ·) is a weak solution of (2.1) iff u(ω, ·) ∈ H1
φ(D) and u(ω, ·) satisfies (2.4). An application

of the Lax–Milgram Theorem ensures existence and uniqueness of u(ω, ·) ∈ H1
φ(D), for almost all

ω, and in combination with Assumptions A1– A3, this gives the existence of a unique solution
u ∈ Lp(Ω, H1(D)), for any p < p∗.

In [6], a regularity analysis of the above model problem was performed under the assumptions
that the spatial domain D is C2. Here, the analysis is extended to polygonal domains, or more
generally, to piecewise C2 domains that are rectilinear near the corners. This is very important
since in standard finite element methods one naturally works with polygonal/polyhedral domains.

Definition 2.1. Let 0 < λ∆(D) ≤ 1 be such that for any 0 < s ≤ λ∆(D), s 6= 1
2 , the Laplace

operator ∆ is surjective as an operator from H1+s(D) ∩ H1
0 (D) to Hs−1(D). In other words,

let λ∆(D) be no larger than the order of the strongest singularity of the Laplace operator with
homogeneous Dirichlet boundary conditions on D.

Theorem 2.2. Let Assumptions A1-A3 hold for some 0 < t ≤ 1. Then,

‖u(ω, ·)‖H1+s(D) .
amax(ω)‖a(ω, ·)‖2Ct(D)

amin(ω)4

‖f(ω, ·)‖Ht−1(D) + ‖a(ω, ·)‖Ct(D)

m∑
j=1

‖φj(ω, ·)‖Ht+1/2(Γj)


(2.6)

for almost all ω ∈ Ω and for all 0 < s < t such that s ≤ λ∆(D). Moreover, u ∈ Lp(Ω, H1+s(D)),
for all p < p∗. If t = λ∆(D) = 1, then u ∈ Lp(Ω, H2(D)) and the above bound holds with s = 1.

Proof. The proof for individual samples, for almost all ω ∈ Ω, is a classical result and follows
Grisvard [23, Section 5.2]. A detailed proof making precise the dependence of the bound on the
coefficients is given in Section 5.1. The remainder of the theorem follows by Hölder’s inequality
from Assumptions A1–A3.

Theorem 2.2 can now be used to prove convergence of finite element approximations of u in
the standard way. We will only consider lowest order elements in detail. Introduce a triangulation
Th of D, and let Vh be the space of continuous, piecewise linear functions on D that satisfy the
boundary conditions in (2.1), i.e.

Vh,φ :=
{
vh ∈ C(D) : vh|T linear, for all T ∈ Th, and vh|Γj = φj , for all j = 1, . . . ,m

}
.

For simplicity we assume that the functions φj , j = 1, . . . ,m, are piecewise linear with respect to
the triangulation Th restricted to Γj . To deal with more general boundary conditions is a standard
exercise in finite element analysis (see e.g. [4, §10.2]).

The finite element approximation of u in Vh,φ, denoted by uh, is now found by solving

bω
(
uh(ω, ·), v

)
= Lω(v) , for all v ∈ Vh,0,

Using Cea’s lemma and standard interpolation results on Vh,φ, we then have (as in [6]) the following.
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Theorem 2.3. Let Assumptions A1-A3 hold for some 0 < t ≤ 1. Then,

|(u− uh)(ω, ·)|H1(D) .

(
amax(ω)
amin(ω)

)1/2

‖u(ω, ·)‖H1+s(D) h
s

for almost all ω ∈ Ω and for all 0 < s < t such that s ≤ λ∆(D). Hence,

‖u− uh‖Lp(Ω,H1
0 (D)) ≤ Ca,f,φj h

s, for all p < p∗ ,

with Ca,f,φj <∞ a constant that depends on the input data, but is independent of h. If A1-A3 hold
with t = λ∆(D) = 1, then ‖u− uh‖Lp(Ω,H1

0 (D)) ≤ Ca,f,φj h.

The key novel result here (extending the results in [6]) is that the rate of convergence of the
finite element error on polygonal/polyhedral domains D is the same as on C2 domains provided
the order of the strongest singularity for the Laplacian on D is no stronger than t in A1-A3. No
additional or stronger singularities are triggered by the random coefficient provided a satisfies A2.
A sufficient (but not necessary) condition for t = 1 is that D is convex. For t < 1, even certain
concave domains are allowed.

Remark 2.4. The results can easily be extended also to Neumann and mixed Dirichlet/Neumann
boundary conditions. We will comment on this in Section 5.1 and confirm it with some of the
numerical results in Section 3.5. There is also no fundamental difficulty in extending the analysis
to higher order finite elements. For an extension to mixed finite elements see [21].

2.2 Multilevel Monte Carlo Algorithm

Before we go on to the main part of this paper, we will briefly recall the multilevel Monte Carlo
algorithm. We also give a review of the main results on its convergence when applied to elliptic
PDEs of the form described in the previous section.

Suppose we are interested in finding the expected value of some functional Q = M(u) of the
solution u to our model problem (2.1). Since u is not easily accessible, Q is often approximated by
the quantity Qh := M(uh), where uh is a finite dimensional approximation to u, such as the finite
element solution on a sufficiently fine spatial grid Th defined above. However, uh may also include
further approximations such as an inexact bilinear form bhω(·, ·) ≈ bω(·, ·), e.g. due to quadrature
or approximation of the input random field a. We will return to this issue in Section 4.

To estimate E [Q], we then compute approximations (or estimators) Q̂h to E [Qh], and quantify
the accuracy of our approximations via the root mean square error (RMSE)

e(Q̂h) :=
(
E
[
(Q̂h − E(Q))2

])1/2
.

The computational cost Cε(Q̂h) of our estimator is then quantified by the number of floating point
operations that are needed to achieve a RMSE of e(Q̂h) ≤ ε. This will be referred to as the ε–cost.

The classical Monte Carlo (MC) estimator for E [Qh] is

Q̂MC
h,N :=

1
N

N∑
i=1

Qh(ω(i)), (2.7)

where Qh(ω(i)) is the ith sample of Qh and N independent samples are computed in total.
There are two sources of error in the estimator (2.7), the approximation of Q by Qh, which is

related to the spatial discretisation, and the sampling error due to replacing the expected value
by a finite sample average. This becomes clear when expanding the mean square error (MSE)
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and using the fact that for Monte Carlo E[Q̂MC
h,N ] = E[Qh] and V[Q̂MC

h,N ] = N−1 V[Qh], where
V[X] := E[(X − E[X])2] denotes the variance of the random variable X : Ω→ R. We get

e(Q̂MC
h,N )2 = N−1V[Qh] +

(
E[Qh −Q]

)2
. (2.8)

A sufficient condition to achieve a RMSE of ε with this estimator is that both of these terms are
less than ε2/2. For the first term, this is achieved by choosing a large enough number of samples,
N = O(ε−2). For the second term, we need to choose a fine enough finite element mesh Th, such
that E[Qh −Q] = O(ε).

The main idea of the MLMC estimator is very simple. We sample not just from one approxi-
mation Qh of Q, but from several. Linearity of the expectation operator implies that

E[Qh] = E[Qh0 ] +
L∑
`=1

E[Qh` −Qh`−1
] (2.9)

where {h`}`=0,...,L are the mesh widths of a sequence of increasingly fine triangulations Th` with
Th := ThL , the finest mesh, and k1 ≤ h`−1/h` ≤ k2, for all ` = 1, . . . , L and some 1 < k1 ≤ k2 <∞.
Hence, the expectation on the finest mesh is equal to the expectation on the coarsest mesh, plus a
sum of corrections adding the difference in expectation between simulations on consecutive meshes.
The multilevel idea is now to independently estimate each of these terms such that the overall
variance is minimised for a fixed computational cost.

Setting for convenience Y0 := Qh0 and Y` := Qh` −Qh`−1
, for 1 ≤ ` ≤ L, we define the MLMC

estimator simply as

Q̂ML
h,{N`} :=

L∑
`=0

Ŷ MC
`,N`

=
L∑
`=0

1
N`

N∑̀
i=1

Y`(ω(i)), (2.10)

where importantly Y`(ω(i)) = Qh`(ω
(i))−Qh`−1

(ω(i)), i.e. using the same sample on both meshes.
Since all the expectations E[Y`] are estimated independently in (2.9), the variance of the MLMC

estimator is
∑L

`=0N
−1
` V[Y`] and expanding as in (2.8) leads again to

e(Q̂ML
h,{N`})

2 := E
[(
Q̂ML
h,{N`} − E[Q]

)2] =
L∑
`=0

N−1
` V[Y`] +

(
E[Qh −Q]

)2
. (2.11)

As in the classical MC case before, we see that the MSE consists of two terms, the variance of the
estimator and the error in mean between Q and Qh. Note that the second term is identical to the
second term for the classical MC method in (2.8).

Let now C` denote the cost to obtain one sample of Qh` . Then we have the following results on
the ε–cost of the MLMC estimator (cf. [8, 16]).

Theorem 2.5. Suppose that there are positive constants α, β, γ, cM1, cM2, cM3 > 0 such that α ≥
1
2 min(β, γ) and

M1. |E[Qh −Q]| ≤ cM1 h
α,

M2. V[Qh` −Qh`−1
] ≤ cM2 h

β
` ,

M3. C` ≤ cM3 h
−γ
` ,

Then, for any ε < e−1, there exist an L and a sequence {N`}L`=0, such that e(Q̂ML
h,{N`}) < ε and

Cε(Q̂ML
h,{N`}) .


ε−2, if β > γ,

ε−2(log ε)2, if β = γ,

ε−2−(γ−β)/α, if β < γ,

where the hidden constant depends on cM1, cM2 and cM3.
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In [6], it was shown that for our model problem and for the functional Q := |u|q
H1(D)

it follows
immediately from the finite element error result in Theorem 2.3 that Assumptions M1–M2 in
Theorem 2.5 hold with α < t and β < 2t and for 1 ≤ q < p∗/2 provided Assumptions A1–A3 hold
with 0 < t < 1 and p∗ ∈ (0,∞). For t = 1, we can even choose α = 1 and β = 2. Using a duality
argument we also showed that under the same hypotheses we could expect twice these rates for
the functional Q := ‖u‖q

L2(D)
. The aim is now to extend this theory to cover also other functionals

of the solution u (see §3) as well as level-dependent estimators (see §4).

3 Output functionals

In practical applications, one is often interested in the expected values of certain functionals of the
solution. In the context of groundwater flow modelling, this could for example be the value of the
pressure or the Darcy flux at or around a given point in the computational domain, or the outflow
over parts of the boundary. It could also be something more complicated, such as positions and
travel times of particles released somewhere in the computational domain (see e.g. [20]).

A standard technique to prove convergence for finite element approximations of output func-
tionals is to use a duality argument, similar to the classic Aubin-Nitsche trick used to prove optimal
convergence rates for the L2(D)-norm. The specific boundary conditions and forcing terms of the
dual problem will depend on the output functional considered. A further advantage of using a
duality argument to prove convergence of output functionals, is that the analysis can be used
as a starting point for further developments, such as adaptively refined meshes and adjoint error
correction ([32, 18]). These are areas we aim to explore further in the future.

We will in the following consider both linear and non-linear functionals. We denote the func-
tional of interest by Mω(v), for v ∈ H1(D). Like the bilinear form bω(·, ·), the functional Mω(·) is
again parametrised by ω, and the analysis is done almost surely in ω. When the functional does
not depend on ω, we will simply write M(·) instead of Mω(·). Our analysis follows mainly [18].

3.1 Linear functionals

Since it is simpler, we will first look at linear functionals. Let us assume for the moment that
Mω : H1(D) → R is linear and bounded on H1

0 (D), i.e. Mω(v) . ‖v‖H1(D), for all v ∈ H1
0 (D).

Now, let us associate with our primal problem (2.4) the following dual problem: find z(ω, ·) ∈ H1
0 (D)

such that
bω
(
v, z(ω, ·)

)
= Mω(v) , for all v ∈ H1

0 (D), (3.1)

and denote by zh(ω, ·) ∈ Vh,0 the finite element approximation to (3.1). We can again apply the
Lax-Milgram Theorem to ensure existence and uniqueness of a weak solution z(ω, ·) ∈ H1

0 (D), for
almost all ω. Moreover, since bω(·, ·) is symmetric, we will also be able to apply Theorems 2.2 and
2.3. However, first we make the following observation.

Lemma 3.1. Let Mω : H1
0 (D)→ R be linear and bounded. Then, for almost all ω ∈ Ω,

|Mω (u(ω, ·))−Mω (uh(ω, ·))| ≤ amax(ω) |u(ω, ·)− uh(ω, ·)|H1(D) |z(ω, ·)− zh(ω, ·)|H1(D) . (3.2)

Proof. Dropping for brevity the dependence of the FE functions on ω and using the linearity of
Mω, the dual problem (3.1), as well as Galerkin orthogonality for the primal problem, we have

|Mω(u)−Mω(uh)| = |bω(u− uh, z)| = |bω(u− uh, z − zh)| ≤ amax(ω) |u− uh|H1(D) |z − zh|H1(D) ,

where in the last step we have used the definition of amax(ω) and the Cauchy-Schwarz inequality.
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This simple argument will be crucial to obtain optimal convergence rates for functionals. Pro-
vided the functional is bounded not just in H1(D), but also in H1−t∗(D), for some t∗ ≥ t, where t
is as in Assumptions A1–A3, the finite element solution zh of the dual problem will converge with
any order s < t (like the primal solution uh). This will allow us (as for the L2(D)-norm) to obtain
a convergence rate twice that of the H1(D)-norm in Theorem 2.3. However, the assumption that
Mω is linear is not necessary, and so we will first generalise the above to nonlinear functionals.

3.2 Nonlinear functionals

For nonlinear functionals, the dual problem in [32] is not defined as in (3.1) above. Instead, a
different functional is chosen on the right hand side (which reduces to Mω in the linear case).
It is related to the derivative of the functional of interest and so we need to assume a certain
differentiability of Mω. We will assume here that Mω is continuously Fréchet differentiable. In
particular, this implies that Mω is also Gateaux differentiable, with the two derivatives being the
same. We will see in Remark 3.3 below that it is in fact not necessary that Mω is continuously
Fréchet differentiable everywhere, but it simplifies the presentation greatly.

Let v, ṽ ∈ H1(D). Then the Gateaux derivative of Mω at ṽ and in the direction v is defined as

DvMω(ṽ) := lim
ε→0

Mω(ṽ + εv)−Mω(ṽ)
ε

.

We define

DvMω(u, uh) :=
∫ 1

0
DvMω(u+ θ(uh − u)) dθ,

which is in some sense an average derivative of Mω on the path from u to uh, and define the dual
problem now as: find z(ω, ·) ∈ H1

0 (D) such that

bω
(
v, z(ω, ·)

)
= DvMω(u, uh), for all v ∈ H1

0 (D). (3.3)

Note that, for any linear functional Mω, we have DvMω(u, uh) = Mω(v), for all v ∈ H1
0 (D), and

so (3.3) is equivalent to (3.1).
For our further analysis, we need to make the following assumption on Mω.

F1. Let u (resp. uh) be the exact (resp. the FE) solution of (2.1). Let Mω be continuously
Fréchet differentiable, and suppose that there exists t∗ ∈ [0, 1], q∗ ∈ (0,∞] and CF ∈ Lq∗(Ω),
such that

|DvMω(u, uh)| . CF(ω)‖v‖H1−t∗ (D) , for all v ∈ H1
0 (D) and for almost all ω ∈ Ω.

To get well–posedness of the dual problem, as well as existence and uniqueness of the dual solution
z(ω, ·) ∈ H1

0 (D), for almost all ω ∈ Ω, it would have been sufficient (as in the linear case courtesy
of the Lax-Milgram Theorem) to assume that |DvMω(u, uh)| is bounded in H1(D). However, in
order to apply Theorem 2.3 and to prove convergence of the finite element approximation of the
dual solution, it is necessary to require stronger spatial regularity for z. This is only possible if we
assume boundedness of |DvMω(u, uh)| in H1−t∗(D) for some t∗ > 0. In particular, if Assumptions
A1–A3 and F1 are satisfied with t ∈ (0, 1] and t∗ ≥ t, then for almost all ω ∈ Ω,

‖z(ω, ·)‖H1+s(D) .
amax(ω)‖a(ω, ·)‖2Ct(D)

amin(ω)4
CF(ω),

for any 0 < s < t such that s ≤ λ∆(D) and for almost all ω ∈ Ω. Hence,

‖z − zh‖Lp(Ω,H1
0 (D)) ≤ Ca,CF h

s, for all p < q∗ , (3.4)

8



for some constant Ca,CF <∞ depending on a and the constant CF in F1.
Moreover, from the Fundamental Theorem of Calculus for Fréchet derivatives, it follows that

Mω(u)−Mω(uh) =
∫ 1

0
Du−uhMω(u+ θ(uh − u)) dθ = Du−uhMω(u, uh) = bω(u− uh, z) (3.5)

and so we have again the following error bound.

Lemma 3.2. Let Assumption F1 be satisfied, then

|Mω (u(ω, ·))−Mω (uh(ω, ·))| ≤ amax(ω) |u(ω, ·)− uh(ω, ·)|H1(D) |z(ω, ·)− zh(ω, ·)|H1(D) , (3.6)

for almost all ω ∈ Ω.

Similar to the bound in (3.6), one can also find a bound of the error between two finite element
approximations in Vh and in VH ⊂ Vh, namely

|Mω (uh(ω, ·))−Mω (uH(ω, ·))| ≤ amax(ω) |uh(ω, ·)−uH(ω, ·)|H1(D) |zh(ω, ·)− zH(ω, ·)|H1(D) (3.7)

In the next section, we will use (3.6) and (3.7) to find optimal rates for (non)linear functionals in
Assumptions M1 and M2 of the MLMC convergence theorem.

Remark 3.3. As already mentioned above, continuous Fréchet differentiability is not a necessary
condition. It is possible to weaken Assumption F1 and to assume only slant differentiability of
Mω(·). The concept of slant differentiability was introduced in [7], where it was also shown that
an operator F : X → Y , for two Banach spaces X and Y , is slant differentiable iff it is Lipschitz
continuous. Most importantly, however, slant differentiability is sufficient for proving (3.5), and
thus Lemma 3.2.

3.3 Multilevel Monte Carlo convergence for functionals

We are now ready to prove optimal convergence rates for the MLMC algorithm for Fréchet differ-
entiable (and thus also for linear) functionals as defined above. In order to apply Theorem 2.5, we
need bounds on the following two quantities:

(i) |E [Mω(u)−Mω(uh)]|

(ii) V
[
Mω(uh`)−Mω(uh`−1

)
]

Using the finite element error analysis in Theorem 2.3 together with the bounds in Lemma 3.2
and in Equation (3.7), we are able to derive the following bounds for the convergence rates with
respect to h for (i) and (ii).

Proposition 3.4. Let Assumptions A1–A3 hold for some 0 < t ≤ 1 and p∗ > 2, and let Mω(·)
satisfy Assumption F1 with t∗ ≥ t and q∗ > 2p∗

p∗−2 . Then Assumptions M1–M2 in Theorem 2.5 hold
for any α < 2t and β < 4t. For t = 1, we can choose α = 2 and β = 4.

Proof. Using Lemma 3.2 and Hölder’s inequality, we have

|E [Mω(u)−Mω(uh)]| ≤ ‖amax‖Lp1 (Ω)‖u− uh‖Lp2 (Ω,H1
0 (D))‖z − zh‖Lp3 (Ω,H1

0 (D)) (3.8)

where
∑3

i=1 p
−1
i = 1. All norms on the right hand side are finite, if we choose p1 < ∞, p2 < p∗,

and p3 < q∗, which is possible if p−1
∗ + q−1

∗ < 1, in particular if p∗ > 2 and q∗ >
2p∗
p∗−2 . In the case

t < 1, it then follows from (3.4) and Theorem 2.3 that

|E [Mω(u)−Mω(uh)]| . Ca,f,φj ,CF h
α, for any α < 2t.

9



Similarly, using (3.7) and Hölder’s inequality, we have

V
[
Mω(uh`)−Mω(uh`−1

)
]
≤ E

[
|Mω(uh`)−Mω(uh`−1

)|2
]

≤ ‖a2
max‖Lp1 (Ω)‖

(
uh` − uh`−1

)2 ‖Lp2 (Ω,H1
0 (D))‖

(
zh` − zh`−1

)2 ‖Lp3 (Ω,H1
0 (D))

= ‖amax‖2L2p1 (Ω)‖uh` − uh`−1
‖2L2p2 (Ω,H1

0 (D))‖zh` − zh`−1
‖2L2p3 (Ω,H1

0 (D)) (3.9)

where
∑3

i=1 p
−1
i = 1. Again, the norms on the right hand side of (3.9) are finite, if we choose

p1 < ∞, p2 < p∗/2, and p3 < q∗/2, which is possible due to our assumptions that p∗ > 2 and
q∗ >

2p∗
p∗−2 . In the case t < 1, it follows again from (3.4) and Theorem 2.3 that

V
[
Mω(uh`)−Mω(uh`−1

)
]

. Ca,f,φj ,CF h
β, for any β < 4t.

The slightly faster rates of α = 2 and β = 4, for t = 1, can be proved analogously.

Remark 3.5. In practice, it is in general necessary to use quadrature to compute the integrals
in the bilinear form bω(v, w), thus leading to approximate, mesh-dependent bilinear forms. As a
consequence we will compute only an approximate finite element solution ũh ∈ Vh and Galerkin
orthogonality for the primal problem is lost. In general, it is then only possible to prove

|Mω (u(ω, ·))−Mω (ũh(ω, ·))| ≤ CF (ω) ‖u(ω, ·)− ũh(ω, ·)‖H1(D),

instead of (3.6), where CF is the constant from Assumption F1. It is in fact sufficient that F1
holds with t∗ = 0 in this case. Consequently, it is only possible to verify Assumptions M1–M2 in
Theorem 2.5 for α < t and β < 2t in the case t < 1. Similarly, we can only prove M1–M2 with
α = 1 and β = 2, if t = 1. The higher rates of convergence from Proposition 3.4 can be recovered,
also in the presence of quadrature error, if the coefficient function has additional regularity, i.e.
if a(ω, ·) ∈ Cr(D), with r ≥ 2t. For an example of a log–normal random field which has this
additional regularity, see §4.1.

One can also generalise the results in this section to the case where the dual solution has less
spatial regularity than the primal solution. For example, if F1 holds only for some t∗ ∈ [0, t),
Assumptions M1–M2 in Theorem 2.5 can still be verified, for any α < t+ t∗ and β < 2(t+ t∗).

3.4 Examples of output functionals

Before we go on to show some numerical results, we give some examples of output functionals
which fit into the framework of §3.1-3.3. We start with linear functionals.

(a) Point evaluations of pressure: Since a(ω, ·) ∈ Ct(D) ⊂ C(D), we know that trajectories
of the solution u are in C1(D) (see e.g. [14]), and it is meaningful to consider point values.
Consider M (1)(u) := u(x∗), for some x∗ ∈ D. For D ⊂ R, i.e. in one space dimension, we
have the compact embedding H1/2+δ(D) ↪→ Cδ(D), for any δ > 0, and so

M (1)(v) = v(x∗) ≤ ‖v‖sup . ‖v‖H1/2+δ(D), for all v ∈ H1(D).

Hence, Assumption F1 is satisfied for any t∗ < min(1
2 , t) with CF = 1 and q∗ =∞.

In space dimensions higher than one, point evaluation of the pressure u is not a bounded
functional on H1

0 (D). One often regularises this type of functional by approximating the
point value by a local average,

M (2)(v) :=
1
|D∗|

∫
D∗
v(ω, x) dx

[
≈ v(ω, x∗)

]
10



where D∗ is a small subdomain of D that contains x∗ [18]. Here, M (2) satisfies F1 with
CF = 1, t∗ = 1 and q∗ =∞, due to the Cauchy-Schwarz inequality.

Similarly, point evaluations of the flux −a∇u can be approximated by a local average. How-
ever, in this case F1 only holds for t∗ = 0 with CF = amax and q∗ =∞, and the convergence
rate thus is the same as for the H1-seminorm.

Next we give some examples of non–linear functionals. The first obvious example is to estimate
higher order moments of linear functionals.

(b) Second moment of average local pressure: Let Mω be an arbitrary linear functional
and let q > 1. Then

Dv

(
Mω(ṽ)q

)
= lim

ε→0

Mω(ṽ + εv)q −Mω(ṽ)q

ε

= lim
ε→0

(Mω(ṽ) + εMω(v))q −Mω(ṽ)q

ε
= qMω(ṽ)q−1Mω(v).

Thus, in case of the second moment of the average local pressure M (3)
ω (v) :=

(
M (2)(v)

)2
,

this gives

DvM
(3)
ω (ṽ) =

2
|D∗|2

(∫
D∗
v(x) dx

) (∫
D∗
ṽ(x) dx

)
,

and so

|DvM
(3)
ω (u, uh)| = 2

|D∗|2

∣∣∣∣(∫
D∗
v(x) dx

) (∫ 1

0

∫
D∗

(u+ θ(uh − u))(x) dxdθ
)∣∣∣∣

=
1
|D∗|2

∣∣∣∣(∫
D
v(x) dx

) (∫
D

(u(ω, x) + uh(ω, x)) dx
)∣∣∣∣

.
(
‖u(ω, ·)‖L2(D) + ‖uh(ω, ·)‖L2(D)

)︸ ︷︷ ︸
=:CF(ω)

‖v‖L2(D) .

Now, it follows from the Lax-Milgram Theorem that CF(ω) . ‖f(ω, ·)‖H−1(D)/amin(ω), and
so Assumption F1 is satisfied for all t∗ ≤ 1 and q∗ < p∗ .

(c) Outflow through boundary: Consider M (4)
ω (v) := Lω(ψ) − bω(ψ, v), for some given

function ψ ∈ H1(D). Note that for the solution u of (2.4), by Green’s formula, we have

M (4)
ω (u) =

∫
D
ψ(x)f(x, ω) dx−

∫
D
a(ω, x)∇ψ(x) · ∇u(ω, x) dx

= −
∫
D
ψ(x)∇ · (a(ω, x)∇u(ω, x)) dx−

∫
D
a(ω, x)∇ψ(x) · ∇u(ω, x) dx

= −
∫

Γ
ψ(x)a(ω, x)∇u(ω, x) · ν ds . (3.10)

Thus, M (4)
ω (u) is equal to the outflow through the boundary Γ weighted by the function ψ,

and so M (4) can be used to approximate the flux through a part Γout ⊂ Γ of the boundary,
by setting ψ|Γout ≈ 1 and ψ|Γ\Γout

≈ 0, see e.g. [1, 12, 18].
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Note that for f 6≡ 0 this functional is only affine, not linear. When f ≡ 0, then it is linear.
In any case,

DvM
(4)
ω (ṽ) := lim

ε→0

M
(4)
ω (ṽ + εv)−M (4)

ω (ṽ)
ε

= lim
ε→0

−
∫
D a(ω, x)∇ψ(x) · ∇(εv(ω, x)) dx

ε

= −
∫
D
a(ω, x)∇ψ(x) · ∇v(x) dx =

∫
D
v(x)∇ · (a(ω, x)∇ψ(x)) dx ,

for v, ṽ ∈ H1
0 (D). Since this is independent of ṽ, we have in particular

DvM
(4)
ω (u, uh) =

∫
D
v(x)∇ · (a(ω, x)∇ψ(x)) dx.

If we now assume that Assumptions A1-A3 are satisfied for some 0 < t ≤ 1 and that ψ ∈
H1+t(D), then using Theorems 9.1.12 and 6.2.25 in [25] (see also Lemmas A.1 and A.2 in
[6]), we have ∇ψ ∈ Ht(D) and for any t∗ < t,

|DvM
(4)
ω (u, uh)| ≤ ‖∇ · (a(ω, ·)∇ψ) ‖Ht∗−1(D)‖v‖H1−t∗ (D)

. ‖ (a(ω, ·)∇ψ) ‖Ht∗ (D)‖v‖H1−t∗ (D)

. ‖a(ω, ·)‖Ct(D)‖∇ψ‖Ht∗ (D)‖v‖H1−t∗ (D). (3.11)

Hence, Assumption F1 is satisfied, for any q∗ < ∞ and t∗ < t, with CF(ω) = ‖a(ω, ·)‖Ct(D).
If t = 1, then estimate (3.11) holds with t∗ = t = 1, and Assumption F1 is satisfied with
t∗ = 1. Our assumption on ψ is satisfied for example if ψ is linear, which is a suitable choice
for the numerical test in the next section.

Note that the functional 1
Γout

∫
Γout

a(ω, x)∇u(ω, x) · ν ds (or rather its regularised equivalent
over a narrow region near Γout) can only be bounded in H1(D) and thus it will converge with a
slower rate than M

(5)
ω .

3.5 Numerics

We consider two different model problems in 2D, both in the unit square D = (0, 1)2: either (2.1)
with f ≡ 1 and φ ≡ 0, i.e.

−∇ · (a(ω, x)∇u(ω, x)) = 1, for x ∈ D, and u(ω, x) = 0 for x ∈ ∂D, (3.12)

or the mixed boundary value problem

−∇ · (a(ω, x)∇u(ω, x)) = 0, for x ∈ D, (3.13)

u
∣∣
x1=0

= 1, u
∣∣
x1=1

= 0,
∂u

∂ν

∣∣∣
x2=0

= 0,
∂u

∂ν

∣∣∣
x2=1

= 0.

We take a(ω, x) to be a log-normal random field with exponential covariance function (using the
2-norm in (2.3)) and the underlying Gaussian field has mean zero. We choose λ = 0.3 and σ2 = 1.
The finite element solutions are computed on a family of uniform triangular grids Th with mesh
widths h = 1/2, 1/4, . . . , 1/128. The sampling from a(ω, x) is done using a circulant embedding
technique (for details see [11, 20]). To assemble the stiffness matrix we have to use a quadrature
rule. We chose the trapezoidal rule, evaluating the coefficient function at the vertices of the grids.

First, we consider the approximation of the pressure at the centre of the domain for model
problem (3.12). As described in §3.4 for functional M (2), we approximate it by the average of

12



Figure 1: Left plot:
∣∣E [M (2)(uh∗)−M (2)(uh)

]∣∣, for 2D model problem (3.12) with λ = 0.3, σ2 = 1
and h∗ = 1/256. Right plot: Corresponding variance V

[
M (2)(uh)−M (2)(u2h)

]
. The gradient of

the dotted (resp. dashed) line is −1 (resp. −2).

Figure 2: Left plot:
∣∣E [M (2)(uh∗)2 −M (2)(uh)2

]∣∣ for 2D model problem (3.12) with λ = 0.3,
σ2 = 1 and h∗ = 1/256. Right plot: Corresponding variance V

[
M (2)(uh)2 −M (2)(u2h)2

]
. The

gradient of the dotted (resp. dashed) line is −1 (resp. −2).

uh over the region D∗, which is chosen to consist of the six elements (of a uniform grid with
h∗ = 1/256) adjacent to the node at (1/2, 1/2). To estimate the errors we approximated the exact
solution u by a reference solution uh∗ on a grid with mesh width h∗ = 1/256. In Figure 1, we see
that

∣∣E [M (2)(uh∗)−M (2)(uh)
]∣∣ converges linearly in h and V

[
M (2)(uh)−M (2)(u2h)

]
converges

quadratically, as predicted by Lemma 3.4 for the “exact” FE solution. However, in the context
of numerical quadrature this is better than expected (cf. Remark 3.5). This suggests that the
quadrature error is not dominant here. In Figure 2, we estimate the second moment of the same
functional, and see that also in this case we observe the convergence rates predicted by Lemma 3.4.

For the second model problem (3.13), we consider an approximation of the average outflow
through the boundary Γout := {x1 = 1} computed via the functional M (4)

ω in §3.4. As the weight
function we choose the linear function ψ(x) = x1, which is equal to 1 at all nodes on Γout and
equal to 0 at all other Dirichlet nodes. Thus, M (4)

ω (u) is exactly equal to the flow through Γout.
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Figure 3: Left: Plot of
∣∣E[M (4)

ω (uh∗) −M
(4)
ω (uh)

]∣∣, for 2D model (3.13) problem with λ = 0.3,
σ2 = 1, ψ = x1 and h∗ = 1/256. Right: Corresponding variance V

[
M

(4)
ω (uh) −M (4)

ω (u2h)
]
. The

gradient of the dotted (resp. dashed) line is −1 (resp. −2).

As predicted we see again linear convergence in h for
∣∣E[M (4)

ω (uh∗) −M
(4)
ω (uh)

]∣∣, and quadratic
convergence for V

[
M

(4)
ω (uh)−M (4)

ω (u2h)
]

in Figure 3.

4 Level dependent estimators

The key ingredient in the multilevel Monte Carlo algorithm is the telescoping sum (2.9),

E[Qh] = E[Qh0 ] +
L∑
`=1

E[Qh` −Qh`−1
].

Looking at this equation more carefully, we see that we are free to choose how to approximate Q
on the different levels, without violating the above identity, as long as the approximation of Qh`
is the same in the two terms in which it appears on the right hand side, for ` = 0, ..., L − 1. In
particular, this implies that we do not have to approximate Q on level `− 1 in the same way as we
approximate it on level `. We can, for example, approximate the coefficient a(ω, x) differently on
each level, without introducing any additional bias in the final result E[Qh].

This is particularly useful in groundwater flow modelling, where the random fields a(ω, x)
are highly oscillatory and vary on a fine scale. The coarsest grids of the (plain–vanilla) MLMC
estimator will not be able to resolve the coefficient well. As a consequence of this, one needs
to choose the coarsest grid size h0 smaller than a certain threshold to get the MLMC estimator
with the smallest absolute cost. This limits the number of levels and the amount of benefit that
the MLMC estimator potentially offers. Numerical investigations in [8], for example, show that
for log-normal random fields a(ω, x) with exponential, 1-norm covariance function and correlation
length λ, the optimal choice is h0 ≈ λ. A possible solution to this problem, which will allow us to
choose h0 independent of λ and thus achieve higher gains, is to use smoother approximations of
the coefficient on the coarser levels. We will present one way of doing this in §4.1, where we use
level-dependent truncations of the Karhunen-Lòeve expansion of a(ω, x).

Before we go on to analyse the level-dependent estimators for log–normal coefficient fields, we
would like to point out that even though this strategy does not introduce any additional bias in
the final result E[Qh], it may influence the values of the convergence rates α and β in Theorem 2.5.
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One has to be careful not to introduce any additional model/approximation errors that decay at a
slower rate than the discretisation error.

4.1 Truncated KL-expansions

As an exemplary case, let us now consider log-normal random fields with exponential, 1-norm
covariance, i.e. covariance function (2.3) with ‖x‖ = ‖x‖1 :=

∑d
i=1 |xi|. We will comment on the

general case at the end of the section.
For a Gaussian random field g, the Karhunen-Lòeve (KL) expansion is an expansion in terms

of a countable set of independent, standard Gaussian random variables {ξn}n∈N. It is given by

g(ω, x) = E [g(ω, x)] +
∞∑
n=1

√
θnbn(x)ξn(ω),

where {θn}n∈N are the eigenvalues and {bn}n∈N are the corresponding normalised eigenfunctions
of the covariance operator with kernel function

C(x, y) := E
[
(g(ω, x)− E[g(ω, x)])(g(ω, y)− E[g(ω, y)])

]
.

For more details on the derivation, see e.g. [13].
The log-normal coefficient field shall then be written as

a(ω, x) = exp

[
E [g(ω, x)] +

∞∑
n=1

√
θnbn(x)ξn(ω)

]
,

and the random fields resulting from truncated expansions with K ∈ N terms shall be denoted by

gK(ω, x) := E [g(ω, x)] +
K∑
n=1

√
θnbn(x)ξn(ω) and aK(ω, x) := exp [gK(ω, x)] .

Moreover, we denote by uK ∈ H1
φ(D) the weak solution to

−∇ · (aK(ω, x)∇uK(ω, x)) = f(ω, x), for x ∈ D, (4.1)
uK(ω, x) = φj(ω, x), for x ∈ Γj .

i.e. our model problem (2.1) with the coefficient a replaced by its K-term approximation. The
finite element approximation of uK in Vh,φ is denoted by uK,h. It has been shown in [5, 6] that in
the case of the 1-norm exponential covariance, Assumptions A1–A2 are satisfied also for aK , for
any t < 1/2 (independent of K). Therefore the theory in the earlier sections applies also to (4.1).

Since the convergence with respect toK is quite slow (see below), to get a good approximation to
E[Qh] we need to include a large number of terms on the finest grid, both in the case of the standard
and the MLMC estimator. However, as mentioned at the beginning of this section, we are free in the
MLMC estimator to choose different approximations of a(ω, x) on the coarser levels. In particular,
we can choose to include fewer terms in the KL-expansion above. The eigenvalues {θn}n∈N are
all non–negative with

∑
n≥1 θn < +∞. If we order them in decreasing order of magnitude, the

corresponding eigenfunctions {bn}n∈N will be ordered in increasing order of oscillations over D.
By truncating the KL-expansion after K` < K terms, we are hence disregarding the contributions
of the most oscillatory eigenfunctions, and aK`(ω, x) is a smoother approximation of a(ω, x) than
aK(ω, x) leading to FE problems that can be solved more accurately on the coarser levels. The
key question is then, how we should choose K` in terms of ` (or equivalently h`). As an example
of how to determine a suitable strategy, we make use of the following results from [5, 6] on the
convergence of uK,h to u in the 1-norm exponential covariance case. See below for comments on
strategies for other fields.
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Proposition 4.1. Let a be a log–normal random field with 1-norm exponential covariance, and
suppose that Assumption A3 is satisfied for some p∗ ∈ (0,∞] and for t ≥ 1/2. Then,

‖u−uK,h‖Lp(Ω,H1
0 (D)) . Ca,f,φj

(
hs +K−s

)
and ‖u−uK,h‖Lp(Ω,L2(D)) . Ca,f,φj

(
h2s +K−s

)
,

for all p < p∗ and 0 < s < 1/2. The hidden constant is independent of h and K.

As in the previous sections this result can again be extended in a straightforward way to
functionals.

Corollary 4.2. Let the assumptions of Proposition 4.1 be satisfied and suppose that for the trun-
cated problem (4.1) and for the functional Mω(·) we have Assumption F1 satisfied with t∗ ≥ 1

2
and q∗ ∈ (0,∞], i.e. Mω is Fréchet differentiable and DvMω(uK , uK,h) is bounded in H1−t∗(D).
Assume further that there exists C ′F ∈ Lq∗(Ω) such that DvMω(u, uK) ≤ C ′F ‖v‖H1(D), for all
v ∈ H1

0 (D). Then

‖Mω(u)−Mω(uK,h)‖Lp(Ω) . Ca,f,φj ,CF ,C′F

(
h2s +K−s

)
,

for any p <
(

1
p∗

+ 1
q∗

)−1
and 0 < s < 1/2. The hidden constant is again independent of h and K.

Proof. First note that due to the triangle inequality, we have of course

|Mω(uK,h)−Mω(u)| ≤ |Mω(uK,h)−Mω(uK)| + |Mω(uK)−Mω(u)| (4.2)

As noted above, it follows from [5, §7] that Assumptions A1–A2 are satisfied for the truncated
expansion aK of a log–normal random field with 1-norm exponential covariance. Since Assump-
tion A3 is also assumed to hold, it follows as in Proposition 3.4 from Hölder’s inequality that the

Lp–norm of the first term in (4.2) is O(h2s), for any p <
(

1
p∗

+ 1
q∗

)−1
and 0 < s < 1/2, with a

constant that is independent of h and K.
To bound the second term in (4.2), we can use (3.5) so that by assumption

|Mω(u)−Mω(uK)| = Du−uKMω(u, uK) ≤ C ′F ‖u− uK‖H1(D) . (4.3)

It follows from [6, Proposition 2.8] that ‖u − uK‖H1(D) ≤ Ca,f,φjK
−s, for any 0 < s < 1/2.

Thus, Hölder’s inequality implies again that the Lp–norm of the second term is O(K−s), for any

p <
(

1
p∗

+ 1
q∗

)−1
and 0 < s < 1/2, with a constant that is independent of h and K. Note that

in (4.3) we cannot exploit Galerkin orthogonality to get a doubling of the convergence rate with
respect to K, since u and uK are solutions to two problems with different bilinear forms.

As expected, these results suggest that to balance out the two error contributions, we should
choose K` as a power of h`. Note that a similar strategy was already suggested in the context
of the related Brinkman problem in [19]. However, there, a certain decay rate for the FE error
with respect to the number of KL-modes K was assumed. Here we make no such assumption and
instead use Proposition 4.1. For the simple functional M(u) := |u|H1(D), Proposition 4.1 implies
K` & h−1

` . For other functionals, that satisfy Assumption F1 with t∗ ≥ t, Corollary 4.2 implies
that we should choose K` & h−2

` . If we do this, we have the following results for the multilevel
Monte Carlo convergence rates in Theorem 2.5.

Proposition 4.3. Provided Assumption F1 is satisfied with t∗ ≥ 1
2 and K` & h−2

` , for all ` =
0, . . . , L, then the convergence rate of the multilevel Monte Carlo method in §2.2 does not deteriorate
when approximating the functional Mω(uh`) by Qh` := Mω(uK`,h`) on each level `. In particular,
let the assumptions of Corollary 4.2 be satisfied with p∗ > 2 and q∗ > 2p∗

p∗−2 . Then the Assumptions
M1–M2 in Theorem 2.5 hold for any α < 1 and β < 2. If Assumption F1 is satisfied only for some
t∗ < 1/2, then K` & h

−(1+2t∗)
` is a sufficient condition.
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Proof. The proof is analogous to that of Proposition 3.4 using the result in Corollary 4.2. The final
statement follows from Remark 3.5.

As before, in the presence of quadrature error (cf. Remark 3.5), we will not be able to get
O(h2s) convergence for the first term in (4.2) for the approximate finite element solution ũK,h.
Due to the loss of Galerkin orthogonality for the primal problem, it is in general only possible to
prove |Mω(u) −Mω(ũK,h)| = O (hs +K−s) . Thus with the quadrature error taken into account
the optimal choice is K` & h−1

` for all functionals and we will always use that in our numerical
tests in the next section. Higher rates of convergence can again be recovered, if the random field
a(ω, x) is more regular.

Let us finish this section with some comments on truncated expansions aK = exp(gK) of log–
normal fields with other covariance functions. The convergence rate of |Mω(u)−Mω(uK)| depends
in general on the rate of decay of the KL-eigenvalues θn and on the rate of growth of ‖∇bn‖∞.
If we assume that |Mω(uK) −Mω(uK,h)| = O(hs) and |Mω(u) −Mω(uK)| = O(K−σ), for some
0 < s ≤ 1 and 0 < σ < ∞, then the number of KL-terms in a multilevel Monte Carlo method
on each level should satisfy K` & h

− s
σ

` . For smoother fields (e.g. with covariance functions from
the Matérn class), s

σ will usually be significantly smaller than 1, and thus the number of KL-terms
only needs to grow very slowly from level to level.

However, the only other rigorous results regarding convergence rates for truncated expansions
aK = exp(gK) of log–normal fields – except those for the 1-norm exponential covariance above –
are for the case of a Gaussian covariance function

E
[
(g(ω, x)− E[g(ω, x)])(g(ω, y)− E[g(ω, y)])

]
= σ2 exp(−‖x− y‖2/λ2) (4.4)

for g with σ2 and λ as in (2.3). In this case, provided the mean is sufficiently smooth, we in fact
have a(ω, ·) ∈ C∞(D) and

|Mω(u)−Mω(uK,h)| . Ca,f,φj

(
h2 + exp

(
− c1K

1/d
))
,

for some c1 > 0 (cf. [6]), where d is again the spatial dimension. Thus, K` only needs to be
increased logarithmically with h−d` in this case.

However, all these results are asymptotic results, as h` → 0, and thus they only guarantee
that level-dependent truncations do not deteriorate the performance of the multilevel Monte Carlo
method asymptotically as the tolerance ε→ 0. The real benefit of using level-dependent truncations
is in absolute terms for a fixed tolerance ε, since the smoother fields potentially allow the use of
coarser levels and thus significant gains in the absolute cost of the algorithm. In the next section,
we see that this is in fact the case and we show the gains that are possible, especially for covariance
functions with short correlation length λ.

4.1.1 Numerics

To be able to deal with very short correlation lengths in a reasonable time, we start with the 1D
equivalent of model problem (3.12), on D = (0, 1). We take a to be a log–normal random field
with 1–norm exponential covariance function (2.3), with correlation length λ = 0.01 and variance
σ2 = 1. We will present results for two different modelling regimes for a: one in which the number
of modes included is fixed at K, independent of h`, and one in which the number of modes K` is
chosen dependent on the mesh size h`. In order to make the two regimes comparable, we choose
K` such that both regimes include the same number of modes (i.e. K` = K) on the finest grid
considered.
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Figure 4: Left: Plot of E
[
M (1)(uh)

]
and |E

[
M (1)(uh∗)− |M (1)(uh)

]
|, for model problem (3.12)

with d = 1, λ = 0.01, σ2 = 1, K` = h−1
` , h∗ = 1/4096, K∗ = 4096 and x∗ = 2049/4096. Right:

Corresponding variances V
[
M (1)(uh)

]
and V

[
M (1)(uh)−M (1)(u2h)

]
.

Figure 5: Plot of cost versus 1/h for a fixed tolerance of the sampling error of δ = 10−3, for model
problem (3.12) with d = 1, λ = 0.01, σ2 = 1 and K` = h−1

` . The quantity of interest is M (1)(u)
with x∗ = 2049/4096.

Figures 4 and 5 show results for the point evaluation of the pressure at x = 2049/4096, i.e.
M (1)(u) from §3.4 with x∗ = 2049/4096. Similar gains can be obtained for other quantities of
interest.

Let us start with Figure 4. The number of modes included in the regime with a fixed number
of modes is K = 2048, and for the level–dependent regime we choose K` = h−1

` . The reference
value Qh∗ is computed with h∗ = 1/4096 and K∗ = 4096. In the left plot, we see that even though
dropping modes leads to a larger bias on the coarser grids, the fact that we chose K` = K on the
finest grid ensures that the bias is the same on this grid. It is the plot on the right that gives us
information about the coarsest level we should include in the multilevel estimator. If we are in
a situation where V[Qh` − Qh`−1

] ≥ V[Qh` ], then there is no benefit including level ` − 1 in the
multilevel estimator, since it would only increase the cost of the estimator. Looking at the right
plot in Figure 4, it is then clear that for the regime with a fixed number of modes on each level,
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we should not include any levels coarser than h0 = 1/64 (≈ λ) in the estimator, as was already
observed in [8]. With the level–dependent regime, however, it is viable to include levels as coarse
as h0 = 1/2. This leads to significant reductions in computational cost, as is shown in Figure 5.

In Figure 5, we fix the required tolerance for the sampling error (i.e. the standard deviation of
the estimator) at δ = 10−3, and look at how the cost of the different estimators grows as we decrease
the mesh size h of the finest grid. The computational cost of the multilevel estimator is calculated
as N0h

−1
0 +

∑L
`=1N`(h−1

` + h−1
`−1) work units, since we know that γ = 1 in (M3) for d = 1. To

make the estimators comparable, on each grid h`, the standard Monte Carlo estimator is computed
with K` modes, the ”MLMC keep” estimator is computed with K = K` modes on all levels, and
the ”MLMC drop” estimator is computed with a varying number K` = h−1

` modes on the levels.
We clearly see the benefit of using the level–dependent multilevel estimator. For example, on the
grid of size h = 1/2048, the cheapest multilevel estimator with a fixed number of modes is the 4
level estimator, which has a cost of 8.6× 105 work units. The cheapest level–dependent multilevel
estimator, on the other hand, is the 7 level estimator, whose computational cost is only 1.8× 105

units. For comparison, the cost of the standard estimator on this grid is 2.8× 106 units.
An important point we would like to make here, is that not only do the level–dependent

estimators have a smaller absolute cost than the estimators with a fixed number of modes, they
are also a lot more robust with respect to the coarse grids included. On the h = 1/2048 grid, the
11 level estimator (i.e. h0 = 1/2) with fixed K, costs 1.1× 107 units, which is 4 times the cost of
the standard MC estimator. The 11 level estimator with level–dependent K` costs 2.4× 105 units,
which is only marginally more than the best level–dependent estimator (the 7 level estimator).

For practical purposes, the real advantage of the level–dependent approach is evident on coarser
grids. We see in Figure 5 that on grids coarser than h = 1/256, all multilevel estimators with a fixed
number of modes are more expensive than the standard MC estimator. With the level–dependent
multilevel estimators on the other hand, we can make use of (and benefit from) multilevel estimators
on grids as coarse as h = 1/64. This is very important, especially in the limit as the correlation
length λ → 0, as eventually all computationally feasible grids will be ”coarse” with respect to λ.
With the level–dependent estimators, we can benefit from the multilevel approach even for very
small values of λ.

Let us now move on to a model problem in 2D. We will study the flow cell model problem (3.13)
on D = (0, 1)2, and take the outflow functional M (4)

ω (u) from §3.4 as our quantity of interest. As
in §3.5, we choose the weight function ψ = x1. We choose a to be a log–normal random field with
1–norm exponential covariance function (2.3), with λ = 0.1 and σ2 = 1.

Figure 6 is similar to Figure 4. The number of modes included in the regime with a fixed
number of modes is K = 512, and in the level–dependent regime we include K` = 4h−1

` modes on
each level. The reference value Qh∗ is computed with h∗ = 1/256 and K∗ = 1024. As before, the
coarsest level which should be included in the multilevel estimator can be estimated from the right
plot in Figure 6. For the regime with a fixed number of modes, it is clear that no grids coarser
than h0 = 1/8 should be included in the multilevel estimator. For the level–dependent regime, it
is viable to include grids as coarse as h0 = 1/2.

In Figure 7, we see the gains in computational cost that are possible with the level–dependent
estimators. The results shown are calculated with a Matlab implementation on a 3GHz Intel Core
2 Duo E8400 processor with 3.2GByte of RAM, using the sparse direct solver provided in Matlab
through the standard backslash operation to solve the linear systems for each sample. Since we do
not know the value of γ in (M3) theoretically, we quantify the cost of the estimators by the CPU–
time. On the finest grid h = 1/256, we clearly see a benefit from the level–dependent estimators.
The cheapest multilevel estimator with a fixed number of modes is the 5 level estimator, with takes
13.5 minutes. The cheapest level–dependent estimator is the 7 level estimator, which takes only
2.5 minutes. For comparison, the standard MC estimator takes more than 7.5 hours.
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Figure 6: Left: Plot of
∣∣E[M (4)

ω (uh∗)
]∣∣ and

∣∣E[M (4)
ω (uh∗) −M

(4)
ω (uh)

]∣∣, for model (3.13) problem
with d = 2, λ = 0.1, σ2 = 1, ψ = x1, K` = 4h−1

` , h∗ = 1/256 and K∗ = 1024. Right: Corresponding
variances V

[
M

(4)
ω (uh)

]
and V

[
M

(4)
ω (uh)−M (4)

ω (u2h)
]
.

Figure 7: Plot of CPU-time versus 1/h for a fixed tolerance of the sampling error of δ = 10−3, for
model problem (3.13) with d = 2, λ = 0.1, σ2 = 1 and K` = 4h−1

` . The quantity of interest is
M

(4)
ω (u), with ψ = x1.

5 Domains with corners and discontinuous coefficients

We now come to the last and most technical part of the paper. The first aim is to prove Theorem 2.2,
i.e. to extend the regularity results in [6] to piecewise C2 domains. In this situation, the solution
u can have singularities near the non–smooth parts of the boundary Γ, i.e. near corners in 2D and
near corners and edges in 3D. These singularities can reduce the overall regularity of u, and hence
need to be analysed. However, we will see in §5.1 that under Assumptions A1-A2, this question can
be reduced to analysing the singularities of the Laplace operator on D. We will follow [23, §5.2],
and as in [6] we will again establish the result first “pointwise” almost surely in ω ∈ Ω. The key
technicality will again be to track how the constants in all the necessary estimates, in particular
in the semi-Fredholm property of the underlying random differential operator, depend on ω.

In §5.2, we then extend the results also to the practically very important case where the
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coefficient a(ω, x) is discontinuous. This is of interest for example in subsurface flow modelling,
where one often deals with layered media. If a(ω, ·) is piecewise Hölder continuous, then the
regularity results from Theorem 2.2 and §5.1 will still hold on each of the subdomains, but no
longer globally on the entire domain. The aim of §5.2 is to formulate an assumption similar to
Assumption A2, under which we can conclude on the global regularity of u also in the case of
discontinuous coefficients.

5.1 Regularity of random differential operators in domains with corners

Let us recall that D was assumed to be a bounded, Lipschitz polygonal/polyhedral domain in Rd,
d = 2, 3, and that λ∆(D) ∈ (0, 1] is the largest number such that for all 0 < s ≤ λ∆(D), s 6= 1

2 ,
the Laplace operator with homogeneous Dirichlet boundary conditions is surjective as an operator
from H1+s(D)∩H1

0 (D) to Hs−1(D) (cf. Definition 2.1). As in [23, §5.2], for simplicity we actually
consider D to be a piecewise C2 domain and restrict ourselves for the most part to R2. However,
we will also comment on the case d = 3 in Remark 5.4(c) below. We again write the boundary Γ as
Γ = ∪mj=1Γj , where now in 2D each Γj is an open arc of curve of class C2, and Γj meets Γj+1 at Sj
(where we identify Γm+1 and Γ1). We consider only domains with boundaries that are rectilinear
near the corners, which of course includes Lipschitz polygonal/polyhedral domains. This means
that at each corner Sj , we can find a polygonal domain Wj ⊂ D such that the boundary ∂Wj

coincides with Γ near Sj .
Applying the Lax-Milgram Theorem, a unique variational solution u(ω, ·) ∈ H1

0 (D) to our
model problem (2.1) in the curvilinear polygon D exists, for almost all ω ∈ Ω (i.e. for all ω ∈ Ω
with amin(ω) > 0 and amax(ω) < ∞). Using Assumptions A1–A3, we can conclude as in [6] that
u ∈ Lp(Ω, H1

0 (D)), for all p < p∗. The fact that D is no longer C2 is of no relevance here. To prove
more spatial regularity on u, we will now follow the proof in §5.2 of [23].

For a given ω ∈ Ω, with amin(ω) > 0 and amax(ω) <∞, we define the differential operator

Aωu = −∇ · (a(ω, ·)∇u)).

The following key result, which is based on [28, Theorem 5.26], is proved via a homotopy method
in the proof of [23, Lemma 5.2.5], for s = 1. The proof for s < 1 is analogous.

Lemma 5.1. Let m = 1 and ω ∈ Ω. If 0 < s ≤ λ∆(D) and if there exists Csemi(ω) > 0 such that

‖v‖H1+s(D) ≤ Csemi(ω)‖Aωv‖Hs−1(D), for all v ∈ H1+s(D) ∩H1
0 (D), (5.1)

then Aω is surjective from H1+s(D) ∩H1
0 (D) to Hs−1(D).

Thus, if we can establish (5.1), which essentially means that Aω is semi-Fredholm as an operator
from H1+s(D) ∩ H1

0 (D) to Hs−1(D), for some s ≤ λ∆(D), then we can also conclude on the
regularity of solutions of the stochastic variational problem (2.1). The following lemma essentially
follows [23, Lemma 5.2.3]. However, in the case of a random coefficient, we crucially need to make
sure that the constant Csemi(ω) in (5.1) has sufficiently many moments as a random field on Ω. To
ensure this we need to carefully track the dependence on a in the bounds in [23, Lemma 5.2.5].

Lemma 5.2. Let m ∈ N and let Assumptions A1 –A2 hold for some 0 < t ≤ 1. Then (5.1) holds
for all 0 < s < t and s ≤ λ∆(D), s 6= 1

2 , with

Csemi(ω) :=
amax(ω)‖a(ω, ·)‖2Ct(D)

amin(ω)4
. (5.2)

In the case t = λ∆(D) = 1, (5.1) also holds for s = 1, i.e. for the H2(D)-norm.
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Proof. We first consider the case where m = 1 and t = λ∆(D) = 1. Note that the case m = 1 is all
that is needed to prove Lemma 5.1. We prove the more general case m ∈ N so that we can apply
the bound (5.1) to any polygonal domain in the proof of Theorem 2.2. For ease of notation, we
suppress the dependence on ω in the coefficient, and denote Aω simply by A and a(ω, x) by a(x).

We will prove (5.1) by combining the regularity results of A in C2 domains, with regularity
results of the Laplace operator −∆ on polygonal domains. Since we assume that Γ is rectilinear
near S1, we can find a polygonal domain W such that W ⊂ D and ∂W coincides with Γ near S1.
Let v ∈ H2(D)∩H1

0 (D) and let η be a smooth cut-off function with support in W , such that η ≡ 1
near S1 and then consider ηv and (1− η)v separately. We start with ηv.

Let w ∈ H2(W )∩H1
0 (W ). Since λ∆(D) = 1, we have for any polygonal domain W the estimate

‖w‖H2(W ) . ‖∆w‖L2(W ) , (5.3)

where the hidden constant depends only on W (cf. [23]). Hence,

a(S1) ‖w‖H2(W ) . ‖Aw‖L2(W ) + ‖Aw − a(S1) ∆w‖L2(W )

. ‖Aw‖L2(W ) + |(a(·)− a(S1))∇w|H1(W ) .

Now, using [6, Lemma A.2] (see also Theorem 6.2.25 in [25]) we get

a(S1) ‖w‖H2(W ) . ‖Aw‖L2(W ) + |a|C1(W )|w|H1(D) + ‖a− a(S1)‖C0(W )‖∇w‖H1(W ) . (5.4)

Using integration by parts and the fact that w = 0 on ∂W , we have

amin |w|2H1(W ) ≤
∫
W
a|∇w|2 dx =

∫
W
w∇ · (a∇w) dx

and so via the Cauchy-Schwarz and the Poincaré inequalities

|w|H1(W ) .
1

amin
‖Aw‖L2(W ). (5.5)

Denote now by C the best constant such that (5.4) holds. Since a was assumed to be in C1(W ),
we can choose W (and hence the support of η) small enough so that

C‖a− a(S1)‖C0(W ) ≤
1
2
a(S1) (5.6)

Then, substituting (5.5) and (5.6) into (5.4) and using ‖∇w‖H1(W ) ≤ ‖w‖H2(W ) and amin ≤ amax

we have

a(S1) ‖w‖H2(W ) ≤ 2C

(
1 +
|a|C1(W )

amin

)
‖Aw‖L2(W ) .

‖a‖C1(W )

amin
‖Aw‖L2(W ) . (5.7)

Since v ∈ H2(D) ∩ H1
0 (D) and W contains the support of η, we have ηv ∈ H2(W ) ∩ H1

0 (W )
and so estimate (5.7) applies to ηv. Thus

‖ηv‖H2(D) .
‖a‖C1(W )

a2
min

‖A(ηv)‖L2(W ).

Let us move on to (1− η)v. Let D′ ⊂ D be a C2 domain that coincides with D outside of the
region where η = 1. This is always possible due to our assumptions on the geometry of D near S1.
Then (1− η)v ∈ H2(D′) ∩H1

0 (D′), and using [6, Proposition 3.1] we have

‖(1− η)v‖H2(D) .
amax‖a‖C1(D

′
)

a3
min

‖A ((1− η)v) ‖L2(D′).

22



Adding the last two estimates together and using the triangle inequality, we have

‖v‖H2(D) .
‖a‖C1(D)

a2
min

(
‖A(ηv)‖L2(W ) +

amax

amin
‖A((1− η)v)‖L2(D′)

)
. (5.8)

It remains to bound the term in the bracket on the right hand side of (5.8) in terms of ‖Av‖L2(D).
Note that

A(ηv) = η(Av) + 2a∇η · ∇v + (Aη)v.

Thus, applying the triangle inequality and using the fact that η was assumed to be smooth with
0 ≤ η ≤ 1, we get

‖A(ηv)‖L2(W ) . ‖Av‖L2(W ) + amax|v|H1(W ) + ‖a‖C1(D)‖v‖L2(W ). (5.9)

The hidden constant depends on ‖∇η‖L∞(W ) and on ‖∆η‖L∞(W ). Finally using Poincaré’s inequal-
ity on all of D, as well as an elliptic estimate similar to (5.5) for v, i.e. |v|H1(D) ≤ ‖Av‖L2(D)/amin,
leads to

‖A(ηv)‖L2(W ) .
‖a‖C1(D)

amin
‖Av‖L2(D).

Substituting this and the corresponding bound for ‖A((1− η)v)‖L2(D′) into (5.8), we finally get

‖v‖H2(D) .
amax‖a‖2C1(D)

a4
min

‖Av‖L2(D)

for all v ∈ H2(D) ∩H1
0 (D). This completes the proof for the case m = 1 and t = λ∆ = 1.

The proof for t < 1 and/or λ∆(D) < 1 follows exactly the same lines. Instead of (5.3), we start
with the estimate

‖w‖H1+s(W ) . ‖∆w‖Hs−1(W ), (5.10)

which holds for any 0 < s ≤ λ∆(D), s 6= 1
2 , and the hidden constant depends again only on W

(cf. [3] for example). Using [6, Lemma A.1] (see also Theorem 9.1.12 in [25]), one can derive the
following equivalent of (5.4), for any s 6= 1

2 :

a(S1) ‖w‖H1+s(W ) . ‖Aw‖Hs−1(W ) + |a|Ct(W )|w|H1(W ) + ‖a− a(S1)‖C0(W )‖∇w‖Hs(W ) .

As before, the |w|H1(W ) term can be bounded using integration by parts, Hölder’s inequality and
the Poincaré inequality:

amin |w|2H1(W ) ≤ ‖w‖H1−s(W )‖Aw‖Hs−1(W ) . ‖w‖H1(W )‖Aw‖Hs−1(W ) . |w|H1(W )‖Aw‖Hs−1(W ).

The remainder of the proof requires only minor modifications.
The case m > 1 is treated by repeating the above procedure with a different cut–off function ηj

at each corner Sj . Estimate (5.7) applies to ηjv, for all j = 1, . . . ,m, and the regularity estimate
for C2 domains from [6] applies to (1−

∑n
j=1 ηj)v.

Remark 5.3. Lemma 5.2 excludes the case s = 1
2 . However, an inequality very similar to (5.1)

can easily be proved also in this case. Since ‖v‖H1+s(D) ≤ ‖v‖H1+t(D), for any s ≤ t, ‖v‖H3/2(D)

can also be bounded, as in (5.1), if the H1/2(D)–norm on the right hand side is replaced by the
H1/2+δ(D)–norm, for some δ > 0.

We are now ready to prove Theorem 2.2 for d = 2. For the case d = 3, see Remark 5.4(c).
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Proof of Theorem 2.2. Let d = 2 and suppose u = u(ω, ·) is the unique solution of (2.1). Let us
first consider the case φ ≡ 0. In this case, the fact that u ∈ H1+s(D) ∩H1

0 (D) and the bound on
‖u‖H1+s(D) in (2.6) follow immediately from Lemmas 5.1 and 5.2, for any s < t and s ≤ λ∆(D), as
well as for s = 1 if t = λ∆(D) = 1, since f = Au.

The case φ 6= 0 now follows from a simple trace theorem, see e.g. §1.4 in [24]. We will only
show the proof for t = λ∆(D) = 1 in detail. Due to Assumption A3 we can choose φ ∈ H2(D)
with ‖φ‖H2(D) .

∑m
j=1 ‖φj‖H3/2(Γj)

, and so f0 := f −Aφ ∈ L2(D). Since u0 := u− φ ∈ H1
0 (D) we

can apply the result we just proved for the case φ ≡ 0 to the problem Au0 = f0 to get

‖u0‖H2(D) . Csemi(ω)
(
‖Au0‖L2(D) + ‖Aφ‖L2(D)

)
. Csemi(ω)

(
‖f‖L2(D) + ‖a‖C1(D) ‖φ‖H2(D)

)
,

where in the last step we have again used [6, Lemma A.2]. The claim of the Theorem for φ 6≡ 0
then follows by the triangle inequality.

Remark 5.4. (a) The behaviour of the Laplace operator near corners is described in detail in
[23, 24]. In particular, in the pure Dirichlet case for convex domains we always get λ∆(D) = 1.
For non-convex domains λ∆(D) = minmj=1 π/θj , where θj is the angle at corner Sj . Hence,
λ∆(D) > 1/2 for any Lipschitz polygonal domain.

(b) In a similar manner one can prove regularity of u also in the case of Neumann and mixed
Dirichlet/Neumann boundary conditions provided the boundary conditions are compatible,
like in our model problem (3.13). For example, in order to apply the same proof technique
used here at a point where a Dirichlet and a homogeneous Neumann boundary meet, we can
first reflect the problem and the solution across the Neumann boundary. Then we apply the
above theory on the union of the original and the reflected domain. The regularity for the
Laplacian is in general lower in the mixed Dirichlet/Neumann case than in the pure Dirichlet
case. In particular, λ∆(D) = minmj=1

π
2θj

in the mixed case in 2D and so full regularity (i.e.
λ∆(D) = 1) is only possible, if all angles are less than π/2. For an arbitrary Lipschitz
polygonal domain we can only guarantee λ∆(D) > 1/4.

(c) The 3D case is similar, but in addition to singularities at corners (for which the analysis is
identical to the above) we also need to consider edge singularities. This is a bit more involved
and we refer to [23, §8.2.1] for more details. However, provided D is convex, we obtain again
λ∆(D) = 1 always in the pure Dirichlet case.

5.2 Discontinuous coefficients

We now shift our attention from the domain D to the random coefficient a(ω, x). In practice, one
is often interested in models with discontinuous coefficients, e.g. modelling different rock strata
in the subsurface. Such coefficients do not satisfy Assumption A2, and the regularity results from
Theorem 2.2 can not be applied directly. However, this loss of regularity is confined to the interface
between different strata and it is still possible to prove a limited amount of regularity even globally.

Let us consider (2.1) on a Lipschitz polygonal domain D ⊂ R2 that can be decomposed into
disjoint Lipschitz polygonal subdomains Dk, k = 1, . . . ,K. Let PCt(D) ⊂ L∞(D) denote the space
of piecewise Ct functions with respect to the partition {Dk}Kk=1 (up to the boundary of each region
Dk). We replace Assumption A2 by the following milder assumption on the coefficient function a:

A2*. a ∈ Lp(Ω, PCt(D)), for some 0 < t ≤ 1 and for all p ∈ (0,∞).
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Our regularity results for discontinuous coefficients rely on the following result from [23, 31].
The proof of this result uses the fact that for 0 ≤ s < 1/2, w ∈ Hs(Di) if and only if the extension
w̃ of w by zero is in Hs(Rd).

Lemma 5.5. Let v ∈ H1(D) and s < 1/2, and suppose that v ∈ H1+s(Dk), for all k = 1, . . . ,K.
Then v ∈ H1+s(D) and

‖v‖H1+s(D) = ‖v‖H1(D) +
K∑
k=1

|v|H1+s(Dk) .

Thus, we cannot expect more than H3/2−δ(D) regularity globally in the discontinuous case.
However, as in the case of continuous fields, the regularity of the solution will also depend on
the parameter t in Assumptions A2* and A3 (i.e. on the Hölder/Sobolev regularity of a and f ,
respectively), as well as on the behaviour of Aω at any singular points. Since Lemma 5.5 restricts
us to s < 1/2 and since λ∆(D) > 1/2 for any Lipschitz polygonal D in the case of a pure Dirichlet
problem, we do not have to worry about corners. Instead we define the set of singular (or cross)
points S× := {S×` : ` = 1, . . . , L} to consist of all points S×` in D where three or more subdomains
meet, as well as all those points S×` on ∂D where two or more subdomains meet. By the same
arguments as in §5.1, the behaviour of Aω at these singular points is again fully described by
studying transmission problems for the Laplace operator, i.e. elliptic problems with piecewise
constant coefficients, locally near each singular point (cf. [30, 9, 31]).

Definition 5.6. Denote by T (α1, . . . , αK) the operator corresponding to the transmission problem
for the Laplace operator with (constant) material parameter αk on subdomain Dk, k = 1, . . . ,K.
Let 0 ≤ λT (D) ≤ 1 be such that T (α1, . . . , αK) is a surjective operator from H1+s(D) ∩H1

0 (D) to
Hs−1(D), for any choice of α1, . . . , αK and for s ≤ λT (D), s 6= 1/2. In other words, λT (D) is a
bound on the order of the strongest singularity of T (α1, . . . , αK).

Without any assumptions on the partition {Dk}Kk=1 or any bounds on the constants {αk}Kk=1

it is in general not possible to choose λT (D) > 0. However, if no more than three regions meet at
every interior singular point and no more than two at every boundary singular point, then we can
choose λT (D) ≤ 1/4. If in addition each of the subregions Dk is convex, then we can choose any
λT (D) < 1/2, which due to the restrictions in Lemma 5.5 is the maximum we can achieve anyway.
See for example [30, 9, 31] for details.

The following is an analogue of Theorem 2.2 on the regularity of the solution u of (2.1) for
piecewise Ct coefficients. All the other results on the finite element convergence error discussed
above follow of course again from this.

Theorem 5.7. Let D ⊂ R2 be a Lipschitz polygonal domain and let λT (D) > 0. Suppose Assump-
tions A1, A2* and A3 hold with t ≤ 1. Then, the solution u of (2.1) is in Lp(Ω, H1+s(D)), for
any 0 < s < t such that s ≤ λT (D) and for all p < p∗.

Proof. Let us first consider φ ≡ 0 again. Then, the existence of a unique solution u(ω, ·) ∈ H1(D)
of (2.1) follows again from the Lax-Milgram Theorem, for almost all ω ∈ Ω. Also note that
restricted to Dk the transmission operator T (α1, . . . , αK) = αk∆, for all k = 1, ...,K. Therefore,
using Assumption A2* we can prove as in §5.1 via a homotopy method that u(ω, ·) restricted to
Dk is in H1+s(Dk), for any s < t and s ≤ λT (D), for almost all ω ∈ Ω. The result then follows
from Lemma 5.5 and an application of Hölder’s inequality. The case φ 6≡ 0 follows as in the proof
to Theorem 2.2 via a trace estimate.

As an example of a random coefficient that satisfies Assumption A2* for any t < 1/2, we can
consider a piecewise log-normal random field a = exp(g) such that g|Dk := gk, for all k = 1, . . . ,K,
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where each gk is a Gaussian random field with mean µk(x) and exponential covariance function

E
[
(gk(ω, x)− µk(x)])(gk(ω, y)− µk(y))

]
= σ2

k exp(−‖x− y‖/λk).

In a similar manner, if we let each gk be a Gaussian field with mean µk ∈ C1(D) and Gaussian
covariance function

E
[
(gk(ω, x)− µk(x)])(gk(ω, y)− µk(y))

]
= σ2

k exp(−‖x− y‖2/λ2
k).

we have Assumption A2* is satisfied for any t ≤ 1. The mean µk(x), the variance σ2
k and the

correlation length λk can be vastly different from one subregion to another.

5.2.1 Numerics

A rock formation which is often encountered in applications is a channelised medium. To simulate
this, we divide D into 3 horizontal layers, and model the permeabilities in the 3 layers by two dif-
ferent log–normal distributions. The middle layer, which has a higher mean permeability, occupies
the region {1/3 ≤ x2 ≤ 2/3}. The parameters in the top and bottom layer are taken to be µ1 = 0,
λ1 = 0.3 and σ2

1 = 1, and for the middle layer we take µ2 = 4, λ2 = 0.1 and σ2
2 = 1 (assuming no

correlation across layers). As a test problem we again choose the flow cell model problem (3.13) on
the unit square D = (0, 1)2. Samples from fields with exponential covariance are produced using
the circulant embedding technique already used in §3.5. Fields with Gaussian covariance are ap-
proximated by truncated Karhunen–Loève expansions. The eigenpairs of the covariance operator
are computed numerically using a spectral collocation method.

Figures 8 and 9 show results for fields with exponential and Gaussian covariance functions,
respectively. Theorem 5.7 in both cases suggests a global spatial regularity of H1/2−δ(D), for any
δ > 0. For fields with exponential covariance function, this is the same global regularity as in
the case of continuous coefficients (satisfying A2), and convergence rates of the finite element error
should not be affected by the discontinuities. For fields with Gaussian covariance function, however,
continuous coefficients give a global regularity of H2(D), and so the discontinuities should lead to
lower convergence rates.

The numerical results confirm this observation. For comparison, we have in Figures 8 and
9 added the graphs for the case where there is no “channel”, i.e. the permeability field is one
continuous log–normal field with µ = µ1 = 0, λ = λ1 = 0.3 and σ2 = σ2

1 = 1. As expected,
in Figure 8, we observe O(h1/2) convergence of the H1(D)–seminorm of the error, and linear
convergence of the L2(D)–norm of the error, for both permeability fields. In Figure 9, however, we
indeed observe the slower convergence rates for the layered medium. Whereas we observe O(h1/2)
convergence of the H1(D)–seminorm, and linear convergence of the L2(D)–norm for the layered
medium, we have linear convergence of the H1(D)–seminorm, and quadratic convergence of the
L2(D)–norm for the continuous permeability field. Since the slower convergence rates are caused
by singulartities at the interfaces, one could of course use local mesh refinement near the interfaces
in order to recover the faster convergence rates also for the layered medium.

6 Conclusions and Further Work

Multilevel Monte Carlo methods have the potential to significantly outperform standard Monte
Carlo simulations in a variety of contexts. In this paper, we considered the application of multilevel
Monte Carlo methods to elliptic PDEs with random coefficients, in the practically relevant and
technically more demanding case of log–normal random coefficients with short correlation lengths
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Figure 8: Left: Plot of E
[
|uh∗ − uh|H1(D)

]
versus 1/h for model problem (3.13) with 2–norm

exponential covariance, with µ = µ1 = 0, µ2 = 4, λ = λ1 = 0.3, λ2 = 0.1, σ2 = σ2
1 = σ2

2 = 1 and
h∗ = 1/256. Right: Plot of E

[
‖uh∗ − uh‖L2(D)

]
. The gradient of the dash–dotted (resp. dotted)

line is −1/2 (resp. −1).

Figure 9: Left: Plot of E
[
|uh∗ − uh|H1(D)

]
versus 1/h for model problem (3.13) with Gaussian

covariance, with µ = µ1 = 0, µ2 = 4, λ = λ1 = 0.3, λ2 = 0.1, σ2 = σ2
1 = σ2

2 = 1, h∗ = 1/256 and
K∗ = 170. Right: Plot of E

[
‖uh∗ − uh‖L2(D)

]
. The gradient of the dash–dotted (resp. dotted and

dashed) line is −1/2 (resp. −1 and−2).

where realisations of the diffusion coefficient have limited regularity and are not uniformly bounded
or elliptic. We extended the theory from [6] to cover more difficult model problems, including corner
domains and discontinuous means, and we offered one possible remedy for the problem of correlation
length dependent coarse mesh size restrictions in the standard multilevel estimator. This was done
by using level–dependent truncations of the Karhunen-Loève expansion of the coefficient, resulting
in smoother approximations of the coefficient on the coarser levels.

An issue we plan to investigate further in the future, is how to achieve smoother approximations
of the random coefficient on the coarser grids also using other sampling techniques, such as in the
circulant embedding method used in §3. Another area of future research is the adaptive choice of
spatial grids in the multilevel estimator.
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