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Abstract

When considering the total number of subtrees of trees, the extremal structures
which maximize this number among binary trees and trees with a given maximum
degree lead to some interesting facts that correlate to some other graphical indices
in applications. Along this line, it is interesting to study that over some types
of trees with a given order, which trees minimize or maximize this number. Here
are our main results: (1) The extremal tree which minimizes the total number of
subtrees among n-vertex trees with k pendants is characterized. (2) The extremal
tree which maximizes (resp. minimizes) the total number of subtrees among n-
vertex trees with a given bipartition is characterized. (3) The extremal tree which
minimizes the total number of subtrees among the set of all q-ary trees with n non-
leaf vertices is identified. (4) The extremal n-vertex tree with given domination
number maximizing the total number of subtrees is characterized.

Keywords: subtrees; Wiener index; leaves; bipartition; q-ary tree; domination
number

1 Introduction

We consider only connected simple graphs (i.e., finite, undirected graphs without loops or
multiple edges). We follow the notations and terminology in [1] except otherwise stated.

Let G = (VG, EG) be a graph with u, v ∈ VG, dG(u) (or d(u) for short) denotes
the degree of u. Throughout we denote by Pn, K1,n−1 the path and star on n vertices,
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11271149) and the Special Fund for Basic Scientific Research of Central Colleges (CCNU11A02015).
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respectively. G− v, G− uv denote the graph obtained from G by deleting vertex v ∈ VG,
or edge uv ∈ EG, respectively (this notation is naturally extended if more than one vertex
or edge is deleted). Similarly, G + uv is obtained from G by adding edge uv 6∈ EG. For
v ∈ VG, let NG(v) (or N(v) for short) denote the set of all the adjacent vertices of v in
G. We refer to vertices of degree 1 of G as leaves (or pendant vertices), and the edges
incident to leaves are called pendant edges. Let PV (G) denote the set of all leaves of G.
For convenience, let T k

n be the set of all n-vertex trees with k leaves.
Let G be a connected bipartite graph with n vertices. Hence its vertex set can be

partitioned into two subsets V1 and V2, such that each edge joins a vertex in V1 with a
vertex in V2. Suppose that V1 has p vertices and V2 has q vertices, where p+ q = n. Then
we say that G has a (p, q)-bipartition (p 6 q). For convenience, let Pp,q

n be the set of
all n-vertex trees, each of which has a (p, q)-bipartition. Given positive integers n, q with
q > 2, we call T a complete q-ary tree (or q-ary tree for short) if any non-pendant vertex
v in T has exactly q neighbours. Denote by A q

n the class of q-ary trees with n non-leaf
vertices ((q − 2)n+ 2 leaves).

A subset S of VG is called a dominating set of G if for every vertex v ∈ VG \ S, there
exists a vertex u ∈ S such that v is adjacent to u. For a dominating set S of graph G
with v ∈ S, u ∈ VG \S, if vu ∈ EG, then u is said to be dominated by v. The domination
number of G, denoted by γ(G), is defined as the minimum cardinality of dominating sets
of G. Denote by Dγ

n the set of all n-vertex trees with domination number γ.
Given a tree T , a subtree of T is just a connected induced subgraph of T . The number

of subtrees F (T ) has received much attention. Let T denote a tree with n vertices each
of whose non-leaves has degree at least three, Andrew and Wang [12] showed that the
average orders in the subtrees of T is at least n

2
and strictly less than 3n

4
. Székely and

Wang [7] characterized the binary trees with n leaves that have the greatest number of
subtrees. Kirk and Wang [5] identified the tree, for a given size and such that the vertex
degree is bounded, having the greatest number of subtrees. Székely and Wang [10] gave a
formula for the maximal number of subtrees a binary tree can possess over a given number
of vertices. They also show that caterpillar trees (trees containing a path such that each
vertex not belonging to the path is adjacent to a vertex on the path) have the smallest
number of subtrees among binary trees. Yan and Ye [18] characterized the tree with the
diameter at least d having the maximum number of subtrees.

In 2012, Zhang, Zhang, Gray, and Wang [23, 24] determined the extremal tree with
given degree sequence having the largest number of subtrees. As a consequence, they
obtained the extremal trees with maximum number of subtrees among the set of trees with
given number of independence number, leaves, matching number, respectively. Zhang and
Zhang [22] investigated the structures of an extremal tree which has the minimal number
of subtrees in the set of all trees with a very special degree sequence. For some related
results on the enumeration of subtrees of trees, one may also see Székely and Wang [8, 9],
Wang [15] and Song [6].

An interesting fact that among the n-vertex trees of given degree sequence, the ex-
tremal one that maximizes the total number of subtrees is exactly the one that minimizes
some chemical indices such as the well known Wiener index, and vice versa; see [13, 19-23].
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The correlation between these and other indices has been the subject of investigation in
the recent work of Székley, Wang and Wu [11]; see also the work of Wagner [13]. Along
this line, it is interesting and nature to study the extremal problems on F (T ) in some
other types of trees. In particular, it is interesting to characterize the extremal trees with
minimal number of subtrees among some types of trees. Motivated by these facts, in
this paper we focus on characterizing the structure of trees maximizing/minimizing F (T )
among T k

n ,Pp,q
n ,A q

n and Dγ
n , respectively.

Let Pk(a, b) be a tree obtained by attaching a and b pendant vertices to the two
pendant vertices of Pk, respectively. In particular, if k = 1, then Pk(a, b) = K1,a+b.
It is straightforward to check that Pn−k(⌊

k
2
⌋, ⌈k

2
⌉) ∈ T k

n . It is known that the Wiener
index among n-vertex trees with k pendant vertices is maximized by Pn−k(⌊

k
2
⌋, ⌈k

2
⌉); see

Dobrynin, Entringer and Gutman [2]. We are to show the counterpart of this result for
the number of subtrees.

Theorem 1. Precisely the graph Pn−k(⌊
k
2
⌋, ⌈k

2
⌉) minimizes the total number of subtrees

among T k
n .

Consider a star K1,p with p+1 vertices and attach q−1 pendant edges to a non-central
vertex of the star K1,p. The resulting tree with p + q vertices has a (p, q)-bipartition.
Denote the resulting tree by D(p, q); see Fig. 1. Obviously, D(p, q) ∈ Pp,q

n . We call
D(p, q) a double star. Ye and Chen [19] characterized the tree with given bipartition
having minimal energy and Hosoya index. Then it is natural to consider the extremal
problem on the total number of subtrees of trees with given bipartition.

 .
.
.

.

.

.

p− 1 q − 1

Figure 1: Tree D(p, q).

Theorem 2. Precisely the graph D(p, q) (resp. P2p−1(⌊
n−2p+1

2
⌋, ⌈n−2p+1

2
⌉)) maximizes

(resp. minimizes) the total number of subtrees among Pp,q
n .

Consider the path Pn+2 and attach q−2 pendant edges to each of the non-leaf vertices
of Pn+2. Denote the resulting tree by T̂ q

n (see Fig. 2). It is easy to see that T̂ q
n ∈ A q

n .
In view of Theorem 2.3 in [5], it is easy to determine the tree in A q

n which maximizes
the total number of subtrees. It is natural and interesting to characterize the tree with
minimum number of subtrees of trees among A q

n .

Theorem 3. Precisely the graph T̂ q
n (see Fig. 2) minimizes the total number of subtrees

among A q
n .

Let A(n, γ) be the tree that is obtained by attaching γ − 1 pendant edges to γ − 1
pendant vertices of the star K1,n−γ . It is routine to check that A(n, γ) ∈ Dγ

n . He, Wu and
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vi vnvi−1 vi+1 vn+1

q − 2q − 2q − 2 q − 2q − 2

v0 v1

Figure 2: Tree T̂ q
n .

Yu [4] characterized the tree with given domination number having minimal energy. It is
natural to consider the extremal problem on the total number of subtrees of trees with
given bipartition.

Theorem 4. Precisely the graph A(n, γ) maximizes the total number of subtrees in Dγ
n .

Theorem 5. Precisely the graph Pn
2
◦K1 minimizes the total number of subtrees in D

n
2
n ,

where Pn
2
◦K1 is obtained by attaching a leaf to each vertex of the path Pn

2
.

2 Some Lemmas

In this section, we give some necessary results which will be used to prove our main results.
For a set S, let |S| denote its cardinality. For two graphs G1, G2, if G1 is a connected
subgraph of G2, then we denote it by G1 ⊆ G2. Given a tree T with u, v ∈ VT , let

fT (u) = |{T
′ : T ′ ⊆ T, u ∈ VT ′}|, fT (u ∗ v) = |{T

′ : T ′ ⊆ T, u, v ∈ VT ′}|,
fT (u/v) = |{T

′ : T ′ ⊆ T, u ∈ VT ′ , v 6∈ VT ′}|, F (T ) = |{T ′ : T ′ ⊆ T, |VT ′ | > 1}|.

Then one has

fT (u) = fT (u ∗ v) + fT (u/v), fT (v) = fT (u ∗ v) + fT (v/u). (1)

Consider the tree W in Fig. 3 with vertices x and y, and

. . .

  

 
. . .









 

 

x1

X1

xn

Xn

yn

Yn

y1

Y1

y

Y

z

Z

x

X

Figure 3: Path PW (x, y) connecting vertices x and y.

PW (x, y) = x0(x)x1 . . . xnzyn . . . y1y0(y) (x0(x)x1 . . . xnyn . . . y1y0(y))

if dW (x, y) is even (odd) for any n > 0. After the deletion of all the edges of PW (x, y)
fromW , some connected components will be remained. LetXi (X0) denote the component
that contains xi (x0 = x), let Yi (Y0) denote the component that contains yi (y0 = y), for
i = 1, 2, . . . , n, and let Z denote the component that contains z.
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Lemma 6 ([7]). In the above situation, if fXi
(xi) > fYi

(yi) for i = 0, 1, . . . , n, then
fW (x) > fW (y). Furthermore, fW (x) = fW (y) if and only if fXi

(xi) = fYi
(yi) for all i.

If we have a tree T with vertices x and y, and two rooted trees X and Y , then we can
build two new trees, first T ′, by identifying the root of X with x and the root of Y with
y, second T ′′, by identifying the root of X with y and the root of Y with x (as shown in
Fig. 4).

   
 

 

 T ′ T ′′

TT
yy

YY
xx

XX

Figure 4: Switching subtrees rooted at x and y.

Lemma 7 ([7]). In the above situation, if fT (x) > fT (y), fX(x) < fY (y), then we have
F (T ′′) > F (T ′).

Two distinct edges in a graph G are independent if they do not have a common end
vertex in G. A set of pairwise independent edges of G is called a matching of G, while a
matching of maximum cardinality is a maximum matching of G. The matching number
β of G is the cardinality of a maximum matching of G.

Lemma 8 ([23]). Precisely the graph T n
β maximizes the total number of subtrees of n-

vertex trees with matching number β, where T n
β is obtained from the star K1,n−β by adding

β − 1 pendant edges to β − 1 leaves of K1,n−β.

Lemma 9. Consider a longest path Pr = v1v2 . . . vr in a tree T with r > 3, there exists a
vertex vi ∈ VPr

\ {v1, vr} such that

fT (v1) < · · · < fT (vi−1) < fT (vi) > fT (vi+1) > · · · > fT (vr). (2)

Proof. Choose three vertices x, y, z such that xy, yz ∈ ET . Let X, Y, Z, respectively,
denote the components containing x, y, z after the removal of the edges xy and yz from
T . Observe the identities:

fT (x) = fX(x) + fX(x)fY (y) + fX(x)fY (y)fZ(z),

fT (z) = fZ(z) + fZ(z)fY (y) + fZ(z)fY (y)fX(x),

fT (y) = fY (y) + fX(x)fY (y) + fZ(z)fY (y) + fX(x)fY (y)fZ(z).

This gives

2fT (y)− fT (x)− fT (z) = 2fY (y) + (fX(x) + fZ(z))(fY (y)− 1) > 0. (3)
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Let
i := min{j : 1 6 j 6 r, fT (vj) > fT (u), u ∈ VPr

}. (4)

In view of (1) and fT (v2/v1) > fT (v1/v2) = 1, fT (vr−1/vr) > fT (vr/vr−1) = 1, we can see
that i 6= 1, r. By (3) and (4), we have

2fT (vi+1)− fT (vi)− fT (vi+2) > 0, fT (vi) > fT (vi+1).

Hence, fT (vi) > fT (vi+1) > fT (vi+2). Repeat the procedure as above to obtain

fT (vi) > fT (vi+1) > fT (vi+2) > · · · > fT (vr). (5)

Similarly, we obtain

fT (v1) < · · · < fT (vi−1) < fT (vi). (6)

Hence, (5) and (6) imply (2) immediately.

Let T1 be the graph as depicted in Fig. 5, where T ′ (resp. T ′′) is a tree with at least
two vertices. Attaching a pendant edge to u and contracting the edge uv of T1 yields the
graph T2; see Fig. 5. We call the procedure constructing T2 from T1 the A-transformation
of T1.

 



 





 

u v

T ′
T ′ T ′′

T ′′

T1 T2

u = v

Figure 5: Trees T1 and T2.

Lemma 10. Let T1 and T2 be the trees defined as above, we have F (T1) < F (T2).

Proof. Let T̄ be the component containing v in T1 −NT ′′(v). Note that

fT̄ (u)− fT̄ (v) = fT̄ (u/v)− fT̄ (v/u) = fT̄ (u)− 1 > 0,

i.e., fT̄ (u) > fT̄ (v). Hence, by Lemma 7 our result holds.

3 Proofs of Theorems 1 and 2

In this section, we first determine the extremal tree which minimizes the total number
of subtrees among T k

n . Next we determine the extremal tree which maximizes (resp.
minimizes) the total number of subtrees among Pp,q

n .

Proof of Theorem 1. Choose T ∈ T k
n such that the total number of its subtrees is as

small as possible. If k = 2 or, k = n− 1, it is easy to see that T k
n = {Pn−k−1(⌊

k
2
⌋, ⌈k

2
⌉)},

our result follows immediately. Hence, in what follows we consider 2 < k < n − 1. In
order to complete the proof, it suffices to show the following claims.
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Claim 11. If T minimizes the total number of subtrees in T k
n , then T ∼= Pn−k(a, b), where

a > b > 1 and a+ b = k.

Proof of Claim 11 If diam(T ) = 3, the claim follows immediately. Hence we consider
the trees whose diameter is larger than 3. Suppose that Pr = v1 . . . vr (r > 5) is one of
the longest paths in T , then we have dT (v3) = dT (v4) = · · · = dT (vr−2) = 2; otherwise set

i := min{j : dT (vj) > 3, vj ∈ {v3, v4, . . . , vr−2}}.

and denote NT (vi) = {vi−1, vi+1, z1, z2, . . . , zs}, s > 1. Delete all the vertices z1, z2, . . . , zs
from T and let T0 be the component containing vi. By Lemma 9, there exists vt ∈ VPr

such that

fT0
(v1) < · · · < fT0

(vt−1) < fT0
(vt) > fT0

(vt+1) > · · · > fT0
(vr).

If t < i, then we have fT0
(vi) > fT0

(vr−1). By Lemma 7, we have

F (T ) > F (T ′), (7)

where T ′ = T − viz1 − · · · − vizs + vr−1z1 + · · ·+ vr−1zs.
If t > i, then we have fT0

(vi) > fT0
(v2). By Lemma 7, we have

F (T ) > F (T ′′), (8)

where T ′′ = T − viz1 − · · · − vizs + v2z1 + · · ·+ v2zs.
Note that T ′, T ′′ ∈ T k

n , hence (7) (resp. (8)) is a contradiction to the choice of T .
This completes the proof of Claim 11.

Claim 12. Given positive integers a, b with a > b and a+ b = k, one has

F (Pn−k(a, b)) = (2a + 2b)(n− k − 1) + 2k + k +

(

n− k − 1

2

)

. (9)

Furthermore, if a− b > 2 then

F (Pn−k(a, b)) > F (Pn−k(a− 1, b+ 1)). (10)

Proof of Claim 12 For convenience, assume that dPn−k(a,b)(v1) = a + 1 and
dPn−k(a,b)(vn−k) = b+ 1. Then we have

F (Pn−k(a, b)) =fPn−k(a,b)(v1/vn−k) + fPn−k(a,b)(v1 ∗ vn−k) + fPn−k(a,b)(vn−k/v1)

+ F (Pn−k(a, b)− v1 − vn−k).
(11)

By direct calculation, we have

fPn−k(a,b)(v1/vn−k) = 2a(n− k − 1) and fPn−k(a,b)(vn−k/v1) = 2b(n− k − 1). (12)
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It is straightforward to check that the total number of subtrees of Pn−k(a, b) containing
both v1 and vn−k is equal to the total number of subtrees of K1,a+b each contains the
center of K1,a+b. Hence, we have

fPn−k(a,b)(v1 ∗ vn−k) = 2a+b = 2k. (13)

On the other hand,

F (Pn−k(a, b)− v1 − vn−k) = F ((a+ b)P1 ∪ Pn−k−2) = k +

(

n− k − 1

2

)

. (14)

In view of (11)-(14), (9) holds. Hence,

F (Pn−k(a, b))−F (Pn−k(a−1, b+1)) = (2a+2b−2a−1−2b+1)(n−k−1) = (2a−1−2b)(n−k−1).

Note that a− b > 2, hence (2a−1 − 2b)(n− k − 1) > 0, i.e., F (Pn−k(a, b)) > F (Pn−k(a−
1, b+ 1)), as desired.

By Claims 11 and 12, Theorem 1 follows immediately.

Proof of Theorem 2 For convenience, denote by ι(T ) the number of non-pendant
vertices of T . For any T ∈ Pp,q

n . If p = 1, Pp,q
n = {K1,n−1} = {D(1, n − 1)} =

{P1(⌊
n−1
2
)⌋, ⌈n−1

2
⌉}. Our result holds in this case. Hence, in what follows, we consider

p > 2.
First choose T ∈Pp,q

n such that the total number of its subtrees is as large as possible.
In order to characterize the structure of T , it suffices to show that ι(T ) = 2.

Note that when p > 2, hence ι(T ) 6= 1. So we assume to the contrary that ι(T ) > 3.
Choose three vertices, say u, v, w, such that each of them is of degree at least 2. Let VT =
V1∪V2. It is straightforward to check that {u, v, w} contains two elements in V1 or V2. We
assume, without loss of generality, that u, v ∈ V1 with NT (u) = {u1, z1, . . . , zt}, NT (v) =
{u2k−1, r1, . . . , rs}, t > 1, s > 1 and the unique path joining u and v is P = uu1 . . . u2k−1v.
Consider the component in T − uz1 − · · · − uzt − vr1 − · · · − vrs, say T ′, which contains
both u and v.

Without loss of generality, we assume fT ′(u) 6 fT ′(v), then in view of (1), we can see
that fT ′(u/v) 6 fT ′(v/u). Let T ′′ be the component containing both u and v in the graph
T − uz1 − · · · − uzt, it is straightforward to see that

fT ′′(u)− fT ′′(v) = fT ′′(u/v)− fT ′′(v/u) = fT ′(u/v)− fT ′′(v/u) < fT ′(u/v)− fT ′(v/u) 6 0.

i.e.,
fT ′′(u) < fT ′′(v). (15)

Let
T ∗ = T − uz1 − uz2 − · · · − uzt + vz1 + vz2 + · · ·+ vzt.

Note that u and v are in V1, hence we have T ∗ ∈ Pp,q
n . On the other hand, by (15) and

Lemma 7, we have F (T ) < F (T ∗), a contradiction to the choice of T . Hence, we get that
ι(T ) = 2, i.e., T ∼= D(p, q), as desired.
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Now choose T ∈Pp,q
n such that the total number of its subtrees is as small as possible.

If p = q or p = q−1, it is easy to see that Pn ∈Pp,q
n , as Pn minimizes the total number of

subtrees of n-vertex tree, we can see that Pn = P2p−1(1, 1) or Pn = P2p−1(0, 1), minimizes
the total number of subtrees among Pp,q

n . Hence, in what follows we consider 1 < p < ⌊n
2
⌋.

In order to complete the proof, it suffices to show the following claim.

Claim 13. If T minimizes the total number of subtrees of trees in Pp,q
n , then T ∼=

P2p−1(a, b), where a+ b = n− 2p+ 1 with a > b > 1.

Proof of Claim 13 If 1 < p < ⌊n
2
⌋, it is easy to see that T 6∼= D(p, q), so diam(T ) > 3. If

diam(T ) = 3, the claim follows immediately. Hence in what follows we consider the trees
whose diameter is larger than 3. Suppose that Pr = v1 . . . vr (r > 5) is one of the longest
paths in T , we are to show that dT (v3) = dT (v4) = · · · = dT (vr−2) = 2 and r = 2p + 1.
First assume to the contrary that there exists a vertex v ∈ {v3, v4, . . . , vr−2} such that
dT (v) > 3. Let

i = min{j : dT (vj) > 3, 3 6 j 6 r − 2}, NT (vi) = {vi−1, vi+1, z1, z2, . . . , zs}, s > 1.

Let T0 be the component that contains vi in T − {z1, z2, . . . , zs}. By Lemma 9, there
exists vt ∈ VPr

such that

fT0
(v1) < · · · < fT0

(vt−1) < fT0
(vt) > fT0

(vt+1) > · · · > fT0
(vr).

If t < i, then we have fT0
(vi) > fT0

(vr−1) > fT0
(vr). If vi and vr−1 are in the same part,

by Lemma 7, we have
F (T ) > F (T ′), (16)

where
T ′ = T − viz1 − · · · − vizs + vr−1z1 + · · ·+ vr−1zs, T ′ ∈P

p,q
n

otherwise, vi and vr are in the same part, we have

F (T ) > F (T ′′), (17)

where
T ′′ = T − viz1 − · · · − vizs + vrz1 + · · ·+ vrzs, T ′′ ∈P

p,q
n .

If t > i, repeat the procedure as above, we have a T ′′′ ∈Pp,q
n such that

F (T ) > F (T ′′′), T ′′′ ∈P
p,q
n . (18)

Hence, (16)-(18) are contradictions to the choice of T . So we have T ∼= Pr−2(a, b).
Notice that T ∈Pp,q

n with 1 < p < ⌊n
2
⌋, it is easy to see that r 6 2p+1. If r < 2p+1,

it means that v1 and vr are in different parts (otherwise we have p < ⌈ r−2
2
⌉ or q < ⌈ r−2

2
⌉).

As a > b, we have v1 ∈ V2 and vr ∈ V1, where V1 and V2 are two parts of VT with |V1| =
p, |V2| = q. Assume that NT (v2) = {v3, v1, w2, . . . , wa}, NT (vr−1) = {vr−2, vr, u2, . . . , ub}.
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Let T̂ = T −{vr, u2, . . . , ub}. By Lemma 6, we have fT̂ (vr−1) < fT̂ (v1). Hence, in view of
Lemma 7 we have

F (T ) > F (T̃ ), (19)

where T̃ = T−vr−1vr−vr−1u2−· · ·−vrub+v1vr+v1u2+· · ·+v1ub. Note that vr−1, v1 ∈ V2,
T̃ ∈Pp,q

n , hence (19) is a contradiction to the choice of T . So we have T ∼= P2p−1(a, b).
Combining with Claims 12 and 13, we have T ∼= P2p−1(⌊

n−2p+1
2
⌋, ⌈n−2p+1

2
⌉), as desired.

Remark 14. By direct calculation, we have

F (D(p, q)) = 2n−2 + 2p−1 + 2q−1 + n− 2.

This gives
F (D(p, q))− F (D(p− 1, q + 1)) = 2p−2 − 2q−1 < 0

for 1 < p 6 q. Hence, we have

F (D(p, q)) < F (D(p− 1, q + 1)) < · · · < F (D(1, n− 1)) = F (K1,n−1), (20)

for 1 < p 6 q. Note that D(p, q) maximizes the total number of subtrees among Pp,q
n ,

hence in view of (20) and first part of Theorem 2, the following corollary holds immedi-
ately.

Corollary 15 ([10]). The star K1,n−1 has 2n−1+n− 1 subtrees, more than any other tree
on n vertices.

4 Proof of Theorem 3

In this section we determine the extremal tree which minimizes the the total number of
subtrees among A q

n .

Proof of Theorem 3 In order to characterize the structure of the tree, say T , minimizing
the total number of subtrees in A q

n , it suffices to show that the diameter of T is n + 1.
Without loss of generality, we assume one of the longest paths in T is Pr+1 = v0v1 . . . vr.
If r = n+ 1, our result holds obviously. So in what follows, we assume that r 6 n.

For convenience, let Ti be the component that contains vi in T − EPr+1
for i =

1, 2, . . . r − 1. Set
l := min{i : 1 6 i 6 r − 1, Ti 6∼= K1,q−2}.

We can see that there exists j ∈ {1, 2, . . . , q − 2} such that dT (vlj) > 1, i.e., dT (vlj) = q.
Note that Pr+1 is a longest path in T , hence

1 < l < r − 1.

Thus, we can partition T into two subtrees, say S and T0, such that ET = ES ∪ET0
, VT =

VS∪VT0
and VS∩VT0

= {vlj}; see Fig. 6. For convenience, letNT0
(vlj) = {w1, w2, . . . , wq−1}.
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Figure 6: A q-arc tree T .

Now we are in the position to apply Lemma 6 in the following setting:

x← v0, x1 ← v1, . . . , y1 ← vl, y ← vlj .

It is easy to see that

fXi
(xi) = fYi

(yi) = 2q−2, i = 2, . . . , ⌊l/2⌋

and fY1
(y1) > 2q−2 = fX1

(x1). Therefore, by Lemma 6, we have fS(x) < fS(y), where S
is defined as above. By Lemma 7, we have

F (T ′) < F (T ), (21)

where T ′ = T −{vljw1, vljw2, . . . , vljwq−1}+ {v0w1, v0w2, . . . , v0wq−1}. Inequality (21) is a

contradiction to the choice of T . Hence, we obtain r = n+1, i.e., T ∼= T̂ q
n , as desired.

Remark 16. In particular, let q = 3 in Theorem 3, we can obtain that just the n-leaf
binary caterpillar tree minimizes the total number of subtrees among n-leaf binary trees,
which is obtained by Székely and Wang [10].

Corollary 17 ([10]). For any n > 2, precisely the n-leaf binary caterpillar tree T̂ 3
n−2

minimizes the number of subtrees among n-leaf binary trees.

5 Proofs of Theorems 4 and 5

In this section we determine the extremal n-vertex tree with domination number γ maxi-
mizing the total number of subtrees. Furthermore, the extremal n-vertex tree with dom-
ination number n

2
minimizing the total number of subtrees is also characterized.

Proof of Theorem 4 It is known from [17] that γ(G) 6 β(G), where β(G) is the
matching number of G. In what follows we are to show: If T0 ∈ Dγ

n maximizes the total
number of subtrees, then γ(T0) = β(T0).

In fact, it suffices to show that γ(T0) > β(T0). Otherwise, by the definition of the set
Dγ

n , we have β(T0) > γ(T0) = γ. Assume that S = {v1, v2, . . . , vγ} is a dominating set
of cardinality γ. Then there exist γ independent edges v1v

′
1, v2v

′
2, . . . , vγv

′
γ in T0. Note

that β(T0) > γ(T0) = γ, there must exist another edge, say w1w2, which is independent
of each of edges viv

′
i, i = 1, 2, . . . , γ.
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Figure 7: The structures of T0 and T ′
0 in the proof of Theorem 4.

If the two vertices w1, w2 are dominated by the same vertex vi ∈ S, then a triangle
C3 = w1w2vi occurs. This is impossible because of the fact that T0 is a tree. Therefore
w1, w2 are dominated by two different vertices from S. Without loss of generality, assume
that wi is dominated by the vertex vi for i = 1, 2 (see Fig. 7). Now we construct a new tree
T ′
0 ∈ Dγ

n by A-transformation of T0 on the edges v1w1 and v2w2, respectively. By Lemma
10, we have F (T0) < F (T ′

0), a contradiction. Thus, Theorem 4 follows immediately from
Lemma 8.

This completes the proof.

Proof of Theorem 5 It is known [3, 16] that if n = 2γ, then a tree T belongs to Dγ
n if

and only if there exists a tree H on γ = n
2
vertices such that T = H ◦K1, where H ◦K1 is

obtained by attaching a leaf to each vertex of H. Hence in what follows, we are to show:
For any tree T, one has F (T ◦K1) > F (P|VT | ◦K1) with equality if and only if T ∼= P|VT |.

In fact, let R(T ) be the set of all the subtrees of tree T . For any u in VT and
1 6 m 6 |VT |, let Rm(T ; u) denote the set of all m-vertex subtrees of a tree T each of
which contains u. It is routine to check that

F (T ◦K1) =
∑

T1∈R(T )

2|VT1
| + |VT | (22)

=
∑

T1∈R(T−u)

2|VT1
| +

∑

T1∈R(T ;u)

2|VT1
| + |VT |

=
∑

T1∈R(T−u)

2|VT1
| +

|VT |
∑

m=1

|Rm(T ; u)|2m + |VT |. (23)

Assume that T 6∼= P|VT |. If |VT | = 2 or 3, our result is clearly true. If |VT | = 4, there
exist only two trees, i.e., P4 and K1,3, hence T = K1,3. In this case, for any u ∈ PV (T )
we have

|R1(T ; u)| = |R2(T ; u)| = |R4(T ; u)| = 1, |R3(T ; u)| = 2 (24)

And for any v ∈ PV (P4), we have

|R1(P4; v)| = |R
2(P4; v)| = |R

3(P4; v)| = |R
4(P4; u)| = 1. (25)

Note that P4 − u = K1,3 − v, hence by (23)-(25) we have F (K1,3 ◦K1) > F (P4 ◦K1).
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In what follows we assume that F (T ◦K1) > F (P|VT | ◦K1) holds for all trees of order
less than |VT |. On the one hand, for any u ∈ PV (T ) and v ∈ PV (P|VT |), we have

F ((T − u) ◦K1) > F ((P|VT | − v) ◦K1), (26)

Each of the equalities in (26) holds if and only if T − u ∼= P|VT | − v. Hence by (22), we
have

∑

T1∈R(T−u)

2|VT1
|
>

∑

T1∈R(P|VT |−v)

2|VT1
|. (27)

On the other hand, it is easy to see that for any w ∈ PV (T )\{u}, T −w ∈ D |VT |−1(T ; u),
so we have

|R |VT |−1(T ; u)| > 1 = |R |VT |−1(P|VT |; v)|. (28)

Furthermore, for m = 1, 2, . . . , |VT | − 2, |VT |,

|Rm(T ; u)| > 1 = |Rm(P|VT |; v)|. (29)

Hence, F (T ◦K1) > F (P|VT | ◦K1) follows by (17) and (27)-(29) for T 6∼= P|VT |.
This completes the proof.
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