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The line-shape of the exciton absorption band, in the case that k=O is at the bottom 

(or the top) of the exciton energy band and that there are no states with the same energy 

in other exciton bands, is investigated in the limit of weak exciton-phonon coupling, with 

the use of the damping theory. The equations for the energy dependent shift and broadening 

are solved with the aid of graphic calculation. 

Except for the low temperature region, one can assume the exciton-phonon scattering 

to be elastic, and the line-shape in the main part of the absorption band is determined 

essentially by the properties of long wavelength excitons and phonons. The half-value width 

is rather small, and is proportional to (gT)2 where g is the exciton-phonon coupling constant 

and T is the absolute temperature. 

The line-shape is strongly asymmetric, with a tail which is due to the indirect transition, 

on the high or low energy side according as ff:>==O is the bottom or the top of the exciton 

band. 

§ 1. Introdu.ction 

89 

The line-shape of the exciton absorption band in in~mlating crystal was 

investigated in a previous paper/> with the method of the generating function. 

The absorption corresponds to the electronic transition from the ground state 

of the crystal to that excited state in which a bound pair of an electron and a 

hole propagates through the crystal with translational pseudo-momentum hk 

transferred to the electron system from the incident photon. Since the wave 

number lr, of the photon is much smaller than the reciprocal of lattice constant, 

we can put k~O for usual purposes. The absorption spectrum should consist 

of a series of sharp lines corresponding to various quantum states of the relative 

motion of the electron and the hole (ground and excited states of the exciton), 

if there were no perturbing effects such as lattice vibrations and lattice imper

fections which scatter the exciton, and the (spontaneous) radiation field which 

may annihilate the exciton.2> 

The effects of lattice vibrations and lattice imperfections on the width of the 

absorption line were discussed in the previous paper, which will be referred to 

as I in the present paper. The following conclusions were obtained in I, as 

regards the effect of lattice vibration. vVhen the coupling constant g between 

the exciton and lattice vibration is sufficiently weak, the absorption line-shape 
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90 Y. Toyozawa 

is Lorentzian, with the half-value width W equal to fir (0) where r (k) is the 

reciprocal of the lifetime of the exciton with wave number k due to the scat

tering by lattice vibration. The situation is similar to the natural line-width of 

the atomic spectra. The width W is proportional to gT at high temperatures 

where Tis the absolute temperature. On the other hand, when g is very large, 

it can be shown that the line-shape is Gaus'sian, with the width "YV proportional 

to (gT) 112
• This is due to the fact that the picture of a localized exciton is better 

than that of a running exciton, in other words, that we can take the adiabatic 

approximation and apply the Franck-Condon principle to the transition. 

These conclusions were derived by, first, expanding the generating function 

in power series of g, and then rewriting it in closed forms in the two limiting 

cases mentioned above, thereby dropping the contributions which become unim

portant in the limits. There was, however, another condition for the validity 

of the conclusion for the weak coupling case. This is analogous to the Landau

Peierls condition as regards the validity of the Boltzmann-Bloch equation for the 

transport processes in metals. 3
> In the present case, the condition is that F(k), 

the scattering probability of the k-exciton, should be well-defined in the neigh

borhood of k . 0. In other words, successive scatterings should be well separated 

elementary processes so that 

(1·1) 

where rc is the duration of a collision (see Eq. ( 4 · 8) of I). rc is of the order of 

de Broglie wavelength divided by the velocity of the exciton, which amounts to 

(1· 2) 

if a simple exciton band with ef-fective mass m* is assumed. 

In the case of the acoustical mode of lattice vibration, we have 

F(l£) =const. gT!~, (1·3) 

under the assumption of a simple band, if we neglect the energies of the acous

tical phonons in the exciton-phonon scattering (see Eq. (7 ·1') of I). This means 

that the relation (1·1) is not valid in the neighborhood of k=O, however small 

g may be. 

If we put W=fir(O) in the case of the simple band, we have an absurd 

result that the width vanishes if we neglect the phonon energy. The real situ

ation, however, may be as follows. To each exciton le·vel belongs a level broad

ening fiF(k), in other words, the neighboring levels within the energy interval 

fiF(k) are mixed virtually in the real state k. This way of description is not 

correct for those states with small k such that r (k) zc (k) ""21. Since the suc

cessive scatterings are inseparable, these states intermingle with each other in 

a complicated way all the time. The creation of an exciton by a photon means 

the excitation of one of these intermingling states. Then we may infer, quali

tatively at least, that the line-width would be of the order of 
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Further Contribution to the Theory of the Line-Shaf>e 91 

(1·4) 

where k is to be determined by T' ( k) ·r c u~) """-' 1. 

On the other hand, the exciton absorption band is expected to have a tail 

decreasing with (- 3/2) power of the energy difference from the absorption 

peak due to the indirect transition/> on the high energy side if a positive ef

fective mass is assumed for the exciton band. This situation is necessarily 

reflected upon the strong asymmetry of the line-shape even in the main part of 

the absorption bancl. *> 

The difficulty arising from the singular behaviors of lir(l£) and rc (k) as 

k->0 does not take place when l£=0 is neither the bottom nor the top of the 

band, or when there is finite density of levels in other exciton bands at the 

energy value of the k=O exciton we are now considering. The k=O exciton 

will be scattered into these states with finite probability, even when the phonon 

energy is neglected. In the previous paper we had to confine the discussion 

of the weak coupling limit to these cases. 

In this paper we investigate the case of the simple exciton band where 

k = 0 is the bottom (or the top) of the band, and where there are no levels in 

the other exciton bands which have the same energy. This case, in spite of 

its standard nature, prevented us from quantitative discussion in I, due to the 

singular situation stated above. In order to dissolve this singularity, we make 

use of the damping theory in the present work. Special classes of graphs among 

all the irreducible graphs appearing in the expansion of the resolvent are sum

med up to infinite order in the exciton-phonon coupling, in such a way that the 

result is exact up to the sixth order. We find that the higher order processes 

such as the two and three phonon processes are important in determining the 

line-width, in conformity with the above statement that the single phonon scat-

. terings are inseparable from each other for the excitons with small wave num

bers. The dependence of the width upon g and T is just what is implied by 

the relation (1· 4). 

§ 2. Formulation of the problem in terms of the damping theory 

Assuming only one exciton band with energy 81 •. , the normalized line-shape 

of the exciton absorption band is given by (see Eq. (3 ·10) of I) 

+ro 

F(fiw)=(2rrfi)-1 J <COJ exp(iiit/fi)JO) exp(.:_iHLt/fi))Lexp(-iwt)dt, (2·1) 

where fiw is the photon energy, Jk) means the excited electronic state of the 

crystal with the k-exciton, and < · · · )L means the average on the lattice vibrational 

*) We mean by the "main part" the parts of the absorption band which are not very far 

from the peak compared with the half-value width. 
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92 Y. Toyozawa 

states in the absence of an exciton. HL is the Fiamiltonian for this vibrational 

motion, while ~I is that for the composite system of an exciton and lattice vi

bration with the interaction V: 

(2·2) 

It might be more satisfactory to say that ri and TIL are the projections of the 

Hamiltonian operator for the total system of crystal electrons plus phonons upon 

the sub-spaces of one and no exciton respectively. 

Introducing the operators defined by 

G(E) =(J(E-1-1), 

GL(E) =(J(E-~IL), 

where (](E) IS the Dirac's (]_function, we can write Eq. (2 ·1) as 

+co 
(' 

F(nw) = j dE( (OjG(E+nw) jO) GL(E) )L, 

(2. 3) 

(2·4) 

or m the representation in which I-IL is diagonal with the energy eigenvalues 

ELn, we have an alternative form 

F(n(l)) = ~ Pn(OjG(ELn+nro) jO)nn, (2· 5) 
n 

where Pn = exp (-pELn) /~ exp (- /9ELn) is the statistical weight for the vibra-
n 

tional state n in the ground electronic state of the crystal. 

Defining the resolvent by 

R<±)(E)=(l-I-E~i'l))- 1 ('l)->+0), 

we can rewrite Eq. (2 · 3) as 

G(E) = (2,7£) - 1 {R <:)(E)- R <-)(E)}. 

(2·6) 

(2·7) 

The diagonal part of the resolvent, which is necessary for the calculation 

of the line-shape (2 · 5), can be written as 

D<±) (E) =R U:) (E)diaa. ={lie+ ~IL- ~ (:t) (E)- E} - 1
, 

~(±)(E) =-il(E) ±£T'(E) (Li, T': real operators), 

(2. 8) 

(2 ·9) 

exactly, if the interaction has the diagonal singularity, as van Hove showed 

in his work on the damping theory. 5
l The di~gonal operator ~ (±) satisfies the 

integral equation 

~<±)(E)= { VD<±) (E) V + V_D<±) (E) VD<±) (E) V + · ··} id. (2 ·10) 

where { .. ·} irZ, the abbreviation for the "irreducible diagonal", means that one 

has only to take those intermediate states which are different from each other 

and from the initial state. 

Since the (Jr.,, n') element of Eq. (2 · 8) can be written, for E=ELn + fl(l), as 
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94 Y. Toyozawa 

+(higher order terms), (2. 16) 

where we have taken an average on the phonon numbers. To take the average 

independently in the numerator and the denominator on the right-hand side is 

justified on the same ground as was stated above. 

Now we assume that the following three conditions are satisfied, putting 

off the thorough examination of them to § 4. 

(1) Elastic scattering. For those w-values which make important contri

butions to the right hand side of Eq. (2 ·16), and for those llw-values for which 

the absorption F(llw) is appreciable, we can neglect the phonon energy nw,w in 

the denominator of Eq. (2 ·16). With this assumption we can put n for n ± 1 

which are suffixes to ~ <±J, as is easily seen from Eq. (2 ·11). 

(2) High temperature. For the same w-values as are specified in (1), 

we can take the high temperature approximation for the phonon numbers. We 

can then put 

(2 ·17) 

(3) k-dependence of the solution. As for the k-dependence of the solution 

fJ <±) (llw+ ELnh·m it is assumed that one can put 

X(ft(v+ELn) ~~~=Llo+ r1n 2 P/2nz* + L1 (nw), 

T'(ft~;;+E;~1)~.1~ = r c n (I)) , 
(2 ·18) 

(2 ·19) 

for the above ranges of k and nw. Here L1 (nw) and I'(llw) are independent 

of k, whereas Llo and r'J is independent of k and nw, although these quantities 

may of course depend on the temperature. As will be seen later, the leading 

terms in L/0 and a are of the first order in the coupling constant g, while L1 (llw) 

and r (ltw) are of the second order. *J We can now put the unrenormalized 

and the renormalized energy as 

c1.-=c0 + n2 k2/2nz*, 

E1,,= (c0 +Llo) + (I+r1)1l2 k2/2m*=Eo+n 2 k2/2m*. 

(2. 20) 

(2. 21) **) 

With these assumptions, Eq. (2 ·16) is greatly simplified if we introduce 

the dimensionless quantities 

*) The division into L10 and LJ(ftw) is not unique but only for the sake of convenience. 

**) m* defined by Eq. (2·21) is different from the conventional renormalized mass. Roughly 

speaking, the latter is obtained by taking the second derivative of ](E~-+E~~)kn as regards k. 
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Further Contribut~on to the Theory of the Line-Shape 

{flw-E0- iJ (ftw)} I F'o= x, iJ (ltlv) I Fo=s, 

{ftw-E0 } I ['0 =x+s=z, Llol Fo=so, 

f'(ft(IJ) I To= Y > 0, 

(x+iy) 1
1
2=(=ir exp ( --i~b) (0 ~ ¢ < rc/2), 

(2. 22) 

{fl 212m* T 0} 
112 w=p, (2 · 23) 

m terms of the energy unit 

T 0 = (8rc2
) -l {v0 m*312 Ei 1cT /fl 3 Mu2} 2 =g2 (1cT) 2 l87r2m* u2

• 

g IS the demensionless coupling constant defined by 

g=vom*2 Eill'l3 Mu, 

and v 0 is the volume of a unit cell. 

Eq. (2 ·16) is now written, for k=O, in a very simple form: 

-so-s+iy=n-2 J Q(p) dp+7r- 4 JJ'ocpl) Q(p1+p2) OCp2) dp1dp2 

(2 ·25) 

(2 ·26) 

+ (higher order terms). (2 · 27) 

95 

In general, the 2n-th order term as regards V in Eq. (2 ·10), or as regards r 
in Eq. (2 ·16), includes (2n -1) Q's, n-fold integration over p's and a factor 7r-2

n. 

§ 3. Graphic calculation of damping 

Our problem is now to solve Eq. (2 · 27) for the energy dependent damping 

y and shift (s0 +s) as functions of x and finally as functions of the energy 

z=x+s. The unknown y is also included in O's. It is interesting to note that 

Eq. (2 · 27) includes no parameter except for the De bye cutoff w 0 of the phonon 

wave-number whose effect can be made included in s0 as will be seen later. This 

means that the line-shape (2 ·13), or 

F(ftw) = 
1

, 
n:lo 

y (x) ·- __ } 
x2+ y (x)2 

(3·1) 

is similar for any temperatures when the width W, which is of the order of 

T 0 ( oc g2T 2
), is normalized, so far as the three conditions mentioned in § 2 are 

satisfied. 

To begin with, let us solve Eq. (2 · 27) in the lowest order by taking into 

account only the first term on the right-hand side, in order to get a rough idea 

on the fonn of the solution. In calculating 

1'o Po 

J 0 ( p) dp = 4n j' dp + 4ir (
2 J (p2

- (
2

) -I dp, 
0 0 
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96 . Toyozawa 

we note that the Debye cutoff w 0, or 

{ .1;;2/?~* 1'} l/2 2 -1 (.:[;; I T) Po= n """'nz o z.o0 = rry nuw0 K 

m reduced unit, can be replaced by co in the second integral, if 

Po'? ICI, or h2 wo2/2m* '? rol(l 2
, 

(3 ·2) 

(3·3) 

that is, if the width of the absorption peak is much smaller than the exciton band 

width. This condition is satisfied so far as the exciton-phonon coupling is small, 

with which case we are concerned here. On the other hand, the finiteness of 

w 0 or Po is essential for the first term, which makes energy-independent real 

contribution. 

The first approximation for Eq. (2 · 27) then gives 

-s= -2r cossb' 

;-
2 sin2¢=2r sin 

with the line-shape function 

=0 (z<-1), 

which satisfies the normalization condition 

(' 

J F(fiw) dftw= l, 

m spite of the approxirnation we have made. 

(3. 4) 

(3· 5) 

(3. 6) 

(3. 7) 

On the high frequency side such that h(v-E0 ':;P F'0, or z':;P 1, we have 

F(h(v) oc z- 312
, which is nothing but the tail of the exciton absorption band due 

to the indirect transition. For these z-values, the higher order terms in Eq. (2 · 27) 

are very small, the 2n-th order (as regards the interaction V) term being of 

the order of z- (n/
2

-
1

> as is easily verified by recalling the definition (2 · 24) and 

that f contributes a factor of the order of ICI "'-'Z
112

• However, to the line-

. shape of the main part such I z I is of the order of unity contribute all the 

higher order terms with the same order of magnitude; we have therefore to sum 

up important terms if not alL 

Recalling that we have to take only the irreducible diagonal part in Eq. 

(2 ·10), and that the absorption the emission of a phonon contribute the same 

magnitude of quantities due to the conditions (1) and (2) of § 2, we can write 

down the terms in Eq. (2 · 27) Feynman graphs, as shown in Fig. 1 for the 

lowest order terms. instance, the fourth order term corresponds to successive 

emissions (or emission and absorption, or absorptions) of two phonons followed 

by successive absorptions (or absorption and emission, or emissions) of them in 

the same order. The terms such as shown in Fig. 2 are to _be omitted according 

to the definition of the irreducibility, because their effects are already taken into 
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Further Contribution to the Theory of the Line-Shape 

p 

0 

etc. 

Fig. 1. Graphic representation of the terms appearing in Eq. (2 · 27). 

0 C\ 

Fig. 2. Typical graphs which are not to be included in Eq. (2·27). 

p 

Fig. 3. The two classes of graphs which have been taken into account in 

calculating the clamping. 

account in the shift and broadening of each level. 

97 

Among the graphs shown in Fig. 1, we have two series of graphs, repre

sented by Fig. 3a and b. Though they are rather special types of graphs, all 

terms up to the sixth order, and some of the higher order terms, belong to one 

of them. The second and fourth order terms can be taken to belong to any of 

the two, while for the sixth and higher order terms the classification is unique. 

Assuming that the convergence is not too slow, we take into account only those 

graphs given in Fig. 3. 

The first graph of Fig. 3, which is of the 2n-th order, contributes 

(-so-s+iy)£~) =:r-
2
n 11 .. ·1 dp1dp2· .. dpn 

X Q(pl) Q(pl +p2) ···Q(pl +p2+ ··· +pn)Q(p2+ ··· +pn) ···Q(pn), (3 ·8) 

while the second graph, of the 2(l+m+l)-th order, contributes 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/2

7
/1

/8
9
/1

8
7
3
8
7
3
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



98 Y. Toyozawa 

XQ(pl) ···Q(pl + ··· +pz) O(pl + ··· +pz+ p) Q(pl + ··· +Pz-1 + p) ···Q(p) 

XO(p+p/) ···O(p+ p/ + ··· +pm') Q(p/ + ··· +p,n') Q(p/ + ··· + P:n-1) · ··Q(p/). 

(3 ·9) 

Introducing the convolution 

Q(2>(p) = f 0(-p') O(p'+p) dp'=--rt_ ln-}-= (P/20 
J~ ~ ip 1+(p/2()' 

(3 ·10) 

where the branch of the logarithmic function is such that it tends to zero as 

p~O, we can easily calculate Eq. (3 · 9) as 

f' 

( -so-s+iy) i~:zm= J dprr- 2 0 (p) {11·-2 0(2
) ( p)} l+m dp. (3 ·11) 

Eq. (3·8) can also be brought into the same form. If we put p 1+p2+ .. ·+pn 

=p, the last (n-1)Q's can be written as 

Q(p-pl) Q(p- Cp1 +p2)) ···O(p- Cp1 + ··· +Pn-1)), 

each of which can be combined with the corresponding factor among the first 

(n-1)Q's in Eq. (3·8), resulting in 0(2>(p). We have, therefore, 

(-so- s+ iy) i~) = .~ 7T-
2 o ( p) {rr-2 Q(2

) (p)} n-l dp. (3 ·12) 

Among the 2n-th order terms, there are n different graphs of the type (b) 

corresponding to l=O, 1, ... , n-1, whereas there is only one of the type (a). 

Taking care of the exceptional cases of n----:1 and n=2, we can write 

f' ro 

-so-s+iy= J dprr- 2 0(p)[1+H- 2 0(2>(p) + 7 ~ 3 (n+1) {n- 2 Q(2>(p)}n-IJ. 

(3 ·13) 

The integration path along the real axis p can be replaced by the radial 

path with phase angle -¢. Transforming the variable p into ¢ by 

p=-2i(tan¢ (0<¢<rr/2), (3 ·14) 

we have 

n-/2 

X l (¢/tanrp)n- 3 rP(1+3 sin2 ¢)-1 d¢. (3 ·15) 

0 

For n=2, we have to be a little more careful since we have a contribution 

4i¢ when we change the integration path in the manner stated above. At the 
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Further Contribution to the Theory of the Line-Shape 99 

same time, the Debye cutoff p 0, which corresponds to the upper limit ¢=7r/2 

-2/C//Po (see Eq. (3·14)), must be taken into account in the ¢-integration of 

Eq. (3 ·15), since otherwise the integral diverges logarithmically. Thus we have 

,. _21 tl 

1 dprr-'Q(p) {n-'Q''' (p)} =4i¢'+ (32/rr) 

2 

( 

0 

'I<' /2 

=4isb+ r {}~_ -----~~-ct~~_p-------- 4 
----} d¢+4ln(npo/4) -4lnr. 

J n 1 +3 s1n2 ¢ ir/2--¢ 
0 

(3 ·16) 

Making use of Eqs. (2 · 22), we can write Eq. (3 ·13) as follows. 

co 

s=2rcos¢+4lnr- ~ 2cnr-<n-2
) cos(n-2)1', (3 ·18) 

1t=3 

(3 ·19) 

,.,2 

Cn= 16 (n +l):r-1
) d¢(¢/tancp)n-:l¢2 (1 +3 sin2 ¢) - 1

• (3 ·20) 

0 

As is evident from Eqs. (2 · 25) and (3 · 2), the energy independent shift i10 = r 0s0 

which is renormalized in B0 , is expressed as 0 (y) + 0 (y2 In (1 / y)) + 0 (g2
) + higher 

order terms which would have been obtained if we had taken into account the 

o.o:l-

{).()1 

--10 

Fig. 4. The line-shape of the exciton absorption band in the case 

that k=O is the bottom of the exciton energy band. The unit of 

energy, F 0 , is given by Eq. (2·25). 
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100 Y. Toyozawa 

De bye cutoff in Eq. (3 ·15) for n > 2. On the other hand, the energy dependent 

shift il(fiw) =sro as well as the broadening r(fiw) =yr0 consists of a number 

of terms whose relative magnitudes do not depend upon the coupling constant, 

so far as the main part of the absorption band is concerned. 

After calculating the integral (3 · 20) by numerical integration, we have solved 

the equation (3 ·19) for r as a function of ¢. With the help of Eq. (3 ·18) we have 

obtained the line-shape (3 ·1) as a function of the energy z = x+ s. The result 

is shown in Fig. 4. It is remarkable that the half-width z 2 -z1 =19.2- ( -3.6) 

=22.8 is twelve times as large as the value z 2-z1 =2.91-1.03=1.88 which is 

obtained in the lowest approximation (3 · 6). Comparing the numerical values 

of the various terms in Eqs. (3 ·18) and (3 ·19), we find that the two and three 

phonon processes make contributions as large as the one phonon process does. 

Since the peak is at z 0 =4.0, the asymmetry A of the line-shape, which was 

defined by Eq . ( 4 · 14) of I, is given by Cz1 + z2- 2z0) / (z2- z1 ) = 0.33. The total 

area is calculated to be 0.95, while it should be unity if we could solve Eq. 

(2 · 27) exactly. 

§ 4. Discussion 

We must now examine whether and under what conditions the assumptions 

made in §§ 2 and 3 are valid. We begin with the assumption (3) of § 2. 

Confining ourselves to the lowest order approximation, we put Eqs. (2 ·18) and 

(2 ·19) in the denominator on the right-hand side of Eq. (2 ·16), and calculate the 

k-dependent ~<±!(E~n+h(uh·n· With the use of Eqs. (2·22) and (2·23), we can 

write 

-- -- (' 

~ },:+-)- ~~+) =;r-2 ro J dp[ { (p+q)2-(2} -1_ {p2-(2} -1]' (4 ·1) 

where we have put 

q= {n 2/2m* ro} 112 k. (4·2) 

Making use of the assumption (3 · 3), we get 

~ }.,+)- ~ ~+) =- ( 4/3n) (fi2wo2 ro/2m*) 112 (k/wo) 2 {1 + 2 ((/Po) 
2
+ · .. } 

- ( 4/15rr) (ft2w 0
2 ro/2m*) 112 (k/wo)

4 
{1 + 9 ((/Po) 

2+ · · ·} + · · ·. ( 4 · 3) 

The ratio of the second term to the first term on the right-hand side of Eq. ( 4 · 3) 

is of the order of (k/w0 )
2 ,..._.((/p0 )

2 for those k-values which make important 

contributions to the line-shape of the main part, as is seen from Eqs. (2 · 23) and 

(2 · 24). Neglecting (C / p 0 ) 
2 in view of the assumption (3 · 3), we see that only the 

real part of ~ 1.:+-Ji~k-dependent, in the. form given by Eq. (2 ·18), and 

iJ= (4/3rr) (2m* ro/fi2 w 0
2

)
112 = (2/3rr2

) (tcT/ftuwo) g (4·4) 

1s 1n fact energy independent as was assumed there. It is not difficult to see 
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Further Contribution to the Theory of the Line-Shape 101 

that this conclusion is not modified even when we take into account the higher 

order terms in Eq. (2 ·16). 

Since the values of those w's which make important contributions to Eq. 

(2·16) is of the order of (2m*T0/n2
)

112
/(/ because of Eqs. (2·23) and (2·24), 

we see that the assumptions (1) and (2) of § 2 can be written as 

and 

nu(2m* To/fl 2
)

112 /(/4:.tcT. 

As T 0 /t/
2 is of the order of the half-value width 

W=23 ro=0.3g2 (tcT) 2/m*u2
, 

the conditions (4·5) and (4·6) can be written as 

or 

and 

g<~L 

(4·5) 

(4·6) 

(4·7) 

( 4 · 5' and 6') 

( 4. 5") 

(4·6") 

When the temperature is lower than To defined by Eq. ( 4 · 5"), we must 

take into account the phonon energy in the exciton-phonon scattering. In this 

case, the width W' is given by Eq. (7 ·1) of I, which can be written as 

W' = (2/n) gtcT (2m* u 2 4:.tcT 4;.tcT0 ), 

= ( 4/ n) gm* u 2 (tcT::; 2rn* u2
), 

(4·8) 

(4·9) 

with the use of Eqs. (7 · 2) and (7 · 3) of I. It is interesting to note that the value 

(4·7) is larger or smaller than the value (4·8) according as T?!:_To'=2.1 m*u2/tcg. 

Since the larger half value width is more effective, this condition is in qualitative 

accordance with the condition ( 4 · 5"). That is, the present theory is consistent 

with the result obtained in the previous paper, as regards the region of validity, 

although they deal with different regions by different methods. As for the line

shape, however, a more quantitative discussion might be necessary for the inelastic 

region T$To. 

Now the condition (3 · 3) for the weak coupling is written as 

(4·10) 

The conditions ( 4 · 6") and ( 4 ·10) can be combined into a single condition 

( 4 ·11) 

We see, from Eq. (4·4), that 3«:.1/10 as far as the condition (4·11) is satisfied. 
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102 Y. Toyoza·wa 

When the left-hand side of the condition (4·11) is much larger than unity, 

either clue to high temperature or clue to a strong coupling constant, the line

shape is Gaussian, as we have shown in I (see Eqs .. (5 · 7) and (7 · 8) of I). 

Systematic investigations on the effect of the exciton-phonon interaction on the 

exciton states, for the whole range of the coupling constant, have been carried 

out by Haken.6
) 

Since ftuw 0/m*u 2
= (n 2w 0

2/m*) / (nuw0 ) is usually of the order of 100 in real 

crystals, there is a fairly large range of the temperature which satisfies the 

conditions ( 4 · 5") and,, ( 4 ·10) simultaneously. 

Putting M/v 0=3 gr/c.c., Ea=6 ev, u=0.5·106 em/sec and m*= true electron 

, mass, we have g=0.05 and the condition (4·5") for elastic scattering becomes 

T ?> 70°K. The half-value width is given by 0.5 ·10-2 ev at T=300°K. 

Since the exciton wave-numbers which make appreciable contribution to the 

line-shape in the main part of the absorption band are very small, the Ansatz 

(2 ·15) for the coupling coefficient r, with constant Ed, and the Ansatz (2 · 20) 

of the parabolic band structure are fairly good approximations.*) For those 

w-values which are comparable to or larger than the reciprocal a of the exciton 

radius, the coefficient should be multiplied by the screening factor (2 ·18) of I. 

It is easy to show that such w-values do not contribute to the main part of the 

absorption band if the half-value width VI is small compared with /l2a 2/2m*, 

that is, if the exciton absorption peak is well separated from other exciton peaks 

or the continuum absorption.**) On the other hand, the screening factor should 

have been taken account of in the calculation of the energy independent shift 

flo= rosa. While this effect is reflected on the temperature shift of the peak, it 

does not affect the line-shape in the main part. 

Another remark should be made here concerning the line-shape of the low 

energy tail. In Fig. 4, we see that the absorption curve has a clear-cut threshold 

on the low energy side. That might seem somewhat embarrassing in view of 

the existing theories on the line-shape. Dexter7
) discussed the line-shape in the 

tail part in connection with the Urbach-Martienssen rule,8
) essentially on the 

basis of the adiabatic approximation which seems to be appropriate for this part. 

According to his result, the tail never shows such threshold, though it decays . 

rapidly with decreasing energy. It is to be noted that the damping theory, 

though suitable for the main part of the absorption peak (and also for the high 

energy tail as has been shovvn above), is not very powerful for the· (low energy) 

tail. If we could have included all the terms appearing in Eq. (2 · 27), the low 

energy tail without threshold would have been obtained, but it would not be a 

*) Even in the case in which m* is a tensor, or the energy surface is warped, the main 

conclusion will not be changed. 

**) Note that the binding energy of the electron and the hole in the exciton is given by fi2a2f2t-t 

if one takes the hydrogen model. p is the reduced mass for the pair, and is of the same order 

of magnitude with the translational effective mass m*. 
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Further Contribution to the Theory of the Line-Shape 103 

practical way of treating this part. 

mation and the damping theory are 

general theory of line-shape. 

As is well known, the adiabatic approxi

usually complementary to each other in the 

As for the low energy tail of the exciton absorption band, w:hich seems to 

be due to the strongly deformed parts of the crystal, the quadratic term of the 

exciton-phonon interaction is expected to play an important role/)) especially in 

view of the Urbach-Martienssen rule. The comparison of our results with ex

periments will be deferred until we discuss the effect of the quadratic term on 

the tail part more fully. 

§ 5. Conclusion 

We have investigated the line-shape of the exciton absorption band in such 

case that k=O is the bottom (or the top) of the exciton energy band, and that 

there are no levels (with k:i:O) in the other exciton bands or in the ionization 

continuum which have the same energy as the k==O exciton with which we are 

concerned. 

When the exciton-lattice coupling is small as is specified by the condition 

( 4 ·11), and the temperature is not too low (Eq. ( 4 · 5")), the line shape of the 

main part of the absorption band is expected to be given by the curve of Fig. 

4,*) which is shown in terms of the energy unit F'0 (Eq. (2·25)). The asymmetry 

is very strong (A =0.33), and the half-value width is given by Eq. ( 4 · 7). The 

dependence of the latter on the coupling constant and on the temperature are rather 

strong. The high energy tail of the absorption curve coincides with the result 

obtained by the second order perturbation theory (the indirect transition). 

Since the wave-numbers of the exciton and the phonon which make impor

tant contributions to the line-shape of the main part are very small, we can use 

the high temperature approximation _for the expectation value of the phonon 

number, and at the same time we can neglect the phonon energy in the exciton

phonon scattering. In the same reason, the exciton band structure in the neigh

borhood of k=O only is important in determining the line-shape. 

The conclusions stated above are subject to no essential change even when 

the effective mass is tensor, or the energy surface is warped in the neighborhood 

of k=O, if the appropriate value of ;n* (averaged for all directions) is inserted. 

When k=O is the top of the exciton energy band, the line-shape is the mirror 

image of Fig. 4 with the sign reversal of the abscissa---the energy measured 

from the renormalized energy E0 • 

However, the above conclusions fail completely when the exciton energy 

ck increases in some directions but decreases in other directions as k increases 

from zero. Such a case was investigated in I. 

The comparison with experiment will be left to the future when we investi-

*) Except for the low energy edge. See the discussion towards the end of § 4. 
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104 Y. Toyozawa 

gate more fully the effect of the quadratic term of the exciton-phonon interaction 

on the low energy tail part, in connection with the Urbach-Martienssen rule. 

The author wishes to express his gratitude to Prof. R. Kubo, Prof. T. 

Matsubara, Prof. S. Nakajima and Mr. S. Miyake for valuable discussions. 
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