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1. When a pair of objects is presented for comparison and the two are -

placed in the relationship preferred: not-preferred, we have what is knovm

as a paired comparison. A set of n objects can be compared, a pair at a
time, in some or all of the possible n(n - 1)/2 ways of choosing a pair, and
the set of paired comparisons so derived gives us a picture of the inter-
relationships of the objects under preference, A paired-comparison scheme
is more general than a ranking; for with the latter A-preferred~to-B and
B-preferred-to-C automatically ensures A-preferred-to-C, whereas with
paired comparisons it might happen that C was preferred to A, The existence
of these departures from fhe ranking situation may be due to various reasons,
such as the fact that 'preference' is a complicated comparison being made
vith reference to several fgctors similtaneously; and one reason for using
paired comparisons is to gi%e such effects a chance to show themselves.

- Situations often occur in which a get of m observers express
preferences among n objects and we have to select that objecﬁ, or perhaps
that sub-set of objects, which ar;, in some sensé, "most preferred." The

simplest case is the one where there are only two objects, A and B, and

1 This research was supported by the United States Air Force,
through the Office of Scientific Research of the Air Research and Develop-
ment Command.
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every observer votes for either A or B as president of an institution. If
5l per cent of the votes are cast for A and L9 per cent for B we declare

A elected. In doing so we have satigfied 51 per cent of the preferences but
have had to proceed contrary to L9 per cent; we may say that L9 per cent of
the preferences were violated. Hore generally;, when we have to select a sub-
set of the n objects as "elected" we shall in general, in the absence of
complete unanimity, violate a number of preferences. Circumstances force us
to do so to some extent., The problem is to do so to the least possible
extent.

3. Consider the case in which 8 members of a body have to elect a
committee of three from among themselves. We will suppose that no member
votes for himself (though this makes no essential difference) and that there
are no abstentions (though this too makes no essential difference)., If the

8 members are represented by the letters A to G they might vote as follows:

Mener Members Preferred
A HDE
B DAF
c DGA
D CEE
T ARC
F ACD
G BAC (1)

Here, for the moment, we suppose that there is no preference expressed among

the triplets of members preferred; that is to say, A prefers B,D,E but does
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not say whether B is preferred to D or E, or D to L. He might then have

written dovn his nominees in any order,

Under this system each elector expresses 9 preferences. A, for

example, says, in effect, that he prefers B to C, F, and G, prefers D to

C, F, and G, and prefers E to C, F, and G. There are thus 63 preferences

altogether. We will represent this scheme in a two-way array of the

following kind:

A B D B F G No. of preferences
A - 1 111 1n m 111 15
B 1l - 11 1l 1111 il 12
c 1 1 111 111 111 11 15
D 11 - 11 11 11 9
E 1 - 11 11 6
F 1 1 - 1 3
G 1 1 1 — 3
Totals 3 6 9 12 15 15 63

Here, if A is preferred to B (a relationship we shall henceforward write as

A pref. B or A->»B) we write a unit in the row A, column B, For example

C prefers Dy G, A to each of B, E, F. We therefore have units in row D,

Col. B; row D, Col. E; row D, Col. F; row G, Col. B; row G, Col. I; row G,

(2)

Col. F; row A, Col. B; row A, Col. L; row A, Col. F. The totality of prefer-

ences expressed in (1) is given in the array (2) , together with row and

column totals,
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Notice that: (a) the sum of row and column totals for each letter
is 18, This provides a check, The reason is that each of the letters is
compared with three others by each of s&ix observers, so that each letter
has 18 preferences (one way or the other).

(b) each column or row total is a multiple of three; for if any
letter is preferred at all by an observer it is preferred to three others.
L. From the array (2) we see that A and C had 15 preferences each, If
all preferences expressed by all observers have equal weight there is nothing
to choose between them. B comes next with 12 preferences. All the others
have fewer. Thus, if we have to elect three out of the seven to form a
committee, we elect A, B and C. In doing so we satisfy as many preferences
as possible; and since the total number of preferences i® constant we

minimize the number of violated preferences.

Se The procedure we have followed exhibits the structure of the
preference scheme most clearly; but for the purposes of electing a committee
of three we can proceed much more expeditiously. In facf, from array (1)

we see that the voting is as follows:
Member Mumber of votes

A

B

3

@ td
& '»4 L S VO S

(3)
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(] A comparison of this with (2) shows that in the latter the row totals are
thrice the number of votes. The reason is sasy to see., for if any letter
gets a vote it is thereby preferred to three others. In shorﬁ, our procedure
of electing thos.e letters which get the greatest number of votes is equiv-
alent to a method of minimizing violated preferences.

6. Mow let us suppose that the rules of election are altered slightly
and that each elector writes dovm the three members he prefers in order of
preference, JSuch an order might be that of array (1) where., for example,

A gives B his first preference, D his second and E his third. Each elector
now expresses 12 preferences, three among the set he names and 9 by impli-
cation between those three and the three he omits, If we now form an array

of preferences we get, instead of (2)

Totals

A B C D E F G
A -- 3 3 L 4 L 3 21
B 2 - 3 3 3 L 3 18
c 2 2 -- L L L L 20
D 1 2 1 -— 3 2 3 12
E 1 0 1 0 -— 2 2 6
F 0 0 0 1 1 - 1 3
G 1 1 0 0 1 1 - I
Totals 7 8 8§ . 12 16 17 16 8k

(L)

The antisymmetry of the table has now been lost and row or column totals
‘ are no longer divisible by three. But we could still pick out the three
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members with the greatest mumber of preferences (A, C, B as before) without
constructing a full table. In fact from (1) we score for A& the following
preferences allotted by the electors B to G:

L+3+0+5+5+) =2
and so for the other letters. The scores are the preference totals in the
final column of (k).
T The same method can obviously be applied to any number of voters and
any size of committee. Under the condition that there are no abstentions
and that nobody votes for himself, the total number of nreferences expressed
by m voters for a committee of n (no preferences between committee nominees)
is m(m - n ~ 1); or if preferences are expressed by ranking nominee&, is
m(m - n/2 - 3/2). We may now, if we wish, relax some of the conditions
without affecting essentials.

(a) If every man is allowed to vote for himself nothing new is
introduced so long as we adhere to the principle of giving each preference
the same weight;

(b) The same principles apply when a number of electors express
preferences concerning a group of individuals who are not members of them-
selves., If m judges express preferences for k out of n objects (without
ordering them) the number of preferences is mk(n - k).

(c) If there are any abstentions we can continue as before to count
those preferences which are expressed. Suppose, for example, that instead

of (1) we had the following preferences expressed (second calumn):
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lember Preferences
A BDE
B C4a
c DGAB
D CBC
5 AB
F ACD
G BBB

We suppose that these are in order. Member C has overstepped the mark.

Unless we reject his ballot as spoiled we delete B from his ordering.

Corrected Preferences

BDE
CA
DGA
CBE
AB
ACD

(5)

Member B prefers C to A and both to the other four, but cannot express a

preference between those other four and hence submits only two names,

Hember

G tries to "plump" but we disallow this and count his expression as a prefer-

ence for B only. ‘\ie now have the preferences in the third column of (5)

giving the fdllovring:

Preferences for

A | L 3

B 5 H,
c 5 +5
D +5

E +3
F

a L

‘ A, B and C are still elected but B now gains more preferences than A,

5
H

(6)
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Ve notice that election on this principle maximizes the mumber of
satisfied preferences and minimizes the violated preferenceg, as before,

(d) If any voter "ties" certein nomineeé, this is equivalent to
expressing no preference between them and everything proceeds as before.

For example, if in (5) member D tied C; B, B there would be two fewer
preferences for C and one fewer preference for B in (6).

(e) In particular this method covers the case when each of a set of
judges ranks all the objects, and not merely a preferred sub-set of them,
The whole method, in fact, is very flexible in this respect. So long as any
preferences are expressed we can pursue the same technique., The only thing

to take particular care about is that one judge has the same opportunities

as another for expressing the same number of preferences, even though he may
not avail himself of them, e clearly introduce bias if we give one judge

a chance to express two preferences and another only one. The system pro-
posed is in accordance with the best democratic principles in that each
judge has the same number of voteé, and all votes have the same weight.

(£f) It is possible to order the memberé, according to the number of
preferences allotted to them, in a ranking (which may itself contain tied
members)., Thus we constrain a paired-comparison system into a ranking at
the expense of violating a number of preferences, The fewer the violations
the nearer the scheme to an actual ranking., In tables of the type of (2)
or (4) a perfect and unanimous ranking would correspond to a situation in
which all the non-zero cells were above the main diagonal,

(g) In those cases where we choose to regard any object as compared
with itself, as for example if we wish to complete the diagonals in (2),

we may allot 1/2 to the cell in the same row and column. This will clearly
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not affect the order of the objects according to numbers of preferences
received, for each object then receives an extra 1/2 for each observer.

(h) Likewise, if an observer cannot express a preference between a
given pair A, B we may allot 1/2 to each of the cells in row A, column B
and row B, colum A in arrays of type (2).

(i) We caﬂ, if we wish, give effect to differences in reliability
between judges. For example, if in array (2) we regard D as twice as
important in his preferences as the others, we enter 2 for each preference
instead of unity in the table,

8. Finally; let us note that the number of preferences can be used to
calculate a coefficient of agreement among judges., This is another aspect
of the coefficient of agreement in paired comparisons proposed by Babington

Smith and myself some years ago. (See my Advanced Theory of Statistics,

vol. 1, chapter 16). In fact if the total possible number of agreements is

N and the actual number of agreements is Ng the coefficient of agreement
would be simply 2M/N - 1 which varies from -1/m or -1/(m -~ 1) to 1. In table
(2) for example the cells (A, B) and (B, A) have respectively 2 and 1 members,
The pair A, B are compared three times and of these comparisons two are in
agreement; there is thus one agreement out of a possible 3; likewise for AG,
there are three agreements, each in the all Ad, out of a possible 3. For the
whole table it will be found that there are L7 agreements out of a possible
7L and the coefficient of agreement is 0.270.

9 We may also use the table to calculate a coefficient of departure
from the ranking situation. Suppose we arrange the table so that rows and
columns follow the order of the number of preferences expressed; in the case

of table (2) this merely amounts to interchanging the rows and columns
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corresponding to B and C. The number of units below the diagonal is then 13
and that above the diagonal is 50. MNo other arrangement of rows and columns
can divide the 03 preferences so unequally. If all were above the diagonal
the preferences would be consistent with a ranking. We might then take as
our measurement of departure from the ranking situation the coefficient
(13/63) x 2 = 0.l13. Ve have multiplied the factor 13/63 by two because the
furthest situation from ranking occurs when one half of the total prefer-
ences are allotted to the cells below the diagonal,

10. So much for the elements of the subject. I now proceed to consider
sundry developments which are necessary to enable a more penetrating study
of a paired-comparison situation to be made. The first arises from the
nature of paired comparisonsin themselves and may best be introduced by an
"example.

Let us suppose that six players A to F are engaged in a chess
tournament in which each plays the other once. The set of scores (1 for a
win, 1/2 for a draw and O for a loss) then represents a set of paired
comparisons made in all possible ways between them. We assume that all games
reach a decision so that there are no missing values. A possible set of

results 1s as follows:

A B C D o) F Total score
A 1/2 1 1 0 1 1 4 1/2
B © 1/2 0 1 1 0 2 1/2
cC o0 1 1/2 1 1 1 h1/2
D 1 0 0 1/2 0 0 11/2
E O 0 0 1 1/2 1 21/2
F 0 1 0 1 0 1/2 2 1/2 (7)
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The simple way of arranging the competitors in order of success is to add wp
their scoreé, as is done in the final column. If we had three prizes we
should divide the first and second between A and C and divide the third
among B, E and F, Only D does not qualify for a share of the prize money.
This situation, as we have seen, minimizes the violated "preferences." Such
a procedure would be adopted in most tournaments of the kind.

11. Dut we now notice one rather anomalous effect. ﬁ, the only player
to receive nothing, has in fact beaten one of the winneré, A, Ve are not
allowed to dismiss this as a mere fluke, because all preferences are
equally valid. PFurthermore A has beaten C but is nevertheless ranked with
him. Vague but genuine feelings for general equity lead us to inquire whether
something should not and cannot be done to restore the balance. Such a
method was suggested by Dr. T. H. Wei (1952) in an unpublished thesis suc-
cessfully submitted to the University of Cambridge for the Ph.D. degree. In
effect Wei's procedure amounts to this:

We recalculate a score for each player by giving him the score of
every player he has beaten and half the score of every player with whom he

has drawn. This leads to the following new scores:

A =%(h.'-‘2:) +2%. +h % + 0 23 + 23 =1u.1£
B = o +iep + o +13 t2z + 0 " 5%
c = o +a23 +%(h]§) + 1% +2-§- +2-12- =11%
D = h%— + 0 + 0 +92-(1% + 0 + 0 . 5%
T = 0 + 0 + 0 + 1% +%—(2-1- + 2-2— - 5%
F = 0 +2% + 0 +1% + 0 +%(2-1§) - 5%(8)



-l 2w

Vle now arrange the players in order of new scores; and we now notice that A
and C have separated, A being first and C secon&, while D has moved up to
equality with B, ﬁ, and F.

This is as far as one would wish to go on practical groundé, perhaps,
but now a further point raises itself, Ve have re-allocated the scores once,

Why not do so again? If we re-allocate the scores of (8) by the same method

we find

A %(u;i-) R R I O T

B0 + ysb + 0 +5% +5% + 0 -13%

c - 262

D = 16 %

E = 133

F = 13 % (9

A and C are still first and second but D takes third place and B, &, F share
the fourth position.

If we reallocate the scores once more we find scores

82L.375
365.625
695.625
L25.625
365.625
365.625 (10)

H H U ow k=
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The order is now the same as we derived from (9); and if we ascertain new
scores on the same principle we shall find that no new ordering has appeared.
Later I shall prove that after a time the situation always "settles down"

in this way.

13. There are two interesting features of this procedure. Let us revert
to the preference scheme of (7) and regard the scores as a matrix, If we

square this matrix we obtain

Row totals

I 3 1 L o2 3 1§
1 %; 0 2 1 1 5]3;.
12 % L 2 2 11%
1 1 1 § 1 1 5t
1 1 0 2 E 1 5 E
\ 1 1 0o 2 1 )1: 5 A

and the row totals are those previously obtained in (8) by the first
re-allocation of scores:s The reason for this will be obvious to anyone
familiar with the rules of matrix multiplication and the result is generally
true for all preference matrices. Furthermore, if we multiply (11) again
by the matrix (7) and add row totals we shall get the scores of (9); and so
on. The contimual reallocation of scores is equivalent to taking successive
powers of the matrix,

k. Let us now consider what interpretation can be given to the process
in terms of comparisons. The following diagram shows the scheme of (7) in

geometrical form
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The six players are represented by the six vertices of a regular hexagon,
which are joined by straight lines in all possible ways. If A pref. B we
draw an arrow from A towards B. If no preference was expressed (or the game
was drawn) we do not draw an arrow.
15. It will be seen that the scoré of any player in (7) is the number
of arrows leaving his vertex', together with 1/2 (as the conventional score
in the diagonal, when he is compared with himself) and 1/2 for any line
passing through his vertex on which no arrow is drawn. Vihen we proceed to
the next stage we count the number of paths leaving the vertex and taking
two steps. For example, for A we have the following paths leaving A and also
leaving the vertex next visited:

ADD, ABE; ACB, ACD, ACE, ACF; AED, AEF; AFD, AFD.

There are ten of these "transitive" preferences. We also count the
preference of B with itself, C with itself, etc., as 1/2 eacﬂ, making a
further score of 2; and finally we score 1/2 of 1/2 for the double preference
of A with itself, The total score is lh% , which is the score for A in
(11). It may be verified that the same procedure gives the other scores in

that array.
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Similarly the scores obtained by the next reallocation‘, as given
in (9) , are the numbers of paths of three lines leaving the respective
vertices, all arrows going the same way, with similar conventions about
vertices taken with themselves; and so on. Our reallocation is equivalent
to powering the matrix or to counting paths of transitive preferences of
increasing extent.
16. From the geometrical viewpoint it is seen that in proceeding by
reallocation we are extending our concept of comparison. We began by con-
sidering comparisons of pairs by themselves. When we proceed to the next
stage we compare pairs which form part of triads; but we do not compare the
triads by considering them as three pairs (which would bring us back to the
first situation), Thus it is possible to "compare' A and C by the route
A—-B-—»C or A and Bby A-»C—B, Both of these "comparisons" do not count
in our score because they cannot both happen together; but either counts
when it occurs.
17. Or we may put it another way by saying that we compare two members
AB not directly, but through their comparisons with other members, e.g. by
ACB, I;Dﬁ, AED and AFB. We choose the leading members in the final order so
as to maximize the agreement with transitive preferences; or conversely, so
as to minimize the violation of transitive preferences. Whether this is the
right thing to do depends to some extent on practical circumstances. The
process of continual reallocation has the advantage that it results in an
objective final ordering; but whether this is what we want depends on whether
we are considering a situation in which direct comparison is the basic gen~
erator of the data, or whether we wish to give scope for more reflective

judgment in roundabout comparisons involving other members.
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18. Let us now consider the case when several judges make »aired compar-
isong, or several tournaments are played between the same set of players.
For each observer we shall have a preference matrix of the type of (7). To
obtain a composite picture, on the supposition that the judges are equally
reliable, we superpose the matrices. Thus if (7) represents the preferences
of a judge for 6 varieties of ice cream when offered to him in pairs, two

additional judges might have the following preference matrices:

AL B C D © F Totals
1 1
A ' 1 0 1 1 o0 3%
1 1
B 0 3 = 1 0 1 3
¢c 1 1 L 1 o 12 L
2 2
1 1
D o 0 0 7 1 3 2
1 1
E 0 1 1 0 = 1 33
1 1
1 L 2 1
F 1 0 o0 3 o 3 (13)
A B € D T F Totals
A X o 1 1 ¥ 4 L
2 2
1 1
B 1 3 1 0 o0 1 33
c o © % 1 1 1 3%
1 01 1 1
D O 1 0 3 3 3 23
r ¥ 1 o 1 1 1 31
2 2 2 2
1 1
0 = o0 1 1l
F O 0 5 > (1L)
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. Adding these and (7) together we get
A B c D E F  Totals_
A 1z 2 2 2 2% 2 1
1 1
B 1 1y 13 2 1 2 9
1 1
c 1 13 13 3 2 3 12
D 1 1 o 12 1%i 6
2 2
L 1 1 1
E > 2 1 13 13 3 95
1 1
F 1 1 0 2 0 13 55
1 1
Totals 6 9 6 12 83 123 sk (15)

On the basis of simple paired comparisons we should place A and C as
bracketed equai, E as third, B as fourtﬁ, D as fifth and F as last,

19. The question now arises whether we should reallocate the scores by
povwering the matrix (15); or whether it would be preferable to power each
matrix and then amalgamate the rankings at the end so as to minimize
violated preferences. The two processes will not always lead to identical
resulté, although in practice they should not differ very much. Arithmetic-—
ally it is simpler to power just the one matrix (155, and in cases where
there are many judges this would be almost decisive. This is the procedure
I would recommend myself, but if there were any serious doubts I would per=-
form: the analysis both ways and compare the results. A wide disparity

would, in my view, suggest that neither was very reliabla., Tt wunld arise
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mostly in cases where there were substantial disagreements among judges.
20, I now prove that the process of repeated powering does in fact
converge to a limiting ranking. Dr. Wel offered a proof of the result for
one observer and a complete set of preferences in his thesis,

First of all we define a matrix A of non-negative elements to be

indivisible if it camnot be expressed in the form (by rearrangement of rows

////All Ao
A = (16)
0 App

If a preference matrix of type (15) is divisible in this sense the members

and columns)

of one block of objects are always preferred to every member of another. in
such a case we divide the data into the two blocks and operate on eacﬁ,
finally ranking the members of the first group and then the members of the
second., Similarlf, if one of these blocks is itszlf divisible we divide it
up; and so on. We clearly lose no generality by doing thié, and divisibility
is not a handicap in our preference situations.

21. T now require a theorem of Frobenius (cf. Wieland£, 19502) which

says that for indivisible matrices A with non-negative elements and positive
elements in the diagonal there exists a unique simple positive root of the

equation [A - AI |= O which is greater than all other roots in absolute

2 I am indebted to 5ir Alexander Aitken and Dr. F. G. Foster for
some references on this subject. The preference matrices are similar to, but
not identical with, the matrices of transition probabilities studied in the
theory of stationary stochastic processes.
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value; and that the corresponding characteristic vector has all its elements
of the same sign (which we may take to be positive).

Let xl be this largest root and Yi the corresponding vector. T§en
if A

0y ** hp are the other rgots and Ié oo Yb the corresponding vectors, and

if P be the preference matrix, we have
PY =/\Y an

where /\ is the diagonal matrix

N )
M
A= g
0 xp (18)

It is now easy to show that for any positive integer k
Mr=aAFy (19)

As the powering proceeds the major root A, becomes dominant and (19) tends
to the equation

Ky =a¥y

1M 4 (20)

Thus from some k onwards the final ordering will be determined by the vector
!i, which has non-negative elements,

22, We notice that the proof remains applicable to preference matrices
in which some preferences may be missing, or when ties are present, pro=-
vided that the matrix is not divisible., If any cell in a tombined prefer-

ence matrix contains no entries we insert a zero.
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23, It is also of some interest to note that we may prove that the
preference matrix is never singular. In fact, we can always express it

(apart from positive numerical factors) in the form
Q+0) ()

vhere Q is an anti-symmetric matrix and U is the matrix all of whose elements
are unity. For example (15), after division of rows by 1 1/2, can be

expressed as U plus the matrix

o /3 1/3 1/3 2/3 1/3
/3 0 0 /3 -1/3  1/3
4/3 0 0 1 1/3 1
a/3 -1/3 A 0 o -/3
=2/3 1/3 -1/3 0 0 1
-/3 /3 4 Y3 A4 0 (22)

We reduce Q + U systematically by subtracting the first column from
the second columﬁ, then the first row from the second row; then the first
column from the third column, then the first row from the third row; and so
on. The effect on Q is to reduce it to another antisymmetric matrix, say Q',
and the effect on U is to reduce it to a unit in the top left-hand corner
and zero elsewhere. Thus the determinant of Q *+ U is the determinant of Q'
plus the determinant of the principal minor obtained by omitting the first
row and column, which is also antisymmetric,

How the determinant of p x p antisymmetric matrix is zero if p is

odd and positive if p is even. Hence the determinant of Q + U is the sum
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of two components, one zero and the other positive; and hence it does not
vanish,
22, In practice the number of paired comparisons arising from n objects
may be inconveniently large and the question arises whether it is possible
to economize in the number of comparisons made. In the example of the chess
tournament which has been mentioned above (paragraph 10) if each player is
to play every othe?, 15 games must be played. But only three can be con-
ducted at oncé, so at best 5 sessions are necessary. If this is too 1oné,
and, say, three sessions are all that can be allowed, only nine games can be
played and six have to be sacrificed. The question is, which six? Or agaiﬁ,
if an individual is comparing items by taste testing, his patience or his
palate may not endure the presentation of all the possible pairs, and a
problem arises as to how best to cut down the number of pairs and which
pairs to present.
23, Problems like this arise in many fields of experimentation and are
usually dealt with by incomplete balanced blocks. Some new points, however,
arise in paired~comparison work, Durbin (195l) has considered the use of
Youden designs in ranking experiments. More recently Benard and van Elteren
(1953) have discussed tests of significance where incomplete rankings are
concerned, Without trying to exhaust the subject I proceed to consider the
use of incomplete balanced blocks in preference schemes,
2k, Consider first of all the case of a single observer, Of the
n(n - 1)/2 preferences which he could make we require to pick out a sub-set.
Certain elementary principles of choice at once suggest themselves:

(2) every object should appear equally often. In this sense the

design should be balanced;
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(b) the preferences should not be divisible in the sense that we
can split the objects into two sets and no comparison is made between any
object in one and any object in the other.

In terms of preference matrices (a) means that there should be the
same number of non-empty items in each row, and column; (b) means that the
matrix does not divide into two blocks and become of the form }é ;) when .
the zeros represent empty cells. In terms of the preference diagram (a)
means that there are the same number of paths direct between points leaving
or entering each vertex and (b) means that the figure does not separate into
two distinct polygons.

25, When possible I add a further condition of symmetry to the situation,
that is to say

(¢) In the preference diagram the number of paths of length [
proceeding from any point to any other point shall be the same for all pairs
of points.

The length [ here means the number of lines traversed in the path,
e.g. the path (in Figure i, section 14) ABC from A to C is of length 2 and
AEBDC from A to C is of length L, Vhere no pair of objects is compared in
these "partial" situations we omit the line between them. If they are
joined by a line without an arrow this means that they have been compared
but that no preference has been expressed.

In terms of preference matrices this condition implies a kind of
symmetry of interlocking. A path ARC implies entries in row A, column B and
column C (and the reflections column A, row B and row C); and analogous
entries must occur in other rows in such a way that. all the objects are
symmetrically involved,
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26, Under these conditions we can meet a requirement sugpested to me in
conversation by Dr. R. C. Bose: if all the preferences are exerted at
random (e.g. if we toss up for it which of a pair shall be preferred) all
possible final orderings of the objects produced by powering the matrix
should be equally probable., This follows from the symmetry of the situation,
for we can interchange two objects in the designs without altering the
preference matri#, so far as concerns the underlying probabilitieé, and all
final orders are therefore equally probable,

27, In a sense, it seems to me, condition (c) is necessary as well as
sufficient for a proper design. If it is not obeyed certain objects become
subject to different schemes of preference from others and their final
positions are not determined on an unbiased basis., In terms of powered
preference matriceg, the sums of rows are not based on the same number of
transitive comparisons of length [.

28, The conditions laid dovm above impose certain restrictions on the
scope of a paired-comparison experiment., For instance, if there are six
objects and the numbers of entries in the rows of the preference matrix are
equal, the number of comparisons necessary to obtain a balanced experiment
mist be a multiple of three, Anything else destroys the balance. The
connectivity condition (b) further limits the freedom of choice; for example,
with six objects at least six comparisons are required.

29, The getting up of incomplete designs is most easily thought of in
terms of tours round the preference polygon., Consider the case n = 7.
(Prime numbers are easier to deal with in most experimental designs.) There
are 21 comparisons altogether. To obtain a balanced design we must have

either 7 or 1l comparisons (or, of course, the full 21). The first 7 may,
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without loss of generality, be taken as the tour ABC ... G round the

preference heptagon. (No generality is lost because each member must be

A B
G C
F D
E
Figure 2

connected to two others and hence they be on a chain which may be taken to
be the order A to G.) For the next 7 we have two possibilities: (a) start
from A, miss a vertex and go to C, miss a vertex and go to I and so on;

(b) start from A, miss two vertices and go to ﬁ, then two vertices and go to
G and so on. Ve do not obtain new designs by tours missing three or more

vertices because they are equivalent to (a) or (b). The two schemes are

shown in Figure 3.

A B A B
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These schenes are not icdentical. In the former there are two
triangular tours connecting any pair., e.g. ACB and AGB, whereas in the
second there is only one, e.g. AEB, In terms of time taken in performance
there is nothing to choose between them. For example if they represented a
chess tournament, each round requires three games} one player having a byé,

and for 1L games 5 rounds are required. Such might be

Scheme 1 Bye Scheme 2 Bye
AB, €D, FEF G Aﬁ, CD, EF, G
AC., D, E¢ F AD, BC, FG, E
Bé, DE, FG A BE, CF, DG, A
AF, CE, BG D Aﬁ, BF, CG, D
MG, DF B, C, ® AG, DE B, C, F. (23)

30. It remains to be considered whether one scheme is preferable to the
other by some other criterion. There is nothing to choose between them in
relation to balance or the application of the powered-matrix method. We
note, howevef, that the patterns of transitive preferences are different.
In the first any pair is connected by two triangles, three quadrilaterals,
etc., in the second by one triangle, four quadrilaterals, etc. On the Whole.,
I should be inclined to select the second design from a feeling that it has
higher connectivity, but an exact criterion awaits further investigation,
31, When we have several judges, an obvious extension of symmetry
requirements necesgitates that each participates to an equivalent extent:
in some sense the design should be balanced by Judges as well as by compar-
isons. Something depends on whether we require to compare judges in
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addition to objects. If s&, each pair of judges must have certain compari-
sons in comon. With two judges and seven objects, for example, one simple
way would be to allot to each 1k comparisons, one judging according to each
of the designs of Figure 3., They would then have 7 comparisons in common
and all possible comparisons could be made.
32. I do not propose on this occasion to attempt a systematic exposition
of the design problems involved in paired comparisons. Designs of an
optimum kind which balance by numbers of comparisons, objects compare&,
numbers of observers on given comparisons and so forth are probably rather
rare; and if something has to be sacrificed it depends on what is the point
of major interest whether we sacrifice symmetry in comparisons or in judges.
A final example will make clear a few of the principles involved.

Consider again the case of seven objectg, ABCDZIFVF G, There are

three distinct tours round the preference polygon,

ABCDEYG
ACTGBDF
ADGCFBE (2L)

zach tour involves seven comparisons and each object is compared with two
others in a tour.

For a complete set of comparisons each observer would have to make
21, If this is felt to be too much we may allocate 1k, consisting of two
tours each. And if the tours are represented by a, B, ¢, we may allocate

to the observers 1, 2, 3
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l: e, b
2: b, ¢
3t c, a (25)

With these schemes every comparison is made equally often (twice); every
tour is made equally often (twice); every observer makes the same number of
comparisons (14); every observer has a tour in common with every other
observer; and thus every observer can be compared with every other observer
in respect of two comparisons involving any specified object.

If we have more than three observers, we take a number equal to a
multiple of three and replicate the design.

Now suppose We had eleven objects; A to K. The full set of compari-

sons numbers 55, There are five distinct tours round the preference polygon

a:A B CDETFGHTIUJLEL
b:A CZ GIXKBDTFHUJ
c:A D GJBEUHIXKXTEGCTFTI
d:A T I BF JCG K DH
et:A F XKE JDICHTEBSEG (26)

Now if we try to allot two tours to each of five observers we lose symmetry;
for there are 10 pairs of tours choosable from these five. We have, to pre-

serve complete balance, to allot four tours to each observer 1, 2, 3, b, 5
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1: b e 4 e,
2: ¢c,d e a
3:d,e,a,b
L: e a v ¢
5: a, b c d (27)

Again the tours are balanced, but we have not achieved very much. Each
observer now makes Ll comparisons, against the full set of 55.
We can sacrifice symmetry in several ways. We may, for instance,

allot two tours to each observer, e.g.

l1: a b
2 : S, c
3: ¢ d
L: d e
51 e, a (28)

Here every observer can be compared with two other observers but not every
pair can be compared. Or if we have, say, 10 observers we may allot all
the 10 possible pairs of tours one to each. Each observer then makes 22
comparisons and can be compared with four other observers. If 22 com-
parisons are still felt %o be too many for one observer we may allocate
the 55 preferences according to a linked design, e.g. (numbering the

preferences 1 to 5©) with 11 observers, 10 preferences each
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1: 1, 2 3 L 35 6 1, 8, 9, 10
1

H

]
B

12, 13, 1k, 15, 16, 17, 18, 19
2, 11

3 H

20
3 , 28, 29, 30, 31, 32, 33, 3L
L, 13, 21, 25, 35, 36, 37', 38', 35, Lo
‘ 1&, 22', 25, 33, hl., h2., L3, Lk, L5
, 15, 23, 30, 36, W, 16 l, U8, L9
7, 16, 2, 3, 31, L2, L6, 50, s, 52
, 17, 25, 32, 38, L3, L7, 50, 53, Sk
10: 9, 18, 26, 33, 3?, L, h8:, 51, 53;, 55
11: 10, 19, 27, 34, Lo, L5 L9, 52, sh, 55  (29)

21, 22, 23, 2k, 25 26, 27
12

]

20

O (o TS | [0, v = w
e .y g (1) ae (1] (Y]
. Oh n

Here we have cut dowvn the comparisons for each observer to 10 and each
comparison is made twice., But we have lost a good deal of the comparison
between judres; every judge can be compared with every other judge but

only on one comparison of objects.
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