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INTRODUCTION

Lobe mixers are devices which are currently being used for thrust augmenta-
tion on a variety of turbofan engines. The mixer is designed to provide a means
of generating mixing between the turbine and fan streams before they enter the
exhaust nozzle. Through careful design, the mixing can result in more uniform
energy distribution at the nozzle exit. Provided that the losses incurred in the
mixing process are minimized relative to the amount of mixing, small but signifi-
cant performance gains may be realized.

Obviously, due to the sensitivity of mixer performance to changes in lobe
shape and number, inlet velocity and temperature ratios, and secondary flows
generated by the lobes, a computation procedure which could be used to sift
through a matrix of possible design configurations would be of significant value.
Such a procedure was previously developed by Kreskovsky, Briley and McDonald
(Ref. 1), based on the velocity decomposition approach of Briley and McDonald
(Ref. 2). The analysis synthesizes concepts from potential flow theory,
secondary flow theory, and from an extension of three-dimensional boundary
layer theory in a manner which allows efficient numerical solution by forward
marching in space. The resulting procedure was used extensively in Refs. 3-5

to examine the effects of lobe shape, lobe generated secondary flows, and

e s .owe s

turbulence effects on mixing. The results obtained in Refs. 3-5 were, in
general, found to be in excellent agreement with available experimental data.
Through interpretation of the results obtained using the analysis of
Ref. 1, a more detailed understanding of the mixing processes in lobe mixers '
was obtained. As a result, it became apparent that it would be beneficial to '
extend the analysis of Ref. 1 and further develop and improve its capabilirties.
These extended capabilities, which are the subject of the preseat investigation,
allow the current version of the analysis to be applied to mixer flows with
swirl, and to allow more general specification of initial condition with
nonzero secondary flow vorticity. In addition, the procedure for determining
the required a priori compressible potential flow pressure gradients from an
incompressible flow soiution, has been improved. Finally, the formulation of
the x-¢ turbulence model used in the previous version of the procedure was
somewhat unreliable, leading in some instances to predictions of négative
values of turbulence kinetic energy. Under the current investigation, the
reliability of this model was improved by making minor changes in the numerical .

formulation, and optional turbulence models were added to the procedurc.
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the present version of the mixer analysis and computer code

As a result,
jlities which can be

represents a reliable, improved analysis with extended capab

e understanding o and to aid in

used to further th £ lobe mixer flow fields,

mixer design.



ANALYSIS
General Approach

The present analysis is described in detail in Ref. 1, and is outlined
only briefiy here. The analysis is based on approximations made relative to
a curvilinear but not necessarily orthogonal coordinate system fitted to and
aligned with the flow geometry under consideration (cf. Fig. 1). The coordinate
system is chosen such that the streamwise or marching coordinate downstream of
the lobes either coincides with or is at least approximately aligned with a
known inviscid primary flow directioh, as determined for example by a potential
flow for the given geometry. Transverse coordinate surfaces must be either
perpendicular or nearly perpendicular to solid walls or bounding surfaces,
since diffusion is permitted only in these transverse coordinate surfaces.

Equations governing streamwise vorticity and a scalar viscous correction
u, to a known inviscid primary flow velocity ﬁI are derived utilizing assump-
tions which permit forward-marching solution, provided reversal of the composite
streamwise velocity does not occur. Terms representing diffusion normal to
transverse coordinate surfaces are neglected. Approximate pressure gradients
are derived from the inviscid primary flow and imposed in the streamwise momentum

equation. Secondary flow velocities are determined by scalar and vector poten—

tials in the transverse coordinate surfaces, to suppress streamwise elliptic
behavior requiring downstream boundary conditions. Finally, the use of stream—
wise vorticity in obtaining secondary flow velocities avoids the explicit use of

transverse momentum equations in predicting the secondary flow velocities.
Primary-Secondary Velocity Decomposition

The analysis is based on decomposition of the overall velocity vector

field U into a primary flow velocity ﬁp and a secondary flow velocity US. The

overall or composite velocity is determined from the super-posicion

GeU i 2.1

U=-U, +U (2.1)
For iobe mixer flows the primary flow velocity is represented as

= .5 (2.2)

Up =Ygy

where GI is a known inviscid primary flow velocity satisfying slip conditions

and determined from an a priori potential flow solution in the geometry under

3



consideration. The (non-dimensional) scalar quantity u, is a viscous velocity

profile factor which introduces viscous shear layers and may also correct for

internal flow blockage effects. 1In the present case of the lobe mixer u, accounts

for both boundary layers and the free shear layer which exists between the fan
and turbine streams. The viscous velocity correction u, is determined from
solution of a primary flow momentum equation. As will become apparent, for the
lobe mixer it is conventient to solve for the component of ﬁp in the primary
flow direction rather than u .

To suppress streamwise elliptic behavior, the secondary flow velocity ﬁs
is defined by, and presumed derivable from, scalar and vector surface potentials
denoted ¢ and ¥, respectively. If il denotes the unit vector normal to trans-
verse coordinate surfaces (also presumed here to be in the direction of the

marching coordinate), if p is density, and if Py is an arbitrary comnstant

reference density, then ﬁs is defined by

Ug = Yy +(py/p) Uiy (2.3)
where V_ is the surface gradient operator defined by
v, =V-ili " (2.4)

it follows that il . ﬁs = 0 and thus ﬁs lies entirely within transverse

coordinate surfaces. Equation (2.3) is a general form permitting both rotational

and irrotational secondary flows and will lead to governing equations which are
elliptic in transverse coordinate surfaces and which are, therefore, solvable

within a forward-marching context. The overall velocity decomposition (2.1)

can be written - A
U-0,u,+%¢ +{po /p) V%I ¥

- T, +V,$ + (p,/p) Vi 2-3)
Surface Potential Equations
Equations relating ¢ and ¢ with u, p, and the streamwise vorticity
component £, can be derived from Eq. (2.5) as follows:
V-pl = 0= V-piliu, +V-pV, + pV-VXi (2.6)
2.7

1oUxUz= 0 < §-UxTu, +1-9x(p /p)0xty +i- VXV



Since the last term in cach of Egs. (2.6, 2.7) is zero by vector identity,

© o e mm——

Egs. (2.6, 2.7) can be written as

V-pVyd = -V-pU,u, (2.8)

!l-vx(polp)vﬁ;p -0, - ‘I"-Vxﬁluv (2.9)
which are elliptic for ¢ and ¢ in transverse coordinate surfaces. The last

term in Eq. (2.9) is identically zero in a potential. flow coordinate system

for which ;1 and ﬁI have the same direction, and is small if ;l and ﬁI are
approximately aligned. Given a knowledge of u,, 0, and p, the surface potentials
¢ and ¥ can be determined by a two-dimensional elliptic calculation in trans-
verse coordinate surfaces at each streamwise location. In turn, ﬁs can be
computed from Eq. (2.3), and the composite velocity U will satisfy continuity.

Equations for u, and Ql are obtained from the equations governing momentum

and vorticity, respectively.
Primary Momentum and Pressure Approximation

The streamwise momentum equation is given by

i -[@w0+verp] -0, F (2.10)
where p is pressure and oF is force due to viscous stress. Terms in F represent—
ing strearwise Giffusion are neglected; however, since the viscous terms are
complex for compressible flow, the modified viscous force is temporarily denoted
F', and further consideration of viscous terms is deferred to a later section.
The remaining assumption for Eq. (2.10) concerns the pressure gradient
term and is designed to permit numerical solution as an initial value problem.
An obvious pressure approximation for curved flow geometries is to impose
pressure gradients from an inviscid potential flow (Briley [6]), and for
internal flows, to correct these with a mean pressure gradient term depending
only on the X3 coordinate (Pantankar & Spalding [7]). This approximation is
appropriate both for flows consisting of an irrotational core region with
thin shear layers on bounding surfaces, and also for some fully viscous flows.
If pressure gradients are derived from the inviscid potential velocity

UI’ and if a mean viscous pressure correction pv(xl) is introduced, the pres-

sure approximation can be written as .
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i,*Vp ¢ il-[va(xﬂ"PV(ux'Ul)/z] (2.11)
= i"V(px+pv)

where Py is the imposed pressure. Typically, for internal flows, P, is
determined to ensure that an integral mass flux condition is satisfied, such
as

i . plidA = constant
f. 1P (2.12)

Combining Eqs. (2.10) and (2.11) and setting F = F' provides an equation

nominally governing u s

-1t

a - - — - L]
- [(@-95 +(Vp)/p -w(T,-T)/2] < 4, F (2.13)
where U is to be written as

0 = Luguy +iplviuy +v)) +iy(wu, +w,) (2.14)

i U_.
where uy, vy, wp are components of I and Vg» W, are components of US

Secondary Vorticity

An equation governing ﬂl in compressible flow can be obtained from an
approximate application of secondary flow theory. The equation governing the
growth of vorticity Qs along a streanline for compressible flow with constant
viscosity is given by Lakshminarayana & Horlock [8] and may be written for

variable viscosity as

(2.15)

29 l i .
9 (ns ) s — L o 5. UX—VUpt—35°G
as \ pq PAR pa P P9
where q is velocity magnitude, s is the unit vector along a streamline, s is
distance along a streamline, Qn is vorticity in the direction of the unit
principal normal vector n of the streamline, for which R is the principal

radius of curvature. These quantities are related by the Frenet formula

R

Vit e it et e bt Bk e b
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;/R B 3;/35 =g - V;. Tn Eq. (2.15), G = V x F, and the term containing p
vanishes if p is constant. Since an intrinsic coordinate system formmslation
as in Eq. (2.15) provides an "inverse" coordinate system if used to compute
U, and since intrinsic coordinates are degenerate on no-slip surfaces and
nonorthogonal for general rotational flows, intrinsic coordinates are not
attractive for numerical computation. However, if the coordinate system used
for computation is approximately aligned with the flow direction, then an
approximate equation governing 2, can be derived from Eq. (2.15) by replacing

s by i, as in the following development:

2 f'a AU 2, (2.16a)
q 5-U f.-u u, :
e, GvHa  Guia e, (2.16b)
QR 5.0 %T-U u,R,

where uy = ugug R1 is the principal radius of curvature of the Xy coordinate,

P

and Qn] is vorticity in the direction of n, the principal normal of the x
coordinate line. The quantities n, and Rl are defined by the Frenet formula

"l/R1 = il . Vil. To illustrate, in an orthogonal coordinate systemn,

n_,_[ I o iy "“n] (2.17)
R, hh, dx, hh, dx,

where hl’ h2, h3 denote metric coefficients. 1If p varies, P is replaced by
2

the imposed pressure p; as defined in Eq. (2.11). Finally, taking q = ul2

and s = il in the last two terms in Eq. (2.15), and neglecting strcamwise

diffusion, Eq. (2.15) becomes

- n 20 1 a 'VPI I A _g
u-v(—-} - o I-vx({—=) + i -G 2.18
(pul) PYUR,  pul ( P ) qu ! ( )

where G' does not contain streamwise diffusion.

The transverse vorticity in in Eq. (2.18) contains components which, in

orthogonal coordinates and assuming an irrotational ﬁ], are given by

. e e —— e —— e B v 1 o AR
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a u du w_ du |
n-i-VXG'—I———!-—-—z-——v-————(hw)
2" 2 h, 3x, _ h, 8x,  hhyox 38 (2.192)
u, du v, du | d
et .gxGe-—L—Y 4+ L YL & 2.19b
Qy=iy-IXU h, ox, * h, ox, hh, ax, (hyv,) ( )

In the applications contemplated here, the first term on the right-hand side of
each of Eqs. (2.19a-b) is expected to dominate, and the remaining terms may be

neglected as a convenience.

Energy Equation

Since the flow being considered is nonadiabatic, solution of an equation
governing energy is required. The energy equation can be written in a variety

of forms, one of which is
pU-VE =V-kVT+U-F+ @ (2.20)

where E is total eathalpy, T is temperature, k is thermal conductivity, and
¢ is the dissipation fuaction. Solution of Eq. (2.20) by forward marching
integration requires only that terms representing streamwise conduction of heat

and also streamwise viscous diffusion in F be neglected.
Compressibility Relations

In the imposition of streamwise pressure gradients, compressibility effects
are represented by introducing the perfect gas equation of state p = pRT.
No other assumptions are necessary for consideration of compressible flow.
For moderate subsonic Mach numbers, inviscid pressure gradients would ideally
be obtained from a compressible potential flow calculation or otherwise from an
jincompressible potential flow corrected for compressibility ucing a suitable
compressibility correction. Replacing p in Eq. (2.11) by the state equation and

eliminating temperature using the temperature-enthalpy relation

E=C T+ v (z.21)
P 2

——— = e —. -

LI

i
\
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where ¢ denoctes specific heat, the following auxiliary eguation relating
the imposed pressure gradients with density, velocity, and total enthaipy

is ontained:

. N B S Y G-U) »
|I—V[px+pv(xl)] - |‘-V[ » PLE-2 (2.22)
where Y is speeific Beat ratic. A slight simpl.fication results if U - U is
replaced by (i) - ﬁ)z in Eq. (2.22).

GCoverning System of Equatioms

A complete system of six coupled equations governing u ., 91, é, v, E,
and p is given by Eqs. (2.8), (2.9), (2.13), (2.20), (2.22), and (2.18).
Ancillary relations are given . - Eq. (2.5) for composite velocity, Eq. (2.12)

for mass flux, and Egs. (2.19a-b) for transverse vorticity.

The Turbulence Models

The present analysis is to be used to predict a turbulent flow field,
thus the stress terms F' and G' in Egs. (2.13), (2.18), and (2.20) contain
turbulent shear terms in the form of fluctuating velocity and velocity-
temperature correlations. These terms may be modeled using any one of a number i
of turbulence models which have been included in the present amalysis. 1In
general these turbulent shear terms are modeled through the imtroduction of a
turbulent eddy viscosity, and thisg eddy viscosity may be computed irom one of
three optional turbul<nce models. The most complex and general turbulence
model used in the present analysis is the x-¢ turbulence model described
by Launder and Spalding (Rof. 9).

The transport cquacions governing k and ¢ are given in vector form

(Ref. 9) for steadr flow as

Pu-Vk=V(P+pT/o'k)Vk+P—p¢ (2.23)

2

pu-Ve:V (ptp/oaVk+CEP-c, PO
k k (2.24)

In Egs. (2.23, 2.24), P is the turbulence production. The quantities %
Oc’ Cl, C2 are empirical constants vhich, as recommended by Lawnder & Spalding

(Ref. 9), are taken a2s 1.0, 1.3, 1.44, and 1.92, respectively. Upon solution

¢
et
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of Eqs. (2.23 and 2.24) the turbulent viscosity and length scale may be
computed as
2

and

2= CF'IM ksrz/e (2.26)

If low Reynolds number flows are considered (i.e. wall boundary layers are
resolved) the constants Cu and C2 are adjusted from their high Reynolds number

values. As suggested by Launder and Spalding (Ref. 9), C, is given as
-pe
Cp = Cpnu(1.0-0.3e7Ry) (2.27)

where CZG is the high Reynolds number value of C2 given above, and Rt is a

turbulence Reynolds number
Ry = pkpe (2.28)
The constant Cu is adjusted following Shamroth and Gibeling (Ref. 1v)
Cy = 40,2 | (2.29)

where ay is a function of a different turbulent Reynolds number Rr’ and is

given by McDonald and Fish (Ref. 11) as

) f(rR.)
o, =00[ ﬂ:;i]/ 1.0 + 6.66 %[ z 1” (2.30)

100
In Eq. (2.30) a is taken as 0.0115 and f(RT) is given as (Ref. 11)

f(r,) = 100R°% R <! (2.31a)

T =

f(R.) =68 1R, +614.3 R 240 (2.31b)

Between the limits 1 < RT < 40 a cubic is used in the two functional forms

given by Eq. (2.31). For these functioas Rt is definred as
FT
Ry = ot (2.32)
Although the k-€ turbulence model given above provides a general
turbulence model in which both the velocity and length scales of turbulence
are predicted, the formulation has proven to be unreliable and unduly
sensitive to the initial profiles at times leading to the prediction of

negative values of k and/or €. To provide a means of obtaining meaningful

10
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results when such a failure occurs an alternative turbulence model may be used.
in this turbulence model a free strcam Jength scale is specified and the
turbulence dissipation equation (Eq. 2.24) is not solved. Instead, the
turbulence dissipation appearing in (Eq. 2.23) is eliminated using (Eq. 2.26)
in conjunction with the specified length scale. In near wall regions the

length scale is damped following McDonald and Fish (Ref. 11)
£ = DL ponh(x d/.Ly) (2.33)

where £_ ijs the freestream length scale, k¥ is the von Karman constant

(=0.43), and ) is a sublayer damping function given as
0 - P""’[ (d* - 23)/8] (2.35)

Here, P is the normal probability function and d+ = duT/v where u_ is the
friction velocity.

For situations where it might be desirable to investigate the role of
turbulence models, a third and very simple turbulence model has been included
in the analysis. This turbulence model is referred to as a wake turbulence
model and is derived from the definition of turbulent viscosity Bes and

Prandtl’'s suggestion that the Jiffusional flux of some property ¢ = o+ &'

may be cxpressed a_. —
[ R - 1 12 ¢ - !_11 a¢
-vg F oS L dy P oy (2.35)
hence one obtains the Prandtl-Kolmogorov relationship
- _L_ uz
Fro T gy Le (2-36)

The wake turbulence model is obtained by assuming that the turbulent length
scale and velocity scales are constant throughout the flow field. From
equations 2.25 and 2.26 it follows that the constant 1/o¢ is simply Cn3/a
The velocity scale is taken as the square root of the initially specified
turbulence kinetic energy k. The length scale is specified using the
geometric constraints of the mixer as a guide, for instance assuming that the
initial length scale would not be smaller than the inlet boundary layer or
larger than the duct height. As a consequence of this formulation, the

turbulent viscosity is dependent only upon the initial choices of k and £,

and the local density which is determined as the solution progresses.

11
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APPLICATION TO FLOW IN A LOBE MIXER

In this section, specific details arising in the application of the
foregoing analysis to lobe mixer problems are given. A cross section of a
typical lobe mixer geometry is shown in Fig. 2. The area immediately down-
stream of the nozzle plug is faired in with an assumed streamline to model
the reversed flow region expected in this region. Since the flow area thus
excluded from consideration is very small, this treatment is not believed
to introduce significant error. A more detailed analysis of this separated
flow region could be performed following a zone embedding approach using the
Navier-Stokes equations (cf. {12]). Although the mixer geometry is axisym-
metric, the flow is three-dimensional due to the aximuthal variation of the

hot and cold streams. However, due to observed symmetry, only a pie-shaped

\\

region of the transverse coordinate surface need be considered. The shape
of this region and the extent of typical hot and cold streams at the mixer

exit surface are shown in Fig. 3. N
Coordinate System

Curvilinear orthogonal coordinates x, y, 2z are constructed to fit the .
flow passage boundaries downstream of the lobes as shown in Fig. 2. Metric
coefficients hl, h,, h3 are defined such that incremental distance s is
determined by (8x)” = (hléx)2 + (hzﬁy)2 + (h3éz)2. In planes of constant z,
(azimuth), orthogonal streamline and velocity potential lines from a two-
dimensional planar incompressible potential flow analysis are utilized as the .
coordinate lines for comstant y and x, respectively. This x-y coordinate
system is then rotated about an axis representing the centerline of the lobe
mixer, to form an axisymmetric coordinate system. Thus, the z direction can
be regarded as cylindrical (i.e., 8) and h3 = r. The x coordinate is taken
as the primary flow or axial coordinate, and is associated with surfaces for
which the two-dimensional potential is constant. The y and z coordinates
define transverse secondary flow planes at any given x location. In this
coordinate system, the normals in to the transverse planes coincide with il
the unit vector in the x direction. A two-dimensional incompressible
potential flow analysis and computer program developed by Anderson [12] was
employed in the present investigation, without modification, to compute the

necessary coordinate data.

12
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The Impcsed Pressure Field

As discussed in Ref. 1, the axisymmetric coordinate directions generated
by rotating planar two-dimensional potential flow coordinates about an axis
provides a good approximation for the primary and secondary flow directions,
however, the planar two-dimensional potential flow pressure gradients are
not suitable for use jn approximating the required imposed pressure gradients.
Consequently, an incompressible axisymmetric potential flow is computed in
the given coordinated system and then scaled for compressibility effects as
part of the forward marching sojution. In Ref. 1 the compressibility correction
was performed using Laitone's rule (Ref. 14), and as a result, inaccuracy at
high subsonic Mach number was expected in the correction. This inaccuracy in
the imposed pressure field was accepted in Ref. 1 since the main interest in
mixing was the smmediate region downstream of the lobes and upstream of the
throat, and consequently the transonic problem was not a major issue. Under
the present effort a more appropriate compressibility scaling based on the
work of Lieblein and Stockman (Ref. 15) was developed. Given the incompressible
velocity field U, Licblein and Stockman (Ref. 15) demonstrated that an

accurate estimate of the compressible flow velocity field could be obtained
from the relationship _
Py (vy/0;)

U =U1(——-
Fe (3.1)

where Uc is the compressible velocity, Pj is the incompressible (or stagnation)
density, P is the local compressible density, and EI is the area averaged

incompressible velocity at a given axial location determined as

_ IUI dA
7 e

Liecblein and Stockman suggest that the density ratio, pI/pC be computed using

(3.2)

one—d imensional isentropic flow relationships with the Mach number determined

by the area ratio. 1In the present application the density ratio is computcd

by using the isentropicrelationships in conjunction with the local Mach number
computed as part of the forward marching solution. In this manner, a fully
thrce—dimensional compressible velocity field can be approximntcd frem the
two-dimensional incompressible potential flow. Knowledge of the compressible
velocity, and assuming constant total temperature and pressure in the potcntial

flow the static temperature is obtained from

13
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To=T —1/2U%

(3.3)
The corrected pressure is then found from the relationship
X
P=Py(T/Ty) T~ .4

from which the compressible imposed pressure gradients are determined.

Governing Equations in Orthogonal Coordinates

As in Ref. 1, the governing equations reviewed in the previous section,
and the turbulence model equations must be expressed in the orthogonal
coordinate system used to represent the mixer passage geometry. Although these
equations are fundamentally the same as those presented in Ref. 1, the approxi-
mations to the stress terms in the primary momentum equation, and the production
term in the turbulence kinetic energy and dissipation rate equations have been
altered in an effort to improve the reliability of the k-£ turbulence model.
With the exception of these approximations, the equation in orthogonal coordinates
follows.directly from Eqs. (2.8, 2.9, 2.13, 2.18, 2.20, 2.22, 2.23 and 2.24) by
performing the vector operations in the given coordinate system.

Throughout the remaining discussion, all variables in the governing equa-
tions are nondimensional, having been normalized by the '»'-wing reference
quantities: distance, Lr; velocity, Ur; density, PLs temperature, Tr; total
enthalpy, Uz; pressure, prUr; viscosity, B_. Here the subscript r denotes a
reference quantity. This normalization leads to the following nondimensional
paraneters: Mach number, M; Reynolds number, Re; Prandtl number, Pr; and

specific heat ratio, y. These parameters are defined by
M=U/c ,Re=p UL /p ,Precop/k,y=c/c, (3.5

where u_ is the molecular viscosity, k I; thermal conductivity, and cp and c,
are the specific heats at constant pressure and volume. The reference speed
of sound, c, is defined by c2 = YRgTr’ where Rg is the gas constant. Since
the flow is assumed to be turbulent, the dependent variables are taken to be
the time-averaged quantities in the usual sense; however, third order correla-
tion as well as second order correlations including the fluctuating density

have been neglected. The decomposition of the velocity vector thus can be

written

14



ORIGWIAL PAGE IS
OF POOR QUALITY

Uelu+i,v+Tw
| 2 3 (3.6)

Where i ?2, and i3 are the unit vectors in the x, y, and z coordinate

1’
directions, respectively. Since El is closely aligned with the primary flow
direction, vy is small and is neglected as a minor convenience. This approxi-
mition is of little consequence since the neglected quantity vy effectively
reappears as part of v and is thus determined from solution of the continuity
cquation during the forward-marching solution process, instead of being imposed
a priori from the potential flow. Since w; is zero by definition, the velocity
decomposition can be written as

a- ;'up +i,v, +Tgw, (3.7)

Since u_ is the only streamwise component of U the subscript "p" is

dropped. Under the stated assumptions the streamwise momentum equation can be

written as

Ju du du dh a
puhz 36 + P(Vs)hlhs'a—; + p(\.\;s)h‘h2 E + p(vs)Uh3 3y - p(v ) h 8

oh dp dpy(x) 1 9 [ hihy o
2 3 I v u/h,)
—pw)h, — + hh,— + hnh = — = -3
P’ T ox 23 4 23 ax Re dy (Bt ) h dy ]
hh, 0 [( ) au'J _ 2p om [ dw  ong] _ 2phy 3h, ov (3.8
Reh, 9z K* By dz Reh3 9z h2 37 dz 6y - Rehzx—g

2 dhy ad
_Rel:[ (6x) +(%)%Z—]u
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The energy equation is approximated by

JdE JE dE
PthhB-ET + P(Vs) h.hsW + P(Ws) hlhzsg'

| 2 [(F+_E_T hhy _B_E_- 3.9

Re oy |\Pr Pry] hy Oy .

hh n fl d o _ .
1.3 - . L 52 i

+ —2-;2—’(}‘ +H1” by PrT)Ay (@ +w_:‘:ﬂ i
1 hh 2 M JE ,

+ N2 (_fj + __r_) GE ;
Re h, 0z Pr Pry z ;

B Py N\ (g2av -
+ 1/2 (P'+PT__|BT - -Fr——:—) ..‘; (u2+v2)} i

with the Prandtl number Pr and turbulent Prandtl number PrT assumed to be 1.0.

To obtain the rotational secondary flow components of the velocity, the

streamwise vorticity equation is wvritten as

v/ of dpu v, h, 13 dpu w, h, .13 dpu
T:‘(P"?;'f—‘ax )*T h, (Puay ) )*—o' By (Puaz A )
2 an, 1t du  h, 1 [JP »p o ap] (3.10)

"“hy 3y PUhy 3z  hehy p | Oy o2 T3y oz

P h, @ hy oh(p+p )1 b, 311 petp )€
h,h Dy[hlth dy ]+h32 az[p z ]

2 2 2 2 .
where Q© = u +v_+w_ and the vorticity is related to velocity by

(3.11) '

€ 1 ( dhyw, dh,v, )
hthl oy oz
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The vector potential Es is determined from

! ] ( hy (h\lr,) [ (_ a(h,\p,] (3.12)
h h, dy Ph.h £ az oz

and the rotztional secondary flow velocities are determined as

1 athy)

Vg " phh, oz (3.13a)
a(h
Wy - - — (hy¥) (3.13b)
'S phh, oy
The scalar potential is governed by
2 phhy B¢s "] phll'l2 64)5] . a(hzhspu) (.14
ay h, oy 0z h, az ox -14)
The velocity components v¢ and w¢ are found to be
L (3.15a)
¢ h2 ay
. (3.15b)
¢ h, a2
" The secondary flow velocities are thus
vy Vg (3.16a)
‘s T Wy t vy (3.16b)

The turbulence model equations must also be expressed in orthogonal coordinates.
It is assumed that the turbulence equations are tensor invariant [9], and thus
may be expressed directly in orthogonal coordinates by performing vector opera-
tions in such a coordinate system. With streamwise diffusion neglected to allow

forward-marching solution, the result for the turbulence kinetic energy equation

in steady flow is
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ak ok ok (3.7
puhyhs g + PYahiy gy ¥ P¥sMhe g
h hs LBy &
oy [ c] ey

-—a-i[(}z+—°j—:" —a—l-]‘ hlhzh3P¢+p' .

and similarly the turbulence dissipation equation is given by

d¢

de de
puhhy 52— ¥ PYshMs gy + g (3.18)

h Pey 0€
._,;_.-‘-9—["“’( prED) ) —L—:—'a[(f‘*';f)’s]i

oy

- hhhyCo P +CP

The production term is approximated as

- _ﬁg{z[v("_h

3
. (3.19)
2
+[h, a(u/h.)] +[ s Owhy) |1 \,] L[ 2
hz ay hz ay h3 32 l'l3 4

The turbulent viscosity is then

C pkz
. B
JI- p Re (3.20)
and the length scale may be determined as
BHkSI‘Z (3.21)

Cp

L -
€

(3.19) and (3.20) are combined

when the k- turbulence model is used, Egs.
(3.19).

to eliminate the appearance of the turbulent dissipation from Eq.

€ = Cpslq kyz/.L (3.22)

18



and it follows that

- /8 1/2
pr7 G kL Re (3.23)

Specification of Initijal Conditions

The initial conditioms for a lobe mixer calculation may be specified by
using either an automated starting routine or by reading in experimental data.
The fully automated procedure is considered first.
To obtain initial conditions for a lobe mixer calculation, it is necessary
to specify the velocity and total temperature of the respective hot and cold
streams in addition to a mean value of static pressure. The lobe shape is
specified, and based on the specified lobe shape, a decision is made as to
whether a grid point lies in the hot or cold stream. The appropriate values
for velocity, temperature and density are then assigned to the grid point. : -
The total energy is assumed to be constant but may differ in both streams.
The velocity in the two respective streams is assigned its nondimensional §
reference value which is then corrected to account for normal pressure
gradients present at the initial plane as determined from the axisymmetric
potential flow. To account for boundary layers on the lobe, hub and shroud
surfaces, the free stream velocity profiles are further scaled in accordance
with an assumed turbulent boundary layer velocity profile, and the distance
from the surface. Radial secondary flow velocities at the initial station
may be specified parametrically in each stream as a fraction of the streamwise
velocity. This in effect sets the flow angle in the fan and turbine streams,
respectively. Finally, a swirl velocity component may be specified, when
appropriate.

The initial velocity profile with boundary layers is givea by
*
u-= U(“smu ’8&’ y/BBL 18 , H) i (3.24)

where USTRM is the velocity of the appropriate stream, GBL is the boundary
layer thickness, y/GBIfepresents the shortest disiance from a surface (hub,
shroud or lobe) to the grid point in question, & is the local displacement
thickness and H is the shape factor. The assumed boundary layer profile used

in the present code is a Coles-type profile modified as suggested by Walz {16].

B

+ ) y
_ayt-5)e Y L + — wl-—
us= ur[( 3y*-5)e + - In(l+y*)+C+ o w(s )] (3.25)
In Eq. (3.25) C is a constant taken as 5.0, I is a parameter vhich determine the
strength of the wake component of the velocity profile, and W is Coles wake function

[16]. 19
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Following [4], the radial component of velocity in the fan or turbine strean is then

given as
v=1u afan (3-26)

for the fan stream and

V=1 %eore (3-27)

for the turbine stream where a is defined as a mean flow angle.

Finally, the swirl velocity is specified in terms of a mean swirl velocity
magnitude and by specifying the radial limits over which there is to be swirl
as an initial condition. The swirl velocity at the initial station (but only .
at the initial station) is assumed constant in the azimuthal direction. This
condition could be changed at an arbitrary inlet swirl profile, if required,
but is adopted here for convenience. »

The majority of calculations to be performed with the present
code are expected to be run withcout resolving the hub and casing boundary layers.
For these cases, the initial velocity field in the immediate vicinity of solid surfaces
must be treated in an approximate manner. This is accomplished by using wall
functions which assume that locally between the wall and the first grid poiant

away from the wall the velocity profile is logarithmic such that

u- u,(—:‘—h u:y +c) (3.28)

where u_ is the friction velocity, ¥ = 0.43 is the von Karman constant, and

c is taken as 5.0. It follows that

du U,
55 R (3.29)

Equation (2.28) is used to determine a wall slip velocity such that the finite
differenced form of the velocity gradient one point off the wall is consistent

with the assumed law of the wall profiles. When wall functions are used to

represent the primary flow velocity, the secondary flow velocities are still

required to obey no slip conditions. Thus in the near wall regions the

secondary flow velocity is assumed to vary from zero to its free stream .
value in a cubic manner with distance from the nearest wall across some

specified secondary flow boundary layer thickness. Once the velocity and

temperature distribution are set up, the density is computed to be consistent

with the temperature and local static pressure as determined from the mean

static pressure corrected for the normal pressure gradients.
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Initial conditions for the turbulence model are determined through

rence length scale, ,'ref and free stream turbulence

shroud the length scale is determined from the

specification of a refe
levels. Near the hub and

McDonald-Camarata [17] relationship

xy
t- tu,tonh(—l—r—“—) (3.30)

where y is the distance from the surface in question. In the region about the

lobe surface, the distribution of Eq. (3.30) may be used with y representing
the distance to the lobe from the grid point in question. However, since the

lobe may pass arbitrarily close to a grid point the length scale determined

(3.30) will approach 0.0 as'y approaches 0.0. This results in a low

w field which can create problems

from Eq.
Reynolds number region in the initial flo
with the turbulence model. This problem is circumvented through use of an
option which renders the length scale constant in the region near the lobe, .
and the distribution of Eq. (3.3C) is used only near the hub or casing if

boundary layers are specified there. With the length scale distribation knowm,

the initial turbulent viscosity is obtained from the generalized mixing length

relationship

) - vz
By Pt [(h ay) (r: Z‘; :1 az) (n, v)] (3.31)

bulence kinetic energy and dissipation are then determined from

(2.25) and (2. 26). The kinetic energy is

The initial tur
simul taneous solution of Egs.
modified slightly following McDonald and Kreskovsky [18] to account for the

free stream turbulence, and the turbulent viscosity is then recomputed from

k and € to be consistent.

Under certain conditions, neither the wall length scale option Eq.- (3.30)
nor the wake length scale option (constant length scale) will provide satis-
factory initial values of k, € and Yo This may occur when the mesh is coarse
and the velocity gradients in Eq. (3 31) vary greatly between adjacent grid
points. Under these circumstances, it is useful to initiate the turbulence
quantities using an option which specifies the turbulent kinetic ezergy,
dissipation and viscosity as essentially constant throughout the flow field.
Such an approach has also been used previously by Launder, Morse, Rodi and

Spalding [11] in the computation of free shear flows.
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If experimental profiles are read in, the specification cf initial conditions

is similar. The velocity components and static temperature are input at each
grid point. The lobe shape is specified as in the automated starting procedure,
and a reference length scale and free stream turbulence intensities must be
provided. Additionally, estimates of the boundary layer thickness on the hub,
shroud and lobe must be specified for use in setting up the initial turbulence

quantities. Initialization of the turbulence quantities is similar to that

used in the automated procedure.

Boundary Conditions

To march the solution downstream, it is necessary to apply boundary
conditions in each transverse plane. Boundary conditions are needed for the
energy equation, the primary flow momentum equation, the streamwise vorticity
equation, the vector and scalar potential equations, and the turbulence model
equations. The boundary conditions will in general depend on whether swirling
or nonswirling flow is considered, and whether or not wall boundary layers are
considered. Referring to Fig. 4, the boundaries at emin and emax represent
either symmetry planes or periodic surfaces. Boundaries at the hub (or center-

line) and shroud surfaces require conditions appropriate for solid surfaces

(hub or shroud) or a centerline (symmetry).

Nonswirling Flows

For nonswirling flows boundary conditiozs along emin and emx are
specified as follows:
1) aximuthal gradients of Up, E, k and € are set to zero
2) the vorticity is set to zero, and
3) the normal velocity component is zero, thus the vector
potential is zero and the azimuthal gradient of the
scalar potential is zero.
Boundary conditions on the hub and shroud surface are specified as follows:
1) the normal velocity is zero along these surfaces, and the vector
potential and the normal gradient of the scalar potential are

thus set to zero, and

2) these surfaces are taken as adiabatic, and thus the normal

gradient of enthalpy is set to zero.

For the majority of calculations it is not expected that the wall boundary

layer will be resolved. Thus, the appropriate boundary condition for the
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primary flow velocity, Up, is the gradient condition of Eq. (3.29). For the

turbulence quantities k and € boundary conditions consistent with the log

law are

—1/2 (3.32)

5, =0 (3.33)

is specified on the wall. For € the condition

£ = UT : (3.34)

Ky
is used. The use of Egqs. (3.32 and 3.34) effectively sets the turbulent viscos-
ity one point off a wall consistent with the log law. If boundary layers are

resolved, then Up = k = € = 0 on solid walls is specified.
With regard to the boundary conditions for the secondary vorticity,

in Ref. 1 it was argued that a zero vorticity boundary condition would be
suitable for use with the wall function approach to the primary flow.

Although this was satisiactory in many cases, in some instances it gave rise

to large tangential velocity components on the hub or shroud surfaces. As a
result, under the present modifications of the code the secondary flow vector
potential and vorticity equations are solved using a coupled solution procedure.
This procedure allows specification of the correct coupled stream function-
vorticity boundary condition which ensures that the secondary flow velocity

components obey no slip on solid walls.

Swirling Flows

With the exception of the vector potential, boundary conditions on the
hub and shroud surfaces remain unchanged for swirling flow. Special treat-
ment must be given to vector potential, howzver, because flow may pass in and
out of the computational region along ihe radial lines at %ni1 and ema .

x
The amount of flow crossing these radial lines is due to the swirl velocity,

and a means of determining the growth or decay of the swirl must be accounted
for. This is accouplished by solving a 6-momentum equation along one of the
radial coordinate lines prior to solving the secondary flow vorticity-vector
potential system. The resulting prediction of the 6 velocity component can

be integrated to obtain the difference in the stream function between hub and

shroud boundaries due to swirl,
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which provides the necessary information for the boundary conditions. Im
Eq. (3.35), w¢ is subtracted from w, consistent with Eq. (2.3), since the

velocity predicted from solution of the 6 momentum equation contains both

rotational and irrotational components. With regard to the boundary conditions
in the azimuthal 6 direction, all flow variables are assumed to be periodic.
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Several test calculations were performed to demonstrate the extended
capability of the modified computer code. The test cases were all performed
for the geometry shown in Fig. 2 immediately downstreaﬁ of the lobes with the
lobe shape shown in Fig. 3. A summary of initial condition for each case is
given in Table I. As can be seen in Table I these test cases were run with a
variety of conditions to demonstrate the effect of secondary flows of various
magnitudes, the effect of swirl, and the effects of the various turbulence
models.

Before discussing results from these calculations, it is useful to
define average values of total pressure loss coefficient, ideal thrust
coefficient, and Mach number at each axial location, to aid in the evaluation
of flow properties. A mass-averaged total pressure loss coefficient CPT is
defined as Z(Pfref-PT) o
f iy R

c =
- - 4.1
Fr pr'dA ¢.1
A

where PTref is a reference total pressure associated with the turbine strean
reference conditions, and Prof and u_.¢ 3re the reference density and velocity
associated with the turbine stream. The value of CPT at the starting plane is
usually not zero due to the presence of shear layers in the initial conditions,
and for clarity this starting value is subtracted from CPT in the presentation
of results. The distributions of CPT presented thus represent losses incurred
downstream of the starting plane. An ideal thrust coefficient is defined and
based on the thrust which would be obtaired by isentropic expansion from local
conditions to a predetermined exit pressure. The ratio of the local value of
this thrust T to the value Ti based on the initjial flow field is defined as

the ideal thrust coefficient, T/Ti' The thrust is obtained from the relatioaship
2
T= f‘ )’P.M' dA. %.2)
e

where Pe is the assumed exit pressure, ﬁe is the Mach number based on
isentropic expansion from the local pressure to Pe’ and Ze is the effective

exit area, again based on isentropic expansion to Pe'
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Effects of Secondary Flows

The effects of the magnitude of the jnitial secondary flows prescribed at the
lobe exit was investigated by performing two calculations designated as case I and
case II in Table I, where the jnitial conditions are summarized. In the case 1
calculation, a radial inward velocity equal to 13% of the local fan stream velocity
was specified. In the turbine stream, a radial outward velocity of 8% was specified.
The case II calculation had fan and turbine streams radial velocities specified as
20% and 25%, respectively. Both calculations used the new optional k-% turbulence
model, thus the calculations also serve to demonstrate this capability.

The relative effects of the different initial secondary flow on mixing are best
examined by looking at the total temperature contours at the nozzle exit plame. As
noted in Table I, the temperature ratio between the streams is different for cases 1
and II, however, in the absence of initial secondary flows the thermal mixing between
the two streams results in a Ttear drop' total temperature pattern (c.f. Ref. 3).
The departure from this 'tear drop' pattern thus indicates the degree to which in-

itial secondary flows effect the mixing process, even though these two cases have dif-

ferent initial temperature ratios. The total temperature contours are shown in

Fig. 5. The case I results show a small but significant departure from the 'tear
drop' total temperature pattern observed when no secondary flow is specified at the
initial plane. However, the results for case II, where even larger secondary flows
are specified at the initial plane, show a much more dramatic distortion of the total
temperature contours at the nozzle exit. Here the hot fluid in the upper portion of
the lobe is effectively pinched off from that in the lower portion of the same lobe,
and a classical mushroom-shaped pattern (c.f. Refs. 4 and 5), indicating the pres-
ence of strong counter-rotating vortices is observed. These results clearly dem-
onstrate the important effects of vorticity or secondary flows in the initial condi-

tions, and indicate the importance of lobe generated secondary flow on the tempera-

ture profile development.
Effects of Turbulence Models

The influence of the various turbulence models, k-€, k-2 or the wake model
were investigated by rerunning case II with the k-¢ and wake turbulence models as
cases III and 1V, respectively. With the exception of the turbulence model used,
cases II, IIT and IV are jdentical as can be observed in Table I. The results of
these calculations are summarized in Table II where area-averaged values of total
pressure ratio, and total temperature ratio are presented along with the previously

defined total pressure loss coefficient, and thrust ratio. Examination of the infor-
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mation presented in Table II indicates that the computed results for this lobe mixer
flow show only very limited variation with the turbulence model. The results indi-
cated that the k-€ model gives the higher losses whereas the wake model predicts the
lowest. In view of this limited dependence on turbulence model, it would appear that
turbulence modeling in lobe mixers is not an area of primary importance. This is
born out further by the comparisons presented in Fig. 6 where the total temperature
signatures resulting from each calculation are shown. This comparison shows that
only small scale details are altered by the different turbulence models while the
large scale features remain unaffected. Additional evidence that turbulence modeling
may not be of primary importance in lobe mixer flows is—provided in Fig. 7 where .
the secondary flow vorticity contours at the nozzle exit are compared for the

three turbulence models. Here also, it is observed that the predicted vorticity
contours for all three turbulence models are nearly identical. The pattern of

two large counter-rotating vorticities is observed for all three turbulence

models, and the strength and size of these vorticities remain uneffected by

the turbulence model used. Some small differences in the contours are observed,
however, particularly when using the k-9 turbulence model. These small scale
differences appear as slight distortions of the vortex contours, but as indicated

in Table II, this effect does not apparently alter the mixing in any significant

manner.
Effect of Swirl

Perhaps the most significant modification to the computer code performed
under the present effort is the extemnsion of the capability of the code to
éwirling flow. To demonstrate this capability several computations were carried
out for swirling flows. The first of these calculations, case V, is identical to
case ITI discussed previously with the additional specification of an initial
swirl component of velocity, equal to 10Z of the hot stream velocity, across the
entire mixing duct (hub to shroud). The pertinent integrated quantities for
these two calculations are presented in Table III.

As would be expected, case V with swirl exhibits higher losses reflected by
the area averaged total pressure ratio and the total pressure loss coefficient,
and a lower thrust ratio. The contour plots of the exit plane total temperature
distribution for these two cases is shown in Fig. 8. This comparison demonstrates
that the large scale features of the signature remain almost unaltered by swirl
and are simply convected in the azimuthal direction. Some distortion of the
pattern is observed, particularly as the center of the mixzing duct is approached;
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however, these effects do not appear to enhance the mixing of the two streams
significantly. A comparison of the vorticity contours at the nozzle exit plane,
shown in Fig. 9, indicates a more substantial distortion of the counter rotating
vortex pair by swirl. This suggests that in longer mixing ducts, where swirl
effect may develop further, more significant effects on mixing may be observed.
However, in view of the higher losses incurred with swirl, and the absence of any
clear-cut benefits resulting from swirl, it would appear that swirl in lobe mixers
may not be beneficial from a performance standpoint.

A final calculation with swirl, case VI, was made using the wake turbulence
model, and with 10% swirl velocity confined to the outer half of the mixing duct.
This calculation was made to determine if residual swirl in the fan stream would
alter the mixing significantly. The exit plane total temperature contours for
this calculation are presented in Fig. 10. Again, no significant effect on
mixing is observed. The large scale characteristics of the total temperature
signature remain intact with some distortion observed in the outer region of the
flow.

Although swirl did not appear to have a significant effect on the mixing
characteristics of the lobe mixer/exhaust nozzle used in the present calculation,
it should be noted that the exhaust nozzle was short. _If a longer exhaust
nozzle were used, the effects of swirl would have more time to develop, and
significant effects on mixing could result. However, as noted earlier, swirl
does appear to give rise to higher losses, and if performance is the objective,

swirl does not appear to be beneficial.
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SUMMARY AND CONCLUSIONS

An analysis which was previously developed for detailed prediction and
computation of three-dimensional subsonic turbulent flows in turbofan lobe
mixers has been extended and modified. An improved starting procedure which
allows specification of non-zero starting vorticity using a parametric repre-
sentation of radial flow velocities at the initial plane has been developed.

The method of scaling an incompressible potential flow to obtain the compres-—
sible flow imposed pressure gradients has been improved. An optional k-£
turbulence model has been incorporated within the code, and the original k-€
turbulence model has been modified to provide improved reliability. Finally,
a swirling flow capability has been added to the code.

Calculations have been performed for a number of test cases to verify
the modifications to the code, and to demonstrate the importance of the effects
of secondary flows, turbulence model, and swirl on mixing. The results of these
calculations indicate that secondary flows generated within the lobes play the
most dominant role in determining the degree of mixing. The effects of the
turbulence model appears to play a very limited role, altering only small scale
details of the predicted flow field. Finally, calculations where a swirl component
of velocity, equal to 10% of the turbine stream velocity, was specified across the
entire mixing duct indicated that swirl may not alter the degree of mixing sub-
stantially. In this case, the major effect was to simply rotate the total
temperature pattern observed without swirl with little additional distortion.
However, specifying swirl over a limited portion of the duct radial extent may
have a more pronounced effect. More detailed investigations and experimental

confirmation will be required to fully assess these effects.
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CASE UF/UT TF/TT VF VT ws 2 k TURB MOD Re
6

1 .633 N -.13 .08 0 .006 .04 k-2 1,13 x 10
2 .86 .74 -.20 .25 0 .006 .0 k-t 1.13 x 10°
3 .86 74 -.20 .25 0 ,006 .0k kee 1.13 x 10°
4 .86 .74 -.20 .25 0 006 .04 WAKE 1.13 x 10°
5 .86 .74 -.20 25 .1 full .006 .04 k-€ 1.13 x 10°

outer 6
6 .86 T4 -, 20 25 .1 half .006 .04 WAKE 1,13 x 10
Up = Fan stream velocity W = Swirl velocity
UT = Turbine stream velocity = Turbulence length scale
TF = Fan stream temperature k = Turbulence kinetic energy
TT = Turbine stream temperature Re = Reynolds number
Ve = Fan stream radial velocity
V,r = Turbine stream radial velocity



TABLE II

‘TURBULENCE TOTAL PRESSURE TOTAL TEMP. Cor THRUST
CASE MODEL RATIO RATIO L0SS = (+) 'RATIO
II k- .9892 .7866 .0956 .29930
ITI k-€ .9890 .7863 .0975 .9926
v WAKE .9896 .7866 .0923 .9933
33
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TABLE III

TURBULENCE TOTAL PRESSURE TOTAL TEMP.  CPT THEIST

CASE MODEL RATIO RATIO L0SS = (+) RATIO
111 k-€ .9890 .7863 .0975 .9926
v k-€ .973 .7884 .1132 .9883
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ORIGINAL PAQE I3
OF POOR QUALITY

Transverse coordinates
(Secondary flow piane)

Figure 1. - Schematic of coordinate system for
three-dimensional flow problenm.
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Casing
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Figure 3. - Typical cross section at mixer exit surface.
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Fig. 7 - Effect of turbulence model on exit plane secondary flow vorticity contours.
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Fig. 8 - Effect of swirl on exit plane total temperature contours.
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Case VI

Fig. 10 - Distortion of exit plane total temperature contour
with 10% swirl confined to outer half of mixing duct.
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ORIGINAL PAGE B

APPENDIX - USER'S GUIDE
OF POOR QUALITY

Introduction

The Mixer computer code may be run using initial conditions obtained
from experimental data and read in on 2 pointwise basis, or an initial flow
field may be generated by the code jtself upon parametric specification of
the proper input variables. In either case, the originally specified flow
fields are processed by the code to assure that the initial flow field is
consistent with the tinite-difference approximations to the governing equations.
When parametric specification of initial conditions is used, it is also pessible
to activate a swirling flow option of the cude. When this option is utilized
the flow is assumed to be seriodic, and the imitial conditions, with the
exception of the swirl velocity, arc assumed to he symmetrical about the lote
centerline. Calculations perforned with swirl must, therefore, consider a full
1obe within the computat fonal transverse plones, whereas only a half 16be need
be considered for nonswirling flows.

In an etfort to keep the initial condition specification similar for both
wwirling and aoaswirling flow caleulations, the initial flow field for swirling
fiow, or other caiculations pericrmed usiny nericdic boundary conditions, is set
ap tor haif the lobe and then reflected.  aooa result, tlie user may use the same
input run streas for bhoth pericdic and nenperiodic caleulations by adjusting only
cie number of prid peints, the aximuthal cezputational limits, and calling for
tne proper options. Specification of the 1-be shape aced not be altered; only
half a lche must be specified via the input in either case.

The user shouid read over all inpui Jescriptions before attempting to set up

a case.
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DESCRIPTION OF INPUT

Input to the MIXER code is accomplished by a combination of card input
and information which is stored on auxiliary files. Metric information

generated by the ADD code [13]and restart data sets are stored on separate

auxiliary files. Progrém control is performed through card input, which is -
divided into three categories:
1) Plot file information for NASA-Lewis ploiting package,
2) NAMELIST input, and
3) Experimental flow field input.
Format of the required input is as follows:
Plot File Input
CARD # COLUMNS VARTABLE DESCRIPTION
Card 1 Col. 1-32 TITLE(I) Plot title, format 5A6,A2. (May be
left blank).
Card 2 Col. 1-2 ISYM Twice the number of lobes in a 360°
cross section of the mixer geometry.
Col. 3-12 SYSTEM Indicates the type of coordinate system
for plot routines. Format F10.0,
Use SYSTEM=2. -
46
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NAMELIST IN1

Namelist

SIN1
RG

cp

TZERO

UZERO

PZERO1

YZERO
VvisCl

SEND

NAMELIST IN2

NAMELIST INPUT

Description

Gas constant, ft lbfl(slug %g), default 1716.3 (air)-

Constant pressure specific heat, ft lbf/(slug °r),
default is 6012.384 (air).

Reference temperature, assumed to be nominal primary
stream temperature in degrees Rankine.

Reference velocity, assumed to be pominal .primary
stream velocity, ft/sec.

Reference static pressure, assumed to be nominal
pressure at initial plane, 1bflft2, default is 2116.8.

Reference length, ft.

Reference viscosity, slugs/ft-sec.

The desired computational options and mesh informationare.specified in

namelist S$INZ.

Namelist
SIN2

TAXI

S arasesaes

e e e e

Description

=1, cylindrical coordinates.

=2, rotated orthogonal coordinates generated from
ADD code geometry file. Default.

1f IAXI is input = 2 (or defaulted) the variables,
XENTR, ILAP, LX, LY, and IPCOR must also be input.

Dimensionless distance from initial ADD code potential
line to initial plane of lobe mixer calculation.
Used only for TAXI=2. Determined from ADD code
t = ~1)*
parameters as XENTR: (JSTEPXENTR 1)*DS where JS‘IEPXENTR

is the number of the ADD code potential surface
representing the MIXER code initial plane and DS is the
streamvise delta used in the ADD code. See Fig. Bl.
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Namelist

ILAP

LY

IPCOR

ICOMP

IDATA

ILAM

IDIS

LOWRE

Descrigtion
= 1 for TAXI=2

= 0 if IAXI=1
TLAP is defaulted = 1. If IAXI is set to 1,
TLAP must be specified as 0.

1X is the pumber of potential 1ines in the ADD
code geometry file. LX smust be input if TLAP=1.

1Y is the number of streamlines in the ADD code
geometry file. LY must be dinput if ILAP=1.

IPCOR is used with ILAP=1 to jdentify the potential
surface whose average dimensionless velocity is 1.0
in the axisymmetric potential calculation. IPCOR
should be input as IPCOR=JS‘1'EPm in general.

]

-1, stop after input dump .

0, pormal run (default).‘.

1, stop after printing i{nitial plane geometry-

]

]

2, stop after printing i{nitial flow field.
=0, automated start (default).

= 2, read initial velocity and temperature field
data at each grid point.

11LAM=1, Laminar flow.

1LAM=0, k-€ turbulence model.

ILAM=-1, Wake turbulence model.

1LAM==3, k-2 turbulence model.

=1, specify uniform turbulence kinetic energy, at
the turbine stream value throughout the initial
flow field.

=0, initial turbulence kinetic energy assumes
turbulence production equal to dissipation.

ipis=1 is recomended.

=0, use high Reynolds number form of turbulence
model equations

=1, use low Reynolds aumber turbulence model

equations. Requires 1p1S=0, TLAM=0 or -3, and proper

specification of wall boundary layers. Also requires
a high degree of resolution of mnear wall regions
using IGRID(I)=1 or 2 option with appropriate
EPS(I). This option is not generally recomsended
for mixer flows. '
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Namelist

YS(I,J)

NE(I)

IGRID(I)

EPS(I)

XCTR(I)

NS

Description

YS(1I,J) sets the limits of the transverse computational
planes.

Ys(1,1) = Tpin (dinensionless, r/YZERO)
YS(2,1) = rp,, (dimensionless, r/YZERO)
YS(1,2) = 8min (radians)
YS(2,2) = 8y, (radians)

For mixer geometries generated by the ADD code YS(1,1) must

be the dimernsionless plug radius at the first ADD code sta-
tion RMIN, and Y(2,1) must be 1.0. See Fig. B-l. For non- .
swirling or non—-periodic flows, YS(1,2) must correspond to

the 8 value at the maximum lobe penetration and YS(2,2) to

the 8 value midway between the lobes. See Fig. B-2. For
periodic or swirling flows, YS(2,1) and Ys(2,2) correspond

to sequential values of 6 midway between the lobes. See

Fig. B-3. -

NE(1) = number of grid points in the radial direction.
NE(2) = number of azimuthal grid points. For periodic
calculation NE(2) must be odd.

Maximum values for NE(I) are 50. For periodic calculation
NE(2)max = 49.

IGRID=0, no grid stretching (default).

I

=1, Roberts stretching at rp;, or emin.

=2, Roberts stretching at both Toin and L
or 6 . and 6 .
nin ma
=4, hyperbolic sine stretch about XCIR(I).

X

I=1 for radial direction, I=2 for aximuthal direction.

Used for IGRID(I)#0 to control the grid stretch near bound- -
aries. For Roberts stretching 0.0 < EPS < 1.0. For hyper-
bolic sine 1.0 <EPS <5.0.

Used only with IGRID(I)=4 to specify the r(I=1) or

8 (I=2) location about which grid points are clustered.
YS(1,I) < XCTR(I) < YS(2,I).

Number of axial stations to be computed.
NS=1 is initial plane. Maximum value is 50.

If AP is input .GT.0 a geometric streamwise grid is
set up with 4x(J)/8x(J-1) = AP.

If AP is input .LT.O the user must specify the axial
mesh. AP has a default of 1.05 but the AP.LT.O option
is recoomended.

cegasmiot P
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X (IX) X is an array which contains NS values of the stream-
vise mesh coordinate.

1f AP is input .GT.0 only X(1) and X(2) need be input.
1f AP is input .LT.O NS values of X must be input.
1f 1AXI=1, X is a physical but dimensionless distance.

If IAXI=2 and ADD code geometry is used, X represents
the dimensionless computational iistance from the
initial plaoe.

The maximum allowable value of X is given as
(3STEPyax — JSTEPRENTR) *DS/USCALE vhere USCALE=YS(2,1)/
(YS(Z,l)—YS(l,l)). The maximum value of X should be
slightly less than this value to avoid marching out of
the ADD code geometry which will result in aun error
termination. See Fig. Bl.

IPERIO =0, normal calculation

=1, periodic option activated. Input must be set up
for periodic flow field. Check NE(2) specification.

ISWIRL =0, nonswirling flow.

=1, swirling flow. Requires IPERIO=1. Also requires
values for RSW1, RSW2, VSWRL, and DELSWL.

SEND

VAMELIST IN3

Restart and plot file information is specified in namelist S$IN3.

vamelist Description
SIN3
IRSTIN The number of the axial station to be read in for a

restart. No restart if IRSTIN=0 (default).

IRSTOT Increment for saving restart jnformation. Restart files will
be written every IRSTOT steps from starting value of JX, the
axial station counter. Default assumes no restarts written.

On a restart, the starting value of JX = IRSTIN.

JRSTIN - File number from which restart information is to be
read. Default file number is 11.

JRSTOT File number onto which restart information is to be
written. Default file number is 1l.
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Namelist Description
Name_25~ Descriptlon

Sequence number in file JRSTIN c¢f the desired restart

NFILE
information.

NSAVED The number of restart data blocks saved on file
JRSTOT.

IPLOT 1f IPLOT=l a plot file must be assigned in the run
stream and information will be written in this file
for subsequent use in plotting. 1PLOT=0 gives no
plot file. Default is IPLOT=0. A plot file will be
written every IPLOT th station.

$END

NAMELIST IN4
Velocity and temperature ratios between the two streams are specified in
namelist $IN4, as are turbulence levels and information used to construct the

jnitial secondary flows.

Namelist Description
SING
USTRM2 Ratio of secondary stream (fan) velocity to primary

stream (turbine) velocity. For matched average inlet
Mach numbers and total pressures USTRM2= . /TSTRMZ.
Default value is USTRM2=.707.

TSTRM2 Ratio of secondary stream temperature to primary stream
temperature. Default is TSTKM2=.5.

TUSTR1 Primary stream turbulence intensity.
- 12 7,2 1t
Ty;= U Iul where u, GZERO.
TUSTR2 Secondary stream turbulence intensity.
Tyy= u'2/u2 where u,=UZEROXUSTRMZ.

1f TUSTR2 is input -~ 0.0 the free stream turbulence
in both streams (k=3Tu2/2) is assumed equal to 3Tu%/2.

1If IDIS=1 is input (as recommended) only TUSTRL is used.

ALEN Dimensionless free strean turbulent length scale,
tref/YZZRO. To be estimated by the user based on
geometric constraints of the mixing duct and boundary
layers. ALEN should be on the order of .1 of
estimated free shear layer or boundary layer thickness.

AMEXIT AMEXIT is an assumed exit plane Mach number which is
used to specify the isentropic exit plane pressure for
the thrust calculation. Default value is AMEXIT=9.9.
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Namelist

DELMIX

DELHUB

DELSH?

RHUB

RTIP

DELSEC

VFAN

VCORE

VSWRL

RSW1, RSW2

DELSWL

SEND

NAMELIST IN5

Description

DELMIX is input with IDATA .GT. 0 as a dimensionless

boundary layer thickness presumed to be representative
of the boundary layers on the lobe surfaces. It is used
in computing the initial turbulence length scale.

DELHUB is input with IDATA .GT. 0 as a dimensionless bounfary-
layer thickness, §/YZERO, respresentative of the hub bouniary
layer. It is used in computing the initial turbulence lergthn
scale. See THUB in $INS.

Similar to DELHUB but pertaining to the shroud boundary
layer. See ISHR in $INS.

RHUB is a dimensionaless secondary flow hub boundary
layer thickness used to construct initial secondary
flow profiles required for IDATA=0 or 2.

Similar to RHUB but pertaining to the shroud secondary
flow boundary layer.

DELSEC is a dimensionless secondary flow boundary layer
thickness used to comstruct the initial vorticity profila.
A value on the order of (RTIP+RHUB)/2 should be used.

Used with IDATA=0. VFAN is the ratio of the local radial
velocity to the local streamwise velocity (positive
outward) in the fan stream.

Used with IDATA=0. VCORE is the ratio of the local
radial velucity to the local streamwise velocity
(positive outward) in the turbine stream.

VSWRL is used only with ISWIRL=1 to specify the
dimensionless swirl velocity magnitude.

RSW1 and RSW2 are the radial limits over which swirl
velocity is to be specified. They must be input such
that YS(1,1) < RSW1 < RSW2< -¥YS(2,1).

DELSWL is a dimensionless length scale over which the
swirl velocity in increased from zero to its' maximum
value. DELSWL must be less than (RSW2 - RSW1)/2.

The lobe shape and primary flow boundary layer parameters are

specified in pamelist $INS. Spezification of this information should be

performed using Fig. B2 or B3 as a guide.

Namelist

SINS
ILOBE

Descrigtion

ILOBE is a flag used in.the automated starting routine.

ILOBE=0 indicates that no boundary layers are to be
set up on the lobe surfaces.

ILOBE=2 indicates that lobe boundary layers are to be
set up.



Namelist

THUB

TSHR

BLUUB(I,J)

I\

- NLOBE

YLOBE(I,J)

Description

{HUB=0 indicates that hub boundary layers will not be
present jn the initial profile, regardless of other
starting options. 1f IDATA is input .GT.0 and IHUB is
input .GT.0 DELHUB must be input. If the IDATA optionm
js not used, and hub boundary layers are desired, IHU3
must be input equal to the number of pcints input to
describe the hub boundary layer in the array BLHUB.

ISHR is similar to IHUB except it pertains to the shroud
boundary layer.

1f hub and/or shroud boundary layers are to be construc—
ted using the automated starting routine (IDATA=0) the
poundary layer displacement thickness and shape factor
must be input as functions of 6 along the hub and/or
shroud surfaces. This is accomplished using the array
BLHUB. See Fig. B2.

BLHUB(I,1) contains the values of € (in radians) where

hub boundary layer parameters are specified. The ©

values are arbitrary but they must increase monotonically.
For calculation using the 1PERIO=0 option the first

value must be slightly less than 8min and the last value
must be slightly greater than Omax. FOT 1PERIO=1, the
first & value must be slightly less than that of

(6min + Omax)/2- A maximum of 20 values may be specified.
The number of 8 values specified must be equal to the
input value of IHUB.

*

BLHUB(I,2)=6 /YZERO, the dinensionless displacement
thickness of the hub boundary layer at each specified
g location.

BLHUB(I,3)=H, the shape facto~ at each 8 location.

BLHUB(I,4) is the shroud equivalent of BLHUB(I,1).
ISHR values of 6 must be loaded in BLHUB(I,4).

BLHUB(I,S) and BLHUB(I,6) are sipnilar to BLHUB(I,2)
and BLHUB(I,3) except they pertain to the shroud
boundary layer parameters.

NLOBE is the number of data points input to describe
the lobe shape and lobe boundary layers.

YLOBE is an array which contains the data needed to
specify the 1obe shape and boundary layers which may

be on each side of the lobe surface. NLOBE values of

each parameter in YLOBE must be specified. See Fig. 32
for ordering of information. Specification of the lobe
shape must start where the lobe crosses the 8p5x boundarye.
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Namelist Description

YLOBE(I,J) YLOBE(I,1) contains NLOBE dimensionless radial coordinates,
R/YZERO, of the lobe. The first point must be the radial
coordinate where the lobe crosses the 8pax boundary. The
1ast point must be the radial coordinate value where the

jope crosses the 8nin boundary for IPER10=0. For IPERIO=1
only half the lobe shape 1s specified, thus the last point
is the radial coordinate where 8 = (Bgin Bpax) /2-

See Fig. B2.

YLOBE(I,2) contains the 9 values corresponding to the R values
joaded in YLOBE(I,1) . The first value (I=1) must be slightly

greater than Opay- For IPERIO=0 the last value (I=NLOBE)

must be slightly less than 6pin- For IPERIO=1 the last value

oust be siightly less than @pin + 8pax) /2

YLOBE(I,3) contaiﬁs NLOBE values of the dimensionless dis-

placement thickness, &% /YZERO, for the boundary layer on the
turbine stream side of the 1obe surface at the lobe coordinate

locations specified in YLOBE(I,1) and YLOBE(I,2) -

YLOBE(I,4) is the same as YLOBE(I,3) except it pertains to
the fan stream side of the lobe.

YLOBE(I,5) contains the distribution of the shape factors, H,

at each coordinate point for the turbine stream side of the
lobe.

Finally, YLOBE(I,6) contains the shape factor distribution
for the fan stream side.

YLOBE(I,3) through YLOBE(I,6) need not be specified if the
IDATA option is specified, or if ILOBE=0. YLOBE(I,1) and
YLOBE(I,2)» the r-9 coordinates of the lobe, must be
specified for all starting options.

IWAKE 1f IWAKE=1l the slots for shape factor in BLHUB and YLOBE
need not be input as 3 value of the wake function
in the boundary layer profile is assumed.

$END

When setting up 2 lobe shape it {s advantageous to consider specificacion of
BLHUB and YLOBE for a non geriodic calculation (IPERIO=0). Under these conditions
the computation segment appears as in Fig. BZ. I1f Opin is specified as zero,
and emax is specified as positive, and the lobe shape is properly specified,
then a3 periodic calculation can be performed without changing the YLOBE

or BLHUB arrays simply by setting emin = -8 , adjusting the number of
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6 grid points, and by specifying IPERIO=1. 1In general, if the arrays YLOBE
and BLHUB are properly specified for a nonperiodic calculation of limits 84,

to Bpays the same lobe shape specification will be correct for periodic calcula-

tions in which emax remains unchanged, and em is reset as emin=29min-emax'

in
NAMELIST IN6
Boundary conditions are specified in namelist IN6. For periodic flows 6

direction boundary conditions are ignored. The boundary conditions are set to

defaults appropriate for mixer calculations performed with wall func¢tions.

Only XCBC must be specified.

Namelist Description
SIN6
NBCON(I,J,K) NBCON is a three-dimensional array whieh allows the user

to select the desired boundary conditions for the.primary
flow momentum equation, the energy equation, the secondary
flow stream function-vorticity system, and the turbulence
model equations. The subscript "J" determines the
boundary surface. J=1 for the surface at Rpin, J=2 for

Rmax’ J=3 for Bpjn» J=4 for Opmax-
NBCON(1,J,1) NBCON(1,J,1) is used to specify boundary condition for the

primary flow momentum equation.

no slip

- zero normal gradient

- zero second derivative
- wall function

LN I A

SN O

At the hub (J=1) and shroud (J=2) either no slip.or wall

functions should be specified. (Wall functions are preferred,

and required when LOWRE=0 in $IN2).

At 8. (J=3) and 8nax (J=4) symmetry (zero gradient)
conditions are required when IPERIO=0.

NBCON(2,J,1) NBCON (2,J,1) is used for the energy equation.

1 - zero normal gradient (adiabatic)

= 2 - zero second derivative.

Adiabatic conditions should be specified at all surfaces
(J=1 to 4).

NBCON(4,J,1) NBCON(4,J,1) is used to specify boundary conditions for
the vorticity-vector potential system, and results in
either no slip or slip conditions applied to the local
tangential component of the secondary flow velocity.

= 0 - no slip

= ] - slip with zero vorticity
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NBCON(1,J,2)

NBCON(2,J,2)

XCBC

Atr . (J=1) and T (J=2) no slip should be specified.
At 62;2 (3=3) and eggi (J=4) symmetry implies slip with
zero vorticity should be specified. The no slip condition

should be used at a centerline.

NBCON(1,J,2) is used to specify boundary conditions for the
turbulence kinetic energy equation which is solved 1if

ILAM=0 or -3.

0 - zero kinetic energy

1 - zero normal gradient

2 - zero second derivative

]

At T (J=1) and T,y (J=2) the turbulence kinetic energy
should be set to zero if LOWRE=1, or the normal gradient
should be set to zero if LOWRE=0. The latter is consistent
with the wall functions used for the primary flow momentum,
and is recommended. At 8pin (J=3) and Bp,y, (J=4) zero normal

gradient should be specified.

NBCON(2,J,2) is used to specify boundary conditions for
the turbulence dissipation equation (ILAM=0 only).

= 0 - zero dissipation

= 1 - zero normal gradient

= 2 zero second derivative

= 4 - wall function type boundary condition

At . (J=1) and r___ (J=2) the dissipation should be
set to'zero if LOWRE=L, or the wall function should be
used if LOWRE=0. The later is recommended. At 8pi, and

6 zero gradients should be applied.
max

XCBC is used in MIXER calculations to change boundary
conditions as the flow moves downstream off the hub,
where wall function boundary conditions are applied,

to a center line where symmetry conditions are applied.
The user must specify the value of XCBC by examination
of the geometry from the ADD code. XCBC Is computed
as XCBC=(JSTEPycpc — JSTEPXENTR)*DS where JSTEPxcpc is
the number of the ADD code potential line where the
plug degenerates to a center line and JSTEP is the
number of the potential line representing tﬁ%nzﬁitial
MIXER calculation plane. See Fig. Bl. The default
value causes no changes.
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7/

NBCONC(I,J,K)

$END

MAMELIST IN7
$IN7

IPRN(I)

ICON

NBCONC has the same function as NBCON but is used to
specify which boundary conditions are to be changed

for X>XCBC and what they are to be. Default value

will cause no change in boundary conditions regardless
of the value of XCBC. For a calculation with hub
boundary layer, NBCONC is used to change from wall
functions to symmetry conditions as the hub degenerates
to a center line.

IPRN is an array which selects variables to be printed
at each axial station. If IPRN(I)=1 variable "1" will
be printed. If IPRN(I)=0 variable "I" will not be
printed. The variables are numbered as follows:

1= Variable
1 u |
2 v
3 w
4 p
5 E
6 Hr
7 k
8 €
9
10
11 M
12 static temperature ratio T/T,
13 total temperature TOIT:
14 pressure coefficient
15 static pressure ratio P/P,
16 total pressure ratio Pong
17 swirl angle, degrees
18 u'v’
19 u'w'
20 v'e'

ICON controls printer contour plots of the printed
flow field variable.

ICON=1 produces printer contour plots.
ICON=0, no contour plots.
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TPRINT IPRINT must be input >1. Printout will be made
every IPRINT'th station.

$END

Experimental Flow Field Input

The following cards are needed only if starting profiles are to be read

in (IDATA=2). Each card contains velocity components u, V, W in feet
ure, T, in degrees Rankine at each computational

grid point. One card per grid point is required, thus a total of NE(1)*NE(2)
Format 4F10.0. The data is read for -the grid point

per second and static temperat

data cards are needed.
numbering shown in Fig. B4.
CARDS ## SEND+1 to $END+NE(1)*NE(2)

Col. 1-10 u - velocity component in the computational streamwise
direction, ft/sec.

11-20 v - velocity component in the computational radial direction,
ft/sec.

21-30 w — velocity component in the computational azimuthal direction,
ft/sec.

31-40 T - static temperature, g.
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Figure Bl. - Typical coordinate system and definition of input parameters.
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ORIGINAL PAGE TS
OF POOR QUALITY

Casing boundary layer parameters
specified along this surface as
a function of ©

Boundary 2

emin emax
L NLOBE NLOBE-1
Boundary 4
Boundary 3

.Specify lobe data points ‘
in the numbered order

Hub boundary layer parameters
specified along this surface
as a function of 8

- Specification of the lobe shape and hub and casing

Figure B2.
boundary layers.
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Figure B3.
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- Specification of lobe shape for
periodic flow domain.
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CRIGINAL PACGE m
OF POOR QUALITY

2(NE(1))

NE(1) Q

NE(1)-1Q

Figure B4. - Ordering of

NE(2) * (NE(1)

ONE(1) * (NE(2)-1)
+ (NE(1)-1)

O NE(1) * (NE(2)-1) + 2

) NE(1) * (NE(2)-1) +1

grid points for IDATA option.
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