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Further developments in the local-orbital density-functional-theory tight-binding method
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Improvements to the Sankey-Niklewaki method@O. F. Sankey and D. J. Niklewski, Phys. Rev. B40, 3979
~1989!# for computing total energies and forces, within anab initio tight-binding formalism, are presented here.
In particular, the improved method~called FIREBALL! uses the separable pseudopotential~Hamann or Troullier!
and goes beyond the minimalsp2 basis set of the Sankey-Niklewski method, allowing for double numerical
basis sets with the addition of polarization orbitals andd orbitals to the basis set. A major improvement
includes the use of more complex exchange-correlation functionals, such as Becke exchange with the Lee-
Yang-Parr correlation. Results for Cu and GaN band structures usingd orbitals within the improved method are
reported; the results for GaN are greatly improved compared to the minimal basis results. Finally, to demon-
strate the flexibility of the method, results for the H2O dimer system and the energetics of a gas-phase
octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine molecule are reported.
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I. INTRODUCTION

Quantum-mechanical methods have become increasi
reliable as a complementary tool to experimental researc
variety of methods exist ranging in complexity from sem
empirical methods to density-functional-theory~DFT! meth-
ods @using either the local-density approximation~LDA ! or
the generalized-gradient approximation~GGA!# to methods
for highly correlated systems~such as multiconfiguration
self-consistent field or coupled clusters!. Depending on the
approximation used, such methods have been effectively
plied to a variety of materials and systems.

With the increase in computational power, greater effo
have been made by the electronic-structure community
optimize the performance of quantum-mechanical metho
Calculating larger systems without making stringent appro
mations has only been possible within the past few ye
Previously, usually only calculations with a minimal bas
set, nontransition metals, or model systems, which cons
no influence from the environment~in order to reduce the
size of the problem!, could be considered within these ca
culations. Now with advances in computational power a
algorithms, calculations that use double-z ~or double numeri-
cal! basis sets, plus polarization orbitals, are becoming
norm; also an increasing number of electronic-struct
methods now incorporated orbitals, which are needed in th
simulation of transition metals and related compounds, th
fore more complex systems are being studied with quant
mechanical methods.

Within a tight-binding-like formalism more comple
problems can be investigated with a modest decrease in
accuracy. This is particularly useful where a quantu
mechanical description is important to the investigated s
tem’s fundamental chemistry, but where a smaller model s
0163-1829/2001/64~19!/195103~10!/$20.00 64 1951
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tem would inadequately describe the proper physi
environment. In addition, there are even larger systems~i.e.,
enzymes or zeolites!, which can only be currently calculate
using these approximate methods; using more exact met
would be computationally unattainable.

One of the first reported approaches using anab initio
tight-binding formalism was the development of the Sank
Niklewski SN method.1 This method is based on norm
conserving pseudopotentials2,3 and the local-density approxi
mation LDA limit of DFT, but uses the Harris-Foulke
functional4,5 and a minimal nonorthogonal local-orbital bas
of slightly excited orbitals.1,6 The electronic eigenstates a
expanded as a linear combination of pseudoatomic orb
within a localizedsp3 basis for the atoms. These localize
pseudoatomic orbitals, which we refer to as ‘‘fireballs,’’ a
slightly excited due to the boundary condition that they va
ish at some radiusr c@cfireball

atomic(r )ur>r c
50# instead of the

‘‘atomic’’ boundary condition that they vanish at infinity. Th
SN method and the improved method presented here inc
periodic boundary conditions.

Several studies on a variety of systems have shown
SN method to be an efficient and successful tool for perfo
ing electronic-structure calculations~for example, see Refs
6–10!. Other similar methods that evolved from the S
method have been successfully applied to a variety
systems.11,12 A self-consistent extension to the SN meth
has been developed and implemented because the
selfconsistent nature of the Harris-Foulkes functional lim
its applications to systems without a significant difference
the electronegativity of the system’s constituents. This s
consistent procedure introduces a new degree of flexibi
adding the possibility of optimizing the input electron de
sity r in according to the chemical environment of the atom
©2001 The American Physical Society03-1
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The self-consistent method was originally developed a
successfully applied to complex silicas,13 and recently results
have been obtained for octahydro-1,3,5,7-tetranitro-1,3,
tetrazocine~HMX !.14 This method has also proved to be
very useful tool for dealing with complex-surfac
problems.15–19 In other work, hydrogen-bonded system
have been modeled by combining adequately the SN
proach with a many-body method in which the exchan
effects are described as a function of the orbital occupan
ni .20,21 Implementation of a linear-scaling algorithm in add
tion to this hydrogen-bonding model provided forab initio
calculation of deoxyribonucleic acid~DNA!.22

Despite the several successful results referenced, the
method is constrained by some underlying factors, such
the degree of complexity in the systems that could be inv
tigated is limited. First, the form of the nonlocal pseudop
tential is nonseparable;2 therefore, more complex interaction
involving three-center integrals must be computed~in a sepa-
rable form of the nonlocal pseudopotential all the compu
interactions can be reduced to two-center integrals23!. Sec-
ond, one of the novelties of the SN method is that all int
actions are precomputed exactly~up to three centers, no fou
centers are needed! and tabulated~the wave functions are
zero beyondr c!; however, this is not the case for th
exchange-correlation interactions. These interactions w
not computed exactly, but rather approximated based on
average ‘‘effective’’ density. As a result, slight errors~;2%!
in the exchange-correlation potential and energy occur
Third, the LDA limit of DFT is the only functional available
in the SN method. Fourth, in the past, inclusion of orbit
above a minimal basis set involved computationally inte
sive work, so the SN method avoided this extra complex
Unfortunately, flexibility in the scope of the systems, whi
can be investigated in the original SN method, is limited.

In this paper, improvements to the SN method cal
FIREBALL are reported, which allow the performance of mo
accurate calculations in more complex systems. The feas
ity of these improvements is now possible because of
continuing increase in computational power and becaus
better theoretical techniques. These improvements and
sults, which apply these improvements, are discussed in
paper as follows. Section II describes the theoretical basi
FIREBALL, discussing improvements made to the SN meth
Results of FIREBALL are presented in Sec. III, with results fo
the Cu and GaN band structures in Sec. III B and III A,
spectively. In addition, to demonstrate the flexibility of th
method, results for the H2O dimer are presented in Sec. III C
Finally, Sec. IV contains a summary and concluding rema
of FIREBALL in addition to further future developments.

II. THEORY

A. Theoretical foundation

The theoretical basis of the SN method is the use of
density-functional theory with a nonlocal pseudopoten
scheme. At the core of the method is the replacement of
Kohn-Sham energy functional by the approximate Har
Foulkes functional,4,5
19510
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Etot
Harris5EBS1$U ion-ion2Uee@r in~r !#%1$Uxc@r in~r !#

2Vxc@r in~r !#%. ~1!

The main difference between the Kohn-Sham and Har
Foulkes functional is that the latter is defined entirely
terms of an input charge densityr in(r ); whereas, the former
is defined in terms of both an input and output charge den
and the two converge when self-consistency is used. In
~1! EBS is the band-structure energy (2S i eocee i), wheree i
are the eigenvalues of the one-electron Schro¨dinger equation
given by

H 2
\2

2m
¹21Vext~r !1mxc@r in~r !#

1
e2

2 E r in~r !

ur2r 8u
d3r 8J c i~r !5e ic i~r !. ~2!

The second term of Eq.~1! is the ‘‘short-range’’ repulsive
interaction, which is the ion-ion interaction offset by th
overcounting of the Hartree interactions. This term is giv
by

$U ion-ion2Uee@r in~r !#%5H e2

2 (
i , j

ZiZj

uRi2Rj u

2
e2

2 E r in~r !r in~r 8!

ur2r u
d3rd3r 8J .

~3!

The last term of Eq.~1! is a correction to the exchange co
relation, given by

$Uxc@r in~r !#2Vxc@r in~r !#%5E r in~r !$exc@r in~r !#

2mxc@r in~r !#%d3r . ~4!

This term arises because the one-electron Schro¨dinger eigen-
values contain the potentialmxc@r in(r )#; however, the cor-
rect exchange-correlation interaction energy is the integ
*r in(r )exc@r in(r )#d3r . In general, the construction of formu
las for the hopping-matrix elements is outlined in the origin
SN paper. With the given form of the total energy, the forc
acting on an atom at positionRl are determined by taking
the derivative of the total energy with respect toRl . The
band-structure force is evaluated using a variation of
Hellmann-Feynman theorem.1

In solving the one-electron Schro¨dinger equation of Eq.
~2!, a set of slightly excited pseudoatomic ‘‘fireball’’ wav
functions are used. These orbitals are computed within D
and a norm-conserving separable pseudopotential23 and are
chosen such that they vanish at some radiusr c(cfireball

atomicur>r c

50). This boundary condition is equivalent to an ‘‘atom
the box’’ and has the effect of raising the electronic ene
levels~ea ,ep ,ed ,... atomic eigenvalues! due to confinement.
The radial cutoffsr c are chosen such that these electro
eigenvalues remain negative and are mildly perturbed fr
3-2
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the free atom. This methodology is also used in theSIESTA

technique11 and the given excitation energies are used to
terminer c’s.

Figure 1 shows a comparison between the ‘‘fireball’’ wa
functions and the free-atomic wave functions~s, p, andd for
Au!. It is very important that ther c’s are chosen to preserv
the chemical trends of the atoms, i.e., the excitation of
atoms must be done in a manner that preserves the rel
ionization energies and relative atomic sizes. A theoret
basis for judiciously choosing theser c’s was discussed in a
previous work.6 For this example, an excitation energy
;2.0 eV was chosen to determine the cutoffs, yieldingr c

5d

54.7aB andr c
6a55.0aB . Note that for the Aud state there is

no distinguishable difference in the exact wave function a
the wave function withr c

5d54.7aB .
The ‘‘fireball’’ boundary condition yields two promising

features. First, the range of hopping-matrix elements
tween orbitals on different atoms is limited; therefore, ve
sparse matrices are created for large systems. This inhe
sparseness allows one to more readily implement line
scaling algorithms to obtain the band-structure energy. S
ond, the slight excitation of the atoms somewhat accounts
Fermi compression in solids, which apparently gives a be
representation of solid-state charge densities.24 In the SN
method, only a minimalsp3 basis set was implemented
which limited the flexibility of the method. The improve
method presented here~called FIREBALL! now allows a more
flexible choice of basis set where double-numerical~DN! or
additional-polarization sets are permitted. Earlier wo
shows that the addition of the DN set yields very good
sults in ab initio tight-binding methods that are similar t
FIREBALL.11,12

In evaluating the total energy of the system@Eq. ~1!#, the
input density is a sum of confined spherical atomic-li
densities,

FIG. 1. The slightly excited pseudoatomic orbitals for thed state
ands state of Au~solid line, free-atomic wave function; dashed lin
‘‘fireball’’ wave functions!.
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The orbitalsf i(r2Ri) are the slightly excited ‘‘fireball’’
pseudoatomic wave functions, which are used as basis f
tions for solving the one-electron Schro¨dinger equation@Eq.
~2!#. The occupation numbersni determine the number o
electrons occupying each spherically confined atomic-l
density. In the Harris-Foulkes approximation implement
within the SN method, the input density is not determin
self-consistently, but rather the occupations numbers
taken from a reference ‘‘atomic’’ density (ni5ni

0). It has
been shown that the Harris total energy functional has er
that are only second order in the errors of the input densit1,4

B. Pseudopotential approximation

In the SN method the form of the nonlocal pseudopot
tial is nonseparable,2 therefore, more complex interaction
involving three-center integrals must be computed. To s
plify this, the separable form of the nonlocal pseudopoten
is used so that all the computed interactions can be redu
to two-center integrals.23

The pseudopotentials~also known as effective core poten
tials! are derived from the solution of the Schro¨dinger equa-
tions for the all-electron eigenstates of the free atom. Re
tivistic and other core-region effects are included
incorporating averaged spin-orbit coupling, the ma
velocity and Darwin terms, and the effective all-electron p
tential given as the sum of the Hartree potential, t
exchange-correlation potential, and the electrostatic poten
of the nucleus. For the exchange-correlation energy and
spectively, for the exchange-correlation potential, various
rametrizations of the LDA and of the GGA are available.25–32

The pseudopotential and pseudoatomic wave functi
may be generated in the Hamann form or in the Troulli
Martins form as discussed in detail in Refs. 23 and 33, e
ploying the scheme of Fuchs and Scheffer34 For the repre-
sentation of the pseudopotentials in their semilocal form,
local potential is calculated forl loc5 l max11 and e l loc

5e l max
, wherel max is the momentum of the highest occupie

orbital ande l max
is its energy. With the choice ofl loc5 l max

11 for the local part, unphysical ‘‘ghost’’ states are usua
avoided when the pseudopotential is transformed into
fully separable form of Kleinman and Bylander.35 The ab-
sence of ghost states is checked by examining the band-
spectrum using the analysis of Gonze Stumpf, a
Scheffler.36

C. Exchange-correlation interactions

In the SN method, the exchange-correlation interactio
were not computed exactly, but rather approximated ba
on the ‘‘nearly uniform-density approximation.’’ A better ap
proach for calculating the exchange-correlation~XC! inter-
actions was proposed by Horsfield,12 which uses a many-
center expansion based on an expansion of the density, a
at a time. This method provides advantages over the appr
mations, which were utilized in the SN method. Primari
3-3
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JAMES P. LEWISet al. PHYSICAL REVIEW B 64 195103
this is a higher-order approximation than the nearly unifor
density approximation and it can be used with gradie
corrected functionals. The XC potential matrix elements
calculated by including up to three centers in the approxim
tion; however, the on-site terms use only up to a tw
center approximation. The exchange-correlation doub
counting correction is also calculated using a two-cen
approximation.

This approach for calculating exchange-correlation int
actions as presented in Eqs.~6!–~8! of Ref. 12 facilitates
storing integrals in tables in the same manner as the ele
static integrals, the two-center approximation for t
exchange-correlation contribution to the crystal-field resu
in this contribution always being overestimated. On occas
this may result in poor geometries or ghost states. In
situation, a correction must be added to the two-cen
approximation as explained in Ref. 12.

This approach for determining the exchange-correlat
interactions is independent of the type of functional us
Currently two types of exchange-correlation density fun
tionals are available within FIREBALL-LDA and Becke ex-
change~Ref. 28! with Lee-Yang-Parr~LYP! correlation.27

Within the LDA, the exchange-correlation energy is design
to exactly reproduce the energy and potential of the unifo
electron gas37,25 (dn/dr50); however this approach unde
estimates the exchange energy, because exchange incr
with increased density variability. Conversely, LDA cons
tently overestimates correlation energy. To improve upon
chemistry predicted by the LDA approach, functionals th
depend upon the gradient of the density were developed

For exchange interactions, the Becke-exchange functio
(Eexchange[E@n(r ),“n(r )#) has enjoyed popularity,28 par-
ticularly because it has only one empirical parameter tha
fit to the exchange energies of the noble gases. The pres
of a single parameter was an improvement over ear
multiparameter functionals.38 Similarly, the LYP
gradient-corrected correlation functional (Ecorrelation

[E@n(r ),“n(r )#) has also enjoyed popularity.27 It is a re-
formulation of the correlation formulas of Colle an
Salvetti39 in terms of the electron density and the loc
kinetic-energy density. The combination of Bech and LY
~BLYP! has proven to provide reliable energetics and m
lecular geometries.40 As of this work, BLYP is the most fa-
vored DFT exchange-correlation functional, largely as a
sult of its effectiveness in predicting molecular propert
and its presence in popular quantum-chemistry codes.

D. Self-consistency implementation

The Harris-Foulkes approximation is shown to work qu
well for a variety of systems, especially those that a
strongly covalent.6 Tests on this functional have shown that
yields total energies, which are remarkably similar to t
LDA approximation but lie below them rather than abo
them as in a variational Kohn-Sham calculation. Seve
studies of this functional exists in the literature,41–46and the
reader is directed to these references for details. Howe
due to the non-self-consistent nature of the Harris functio
its applications are limited to systems without a significa
difference in the electronegativity of their constituents.
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The FIREBALL method has been generalized to deal w
systems that exhibit a significant transfer of charge betw
atoms and require a self-consistent determination of the
cupation numbersni , i.e., nowni5ni

01dni . Thus, the total
energy is afunctionof the occupation numbers,Etot@rin(r )#
[Etot@ni#(niÞni

0), and a self-consistent procedure on the o
cupation numbersni is introduced. A more detailed descrip
tion of this self-consistent method used~referred to as
DOGS! is found in Refs. 6 and 13.

When self-consistency is considered, the exchan
correlation interactions must take into account the chang
the charge distributions between atoms. The procedure
evaluating the Hamiltonian matrix elements and the doub
counting term for the exchange-correlation interactions
outlined in Ref. 12. The underlying idea is that because
exchange-correlation interactions vary with the change in
occupation numbers,dni , these interactions can be approx
mated by an expansion aboutdni50. A linear expansion is
used for the terms in the Hamiltonian and a quadratic
proximation is used for the double-counting term.

E. Localized orbitals and basis sets

The use of localized ‘‘fireball’’ orbitals is found to be
computationally advantageous. Given any two atomic or
als i and j beyond some cutoff radius (r ci1r c j), the matrix
elementsHi j andSi j become exactly zero. Therefore, there
only a preprescribed interaction range over which the in
grals must be evaluated. Within the FIREBALL approach inte-
grals are precalculated on a numerical grid and the spe
values needed are gleaned from the tabulated values vi
terpolation. Because these integral tables depend only on
atom type, theirr c values, and the type of DFT exchang
correlation functional used, the integral tables need to
generated only once, for a given number of atomic spec
rather than once or more per molecular dynamics run. T
‘‘direct’’ approach47 in which integrals are calculated a
needed is similar to the approach taken within FIREBALL.
This pregeneration process lends itself to parallelization
spreading of these integrals out over multiple process
based on integral types.48,49 This parallelization is particu-
larly important, since the number of integrals needed gro
as orderN3 with the number of different elementsN.

The original SN method is limited to single-numeric
basis sets of the minimalsp2 type. Development of new
basis sets and deciding what type of functions to use is
rently an area of extensive research within the field of el
tronic structure. A common theme throughout this literatu
is that one often needs more than a minimal basis set.
basis-set limitations within the SN method made study
transition metals impossible given the lack ofd orbitals and
made it difficult to study chemical systems that required
additional flexibility that polarizingd functions and extras
and p shells might provide. The FIREBALL method now al-
lows for d functions and as many orbitals as the user desi
The addition ofd functions has been previously consider
in a Sankey-Niiklewski approach, but with a different proc
dure for their implementation.10 There is nothing inherent to
the method to formally disallow extensivef ,g,h,... shells,
3-4
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but the current implementation does not support them. T
flexibility in generating the basis set allows the SN meth
to properly describe many chemical systems with only
single-numerical basis set.

DN basis sets are currently generated by holding
ground-state wave function fixed and exciting electron d
sity to a higher orthogonal state with the samer c value.
There are other approximations for generating additional
basis sets as discussed in Refs. 11, 12, and 50. Investig
of these other approaches within FIREBALL is the subject of
future work. Polarizingd functions ~unoccupied orbitals in
the ground-state atom! are generated by exciting the electro
density into ad shell with a well-chosenr c value. It should
be noted that thed shells used in FIREBALL consist of five
spherical-harmonicd functions as opposed to the six Cart
siand functions used with some Gaussian basis sets. Po
ization provides a flexibility in the basis set that was n
available in the functions of lower angular momentum, a
thus may improve the chemistry. Going beyond DN w
polarization~DNP! is generally not necessary, because
DN basis set allows for a wide range of wave-function c
vatures, and triple-numerical basis sets would not provide
same qualitative improvement over DN as DN did ov
single numerical.

III. RESULTS

A. GaN properties

Group-III nitrides attract much attention because of th
potential in many technological applications. Importa
progress was achieved in the fabrication of electro-opt
devices, leading to the realization of blue-light-emittingp-n
junctions51 and laser diodes.52 The energy gap of GaN is 3.
eV, lying between 1.9 and 6.2 eV measured for InN a
AlN.53 Hence, GaN is the key compound for group-III n
tride alloys and heterostructures. GaN usually crystallize
the wurtzite phase, which is the ground-state structure.
bilization of the zinc-blende phase was reported for
growth of thin films on the~001! surfaces of GaAs, cubic
SiC, MgO, and Si.54 In electronic-structure calculations pe
formed for GaN, it is essential to include explicitly semico
states in the computation.55 This means that the 3d electrons
of Ga have to be treated as valence states in the pseud
tential method in order to obtain correct bondin
properties56,57 like the lattice parameter, bulk modulus,
relative energies of surface structures, defects and bo
aries.

Here, the results obtained with FIREBALL for the zinc-
blende phase of GaN are summarized. To study the eff
introduced by including the semicore states of Ga, we co
pare the computed lattice parameter, bulk modulus, and e
tronic band structure determined with ansp3 basis for Ga
and N with the results obtained from an extendedsp3d5

basis for Ga. The pseudopotentials of Ga and N were c
structed in the Hamann scheme.23 For the exchange
correlation functional, we employ the local-density appro
mation using the parametrization of Perdew and Zunge25

The ‘‘fireball’’ orbitals were constructed with a confineme
radius of 3.90aB for the 2s and 2p states of N, while the 4s
19510
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and 4p orbitals of Ga are confined to a sphere with a rad
of 5.40aB . For the Ga3d states,r c53.5aB is used. Given
this choice of cutoffs, the energies of both the N and
states are;2 eV above the unperturbed levels of the fr
atoms.

Table I summarizes the lattice constant, bulk modul
and gap energy calculated with thesp3- and sp3d5-basis
sets, using the Harris-Foulkes approach4,58,5 and using the
self-consistent charge-transfer approach~DOGS! discussed
in Sec. II D. Our results are compared with experimental d
and previous theoretical work by others.57,59–62The lattice
constant is similar in all cases, while the bulk modulus
increased when charge transfer is taken into account.
both basis sets, the calculation underestimates the meas
lattice constant by 3–4%. The bulk modulus is largely
creased above the experimental value, when the Ga 3d states
are included in the calculation. These deviations are parti
related to the multicenter expansion of the exchan
correlation matrix elements, with the atom two-center con
butions being always overestimated.12 This can be easily
checked by rescaling all respective two-center matrix e
ments by a constant factor 0,l,1. The lattice constant in-
creases continously with the degree of the reduction of
matrix elements. Good agreement with measured data for
lattice constant is achieved by this, the lattice constan
increased to 4.5 Å for both basis sets and self-consis
charge transfer. The bulk modulus is decreased to 2.18
1.64 Mbars for thesp3d5- and sp3-basis sets, respectively
For a rigorous treatment, the multicenter expansion sho
be replaced by a direct evaluation of the exchan
correlation matrix elements in terms of numerical integrat
of many-center contributions. These contributions are
currently obtainable within the scope of interpolating tw
and three-center integrals as done in the current meth
However, implementing the proper correction to t
exchange-correlation interactions, necessary in some ca
will be addressed in future work.

TABLE I. Lattice constanta0 , bulk modulusB0 , and gap en-
ergy Egap computed for zinc-blende GaN in the Harris-Foulkes a
proach and with the self-consistent charge-transfer appro
~DOGS!, usingsp3- or sp3d5-basis sets for Ga and asp3-basis set
for N. The values in parentheses summarize results obtained
~20%! smaller onsite two-center exchange-correlation matrix e
ments. Results from plane-wave local-density calculations~PW-
LDA ! ~Ref. 57!, Hartree-Fock calculations~HF! ~Ref. 62!, and from
experimental results~Refs. 59–61! are included.

Basis Charge transfer a0 ~Å! B0 ~Mbars! Egap ~eV!

Ga(sp3) No 4.39 1.54 3.86
Ga(sp3) Yes 4.39 1.99 2.99

Ga(sp3d5) No 4.33 2.58 3.09
Ga(sp3d5) Yes 4.35 2.99 2.39
Ga(sp3) Yes ~4.52! ~1.64! ~2.58!

Ga(sp3d5) Yes ~4.52! ~2.18! ~1.80!
PW-LDA 4.52 1.91 1.60

HF 4.52 2.54
Experiment 4.52 1.90 3.45
3-5
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Figures 2, 3, and 4 illustrate the electronic band struct
of GaN computed withsp3- and sp3d5-‘‘fireball’’ orbitals,
using the Harris-Foulkes approach and self-consistent ch
transfer. In all cases, the corresponding theoretical lat
constant was used. The band structure correctly shows
zinc-blende-phase GaN has a direct band gap at theG point,
with a separation of the valence and conduction bands
summarized in Table I. Charge transfer reduces the gap
ergies with respect to those of the Harris-Foulkes approa

The electronic bands computed in the valence-band
gion and also the first conduction band agree nicely with
results of previous plane-wave calculations55,57 ~noting that
LDA typically gives band-gap values that are approximat
50% of experiment!. Because of the small basis used in o
approach, however, differences occur in the higher cond
tion bands. Consistent with the trends observed for the lat
constant, the agreement with previous computations
largely improved by reducing the atom two-center exchan
correlation matrix elements by 20%. Figure 4 shows that
gap energy is 1.8 eV in this case, which compares very w
with the values from other pseudopotential methods as s
marized in Ref. 57.

Effects of the transfer of electronic charge from the
atoms to the N atoms in GaN are clearly illustrated in Figs
and 4. The Ga 3d bands are shifted downwards by about 3

FIG. 3. Dispersion of zinc-blende-phase GaN computed w
sp3d5-fireball orbitals for Ga. Left: self-consistent charge-trans
included. Right: Harris-Foulkes approach.

FIG. 2. Dispersion of zinc-blende-phase GaN computed w
sp3-fireball orbitals for Ga and N. Left: self-consistent charge tra
fer included. Right: Harris-Foulkes approach.
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eV, so that they finally lie in the energy region of the N 2s
band in agreement with other density-functional calculatio
The exact location of the 3d bands in GaN is found in ex
periments below the N 2s states.63 This behavior is only
reproduced by calculations that include self-interact
corrections,64 but not by the usually applied LDA and GGA
schemes.55–57 However, many properties of GaN, like th
lattice parameter, bulk modulus, or relative energies of s
face structures, defects and boundaries, are essentially
affected by the discrepancy in the relative location of the
3d bands to the N 2s bands.

B. Cu band structure

In this section we use the band structure of Cu as
example to show the performance of FIREBALL for transition
metals. Figure 5 shows the Cu band structure along sev
high-symmetry directions, as calculated using two differe
basis sets:~i! ~dotted lines! a minimalsd5 basis set of ‘‘fire-

h
r

FIG. 4. Dispersion of zinc-blende-phase GaN computed w
sp3d5-fireball orbitals for Ga, including self-consistent charg
transfer and a 20% reduction of the two-center atom contributio
the exchange-correlation-potential matrix elements.

FIG. 5. Copper band structure obtained for two different ba
sets:~i! sp3d5 ~solid lines! and ~ii ! sd5 ~dotted lines!. The dashed
line represents the Fermi energy for thesp3d5 calculation. In this
figure, the Fermi energy for thesd5 calculation~not shown! lies at
1.36 eV.

h
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ball’’ orbitals with a cutoff radius ofr c54.5aB ; ~ii ! ~solid
lines! an sp3d5 basis set obtained from the previous o
addingp orbitals with a cutoff radius ofr c54.5aB . Both the
atomic and solid calculations have been performed using
LDA for the exchange-correlation interactions. In a simi
approach as in the GaN results, we have corrected the
center exchange-correlation matrix elements. Thesd5 basis
orbitals are calculated by solving the the atomic probl
with occupation numbersns

051 andnd
0510 instead of the

atomic valuesns
052 andnd

059, because the self-consiste
occupations numbers in the solid are going to be closer to
first set of values.

In order to facilitate the comparison between the two c
culations, thesd5 band structure has been shifted upwards
that the lowestd bands coincide at theG point with thed
bands of thesp3d5 band structure. The overall agreement
these band structures with more sophisticated calculat
~which can be found in Ref. 65! is quite good. For thesd5

band structure, thed bands are quite well described, whi
thespband is only roughly represented due to the absenc
thep orbitals in the basis set. The addition ofp orbitals in the
basis set has a minor effect on thed bands, but, as expected
improves significantly the description of the parabolicsp
band. For Cu, we calculate the lattice parameter to ba
53.57 Å and the bulk modulus to beB51.61 Mbars, com-
pared with the experimental results ofa53.6 Å and B
51.34 Mbars, respectively.

C. H2O dimer

Hydrogen bonding has significant relevance in biologi
systems. The inability of the SN method to accurately p

FIG. 6. H2O dimer.
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tray hydrogen-bonded systems is inherently due to the l
of GGA exchange-correlation functionals within the metho
Availability of the BLYP exchange-correlation functional i
the improved method allows performing simulations whe
hydrogen bonding is considered. As a model test case
demonstrating the performance of FIREBALL to such systems
results of the H2O dimer ~see Fig. 6! are presented in Table
II. For the results presented here, we use a double-nume
basis set with the following cutoffs: H,r c54.1 and O,r c

53.8,4.1. These cutoffs are slightly longer than what wo
be obtained using the cutoffs suggested in Sec. II A. Th
longer cutoffs are required for properly obtaining th
hydrogen-bonding characteristics, which is a longer-ran
interaction compared with covalent bonds found in crysta

The structural results are quite comparable with the
sults of others, but the binding energy is high. Results from
similar DFT local-orbital method~SIESTA! demonstrate tha
including an additional polarization basis set decreases
binding energy as compared with the strictly doub
numerical basis set. Investigation of different and more
tensive basis sets will be the topic of future work.

D. HMX structure and energetics

Additionally, FIREBALL was used to study a single ga
phasea-HMX molecule as a benchmark test case of orga
molecules. HMX is important in many industrial and militar
applications because of its high detonation velocity. In
gas phase two nearly energetically equivalent polymorph
HMX exist—a boat conformer and a chair conformer of t
molecule as shown in Fig. 7. A minimalsp3 basis set and the
BLYP exchange-correlation functional predict that the e
ergy difference between the two conformers is 190 kcal/m
This significant overestimation affirms that the minimal ba
set is insufficient for correctly predicting the energetics
many molecules, even though the ‘‘fireball’’ radii wer
picked to properly preserve trends in ionization energies
on

lso
and the
TABLE II. Results of bondlengths, bondangles, and binding energy for the H2O dimer. A comparison with
the results from other methods are included—SIESTA ~Perdew, Burke, and Ernzerhof exchange-correlati!
with DN and DNP~Ref. 11!, deMon with Perdew and Wang exchange/Perdew correlation~LCAO/PW! and
Becke exchange/Perdew correlation~LCAO/BP! ~Ref. 66!, second-order Moller-Plesset calculations~MP2!
~Ref. 67!, and plane waves PLW~Ref. 68!. A summary of the experimental results found in Ref. 66 are a
included. The parameters are defined according to Fig. 6; lengths are in Å angles are in degrees
binding energies are in kcal/mol.

This work DN DNP LCAO/BP LCAO/PW MP2 PLW Expt.

r (O1-O2) 2.98 2.752 2.902 2.886 2.887 2.911 2.70~2.98! 2.9860.01
r (O2-H) 1.01 0.996 0.981 0.979 0.981 0.957 0.961
/HO2H 104.6 111.2 106.2 106.2 104.4 106.2

r (O1-H11) 1.03 1.015 0.988 0.990 0.990 0.964 1.002
r (O1-H12) 1.02 0.997 0.980 0.977 0.979 0.981
/HO1H 100.8 110.8 104.7 106.2 106.0 107.3

u 24.4 22.6 24.7 27.0 215.1 24.5 24.84 26620
f 58.4 59.4 57610

Binding En. 8.88 11.76 7.36 4.51 5.993 5.44 9.06~4.90! 5.4460.7
3-7



s

o
to
e

e
te

N
a
c
l

qu
te

ev

e
G

gy
iz
al

ol
r

n-
s
le

m
g
n
n
w

P2
n
ha
u
t
ie

at
e

nge
e-
ar-
ese
ntly
P

e of

of
en-
od
of
Ha-
e
ian

ave
to

f
s-
en

ec-
se

ve-
ider

d.

s—
l-
are

ta-
ely
was
of

ally,
he

or
ms,
K.
l.

st-
he
al
,

.
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Because of the need to maintain proper energetic trend
the orbitals, different cutoffs are generally needed fors andp
shells. This is an improvement over the original SN meth
that forced all shells on a given atom to have the same cu
Specifically, for thes and p shells, respectively, we choos
H(r c53.8), C(r c54.1,4.4), N(r c53.7,4.1), and O(r c
53.5,3.8) for the HMX results presented here. DN basis s
were generated by calculating the lowest-lying exci
atomic states, subject to the samer c boundary conditions and
orthonormality constraints. Improving the basis set to D
(ss* p3p* 3) reduces the energy difference between the ch
and boat conformers to 6.8 kcal/mol. This energy differen
gives the same thermodynamic trend as the experimenta
sults ~the boat conformer is energetically higher! and dem-
onstrates the need for an adequate basis set to get the
titative nature of the difference correct. It is important to no
that both basis sets predict the correct energetic trend.

For comparison, results found using several different l
els of theory are presented. Using single-z basis set BLYP/
STO-3G with GAUSSIAN 98 ~Ref. 69! ~closest equivalence to
our single-numerical basis set! predicts the energy differenc
to be 1.4 kcal/mol in the wrong direction. BLYP/6-31
~closest equivalence to our double-numerical basis set! pre-
dicted that the boat form is 1.4 kcal/mol higher in ener
than the chair form. Increasing the basis set s
to 6-311G** reduces this energy difference to 0.81 kc
mol. Mixing in exact exchange with B3LYP/6-311G**
increased this energy difference to 2.33 kcal/m
Chakraborty et al. reported results of 3.5 kcal/mol fo
B3LYP/6-311G** //MP2/6-311G** and 2.5 kcal/mol for
B3LYP/6-31G* .70 Clearly none of these results have co
verged to the chemically ‘‘exact’’ answer. Based upon the
wide range of results, our BLYP/DN results are reasonab

Improving the level of basis set and theory should i
prove upon our BLYP/DN results, although it is worth notin
that the energy differences do not always converge u
formly, even if the separate energies are converging u
formly. Convergence with respect to basis-set size is kno
to be erratic for correlated methods such as MP2.71 Improve-
ments in theory, such as going from Hartree-Fock to M
can cause pathological results.72 A greater dependence o
basis set size should be expected in B3LYP, rather t
BLYP because of the exact exchange contribution. Beca
of these issues, the level of theory and basis set mus
properly chosen and well balanced for all species stud
We find that the BLYP/DN method in FIREBALL obtains such
a balance, although B3LYP would most likely necessit
extending the basis further to B3LYP/DNP. Adding improv

FIG. 7. The boat and chair gas-phase conformers of HMX
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ments such as polarization basis functions, exact excha
will significantly increase the memory and CPU requir
ments during the computation, thus the need for a line
scaling algorithm is even greater for larger systems as th
demands are increased. Work on this extension is curre
underway, along with a systematic study of DN and DN
basis-set design.

IV. CONCLUDING REMARKS

Improvements to the Sankey-Niklewskiab initio tight-
binding method have been presented. The main featur
this new method, called FIREBALL, is that the flexibility of
the basis set is incorporated through implementation
double-numerical basis set capabilities as well as implem
tation ofd orbitals. Other major improvements to the meth
include the following. First, the pseudopotential is now
the generalized norm-conserving separable form of the
mann type or the Troullier-Martins type, thus simplifying th
representation of the nonlocal pseudopotential Hamilton
matrix elements into a separable form.2,23,33,34Second, the
representation of the exchange-correlation interactions h
been simplified and more accurately portrayed according
the Horafield-multicenter-expansion approximation~up to
three-center terms!.12 Third, the self-consistent method o
Demkovet al.13 has been implemented to allow charge tran
fer between atomic constituents, which is important wh
calculating systems with significant differences in the el
tronegativity of those constituents. The combination of the
three main implementations as well as other minor impro
ments to the method have produced a method that has w
applications to the type of systems that can be calculate

The effectiveness and versatility of FIREBALL has been
demonstrated by applying the method to several system
Cu, GaN, the H2O dimer system, and a gas-phase HMX mo
ecule. In the cases of Cu and GaN the band structures
presented. In all cases, addition ofd orbitals, a feature not
contained in the Sankey-Niklewski method, yields quali
tively better features of the band structure and quantitativ
better band-gap energies for GaN. The Cu band structure
not obtainable with the Sankey-Niklewski method because
the lack ofd orbitals, and with this new flexibility, we obtain
an accurate representation of the Cu band structure. Fin
to demonstrate the flexibility of the method, results for t
H2O dimer and HMX were presented.
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53 Morkoç, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M
Burns, J. Appl. Phys.76, 1363~1994!.

54S. Strite and H. Morkoc¸, J. Vac. Sci. Technol. B10, 1237~1992!.
55V. Fiorentini, M. Methfessel, and M. Scheffler, Phys. Rev. B47,

13 353~1993!.
56J. Neugebauer and C. V. de Walle, Phys. Rev. B50, 8067~1994!.
57C. Stampfl and C. V. de Walle, Phys. Rev. B59, 5521~1999!.
58W. M. C. Foulkes, Ph.D. thesis, University of Cambridge, 198
59T. Lei, M. Fanciulli, R. J. Molnar, T. D. Moustakas, R. J. Graha

and J. Scanlon, Appl. Phys. Lett.59, 944 ~1991!.
60M. E. Sherwin and T. J. Drummond, J. Appl. Phys.69, 8423

~1991!.
3-9



J

r

f

o

A
er

A.
V.
C.
Q.
-
ov,
R.
.
B.
M.

rd,

g,

nn,

JAMES P. LEWISet al. PHYSICAL REVIEW B 64 195103
61S. Strite, J. Ruan, Z. Li, N. Manning, A. Salvador, H. Chen, D.
Smith, W. J. Choyke, and H. Morkoc¸, J. Vac. Sci. Technol. B9,
1924 ~1991!.

62B. Paulos, F.-H. Shi, and H. Stoll, J. Phys.: Condens. Matte9,
2745 ~1997!.

63S. A. Ding, G. Neuhold, J. H. Weaver, P. Ha¨berle, K. Horn, O.
Brandt, H. Yank, and K. Ploog, J. Vac. Sci. Technol. A14, 819
~1996!.
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