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Improvements to the Sankey-Niklewaki meth@. F. Sankey and D. J. Niklewski, Phys. Rev4B 3979
(1989] for computing total energies and forces, withinaminitio tight-binding formalism, are presented here.
In particular, the improved methddalled RREBALL) uses the separable pseudopotertti@mann or Troullier
and goes beyond the minimap? basis set of the Sankey-Niklewski method, allowing for double numerical
basis sets with the addition of polarization orbitals ahdrbitals to the basis set. A major improvement
includes the use of more complex exchange-correlation functionals, such as Becke exchange with the Lee-
Yang-Parr correlation. Results for Cu and GaN band structures dgirgjtals within the improved method are
reported; the results for GaN are greatly improved compared to the minimal basis results. Finally, to demon-
strate the flexibility of the method, results for the® dimer system and the energetics of a gas-phase
octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine molecule are reported.
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[. INTRODUCTION tem would inadequately describe the proper physical
environment. In addition, there are even larger systéras
Quantum-mechanical methods have become increasinggnzymes or zeolit¢swhich can only be currently calculated
reliable as a complementary tool to experimental research. Asing these approximate methods; using more exact methods
variety of methods exist ranging in complexity from semi- would be computationally unattainable.
empirical methods to density-functional-thed®FT) meth- One of the first reported approaches usingadninitio
ods[using either the local-density approximatidtDA) or  tight-binding formalism was the development of the Sankey-
the generalized-gradient approximati®@GA)] to methods  Niklewski SN method. This method is based on norm-
for highly correlated systemgsuch as multiconfiguration conserving pseudopotentiafsand the local-density approxi-
self-consistent field or coupled cluster®epending on the mation LDA limit of DFT, but uses the Harris-Foulkes
approximation used, such methods have been effectively aggnctionaf-® and a minimal nonorthogonal local-orbital basis
plied to a variety of materials and systems. of slightly excited orbitals:® The electronic eigenstates are
With the increase in computational power, greater efforts,ypanded as a linear combination of pseudoatomic orbitals

have _bee?] madtfa by the eI;ectronic-strUC'ﬂJrf]e QOnIWmU”::ydIQVithin a localizedsp® basis for the atoms. These localized
optimize the performance of quantum-mechanical metho _Spseudoatomic orbitals, which we refer to as “fireballs,” are
Calculating larger systems without making stringent approxi-

X . o slightly excited due to the boundary condition that they van-
mations has only been possible within the past few years, . atomic :
Previously, usually only calculations with a minimal basis'S" @t some radiug of Yfrepai(")|=r =0] instead of the
set, nontransition metals, or model systems, which considei@tomic” boundary condition that they vanish at infinity. The
no influence from the environmettin order to reduce the SN method and the improved method presented here include
size of the problem could be considered within these cal- periodic boundary conditions.
culations. Now with advances in computational power and Several studies on a variety of systems have shown the
algorithms, calculations that use doulzléar double numeri- SN method to be an efficient and successful tool for perform-
cal) basis sets, plus polarization orbitals, are becoming théng electronic-structure calculatiortfor example, see Refs.
norm; also an increasing number of electronic-structuré6—10. Other similar methods that evolved from the SN
methods now incorporaig orbitals, which are needed in the method have been successfully applied to a variety of
simulation of transition metals and related compounds, theresystems>*? A self-consistent extension to the SN method
fore more complex systems are being studied with quantumhas been developed and implemented because the non-
mechanical methods. selfconsistent nature of the Harris-Foulkes functional limits
Within a tight-binding-like formalism more complex its applications to systems without a significant difference in
problems can be investigated with a modest decrease in tlibe electronegativity of the system’s constituents. This self-
accuracy. This is particularly useful where a quantum-consistent procedure introduces a new degree of flexibility,
mechanical description is important to the investigated sysadding the possibility of optimizing the input electron den-
tem’s fundamental chemistry, but where a smaller model syssity p;, according to the chemical environment of the atoms.
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The self-consistent method was originally developed and Eg?"isz EBS+{ueron—yeq o, (N1} +{U* pin(r) ]
successfully applied to complex silicisand recently results

have been obtained for octahydro-1,3,5,7-tetranitro-1,3,5,7- —V*pin(N1} 1)
tetrazocine(HMX).1* This method has also proved to be a
very useful tool for dealing with complex-surface

5-19
problems. In other work, hydrogen-bonded systems terms of an input charge densipy,(r); whereas, the former

have been modeled by combining adequately the SN ap- | = . ; :
proach with a many-body method in which the exchange's defined in terms of both an input and output charge density

. . . " and the two converge when self-consistency is used. In Eq.
effects are described as a function of the orbital occupanue(sl) EBS is the band-structure energy ¥2....e;), where e
n; .2%? implementation of a linear-scaling algorithm in addi- 9Y Sregee€il. !

tion to this hydrogen-bonding model provided falp initio are the eigenvalues of the one-electron Sdhmger equation

calculation of deoxyribonucleic acidNA).?2 given by
Despite the several successful results referenced, the SN 2

method is constrained by some underlying factors, such that [_ —— V24 V(1) + s pin(1)]

the degree of complexity in the systems that could be inves- 2m

tigated is limited. First, the form of the nonlocal pseudopo-

tential is nonseparabfetherefore, more complex interactions

involving three-center integrals must be computedca sepa-

interactions can be.reduced o two-center medfaigec. e Second term of EG) s the “short-range” repuisive

ond, one of the novelties of the SN method is that all inter_lnteractlon, which is the lon-ion interaction offset _by _the
- overcounting of the Hartree interactions. This term is given

actions are precomputed exactlp to three centers, no four

centers are needednd tabulatedthe wave functions are

zero beyondr.); however, this is not the case for the { 2

The main difference between the Kohn-Sham and Harris-
Foulkes functional is that the latter is defined entirely in

ez in(r)
t |i)_—r,|d3f']¢i(rFEi¢i(r)- (2

Lo . . . o e ZiZ;
exchange-correlation interactions. These interactions were{yiorion_yeq, (r)Ji=4 —> L
not computed exactly, but rather approximated based on an 2 77 |Ri—Ry|

average “effective” density. As a result, slight errars2%)

2 . ) '
in the exchange-correlation potential and energy occurred. _e_f Mde‘rd?’r’ _
Third, the LDA limit of DFT is the only functional available 2 Ir=r]
in the SN method. Fourth, in the past, inclusion of orbitals 3)

above a minimal basis set involved computationally inten-
sive work, so the SN method avoided this extra complexityThe last term of Eq(1) is a correction to the exchange cor-
Unfortunately, flexibility in the scope of the systems, whichrelation, given by
can be investigated in the original SN method, is limited.

In this paper, improvements to the SN method called
FIREBALL are reported, which allow the performance of more {UXC[Pin(r)]_VXC[Pin(r)]}:f Pin(N{€xd pin(1)]
accurate calculations in more complex systems. The feasibil-
ity of these improvements is now possible because of the —/Lxc[pin(l’)]}d3l’. (4)
continuing increase in computational power and because of ) . _
better theoretical techniques. These improvements and rdis term arises because the one-electron 3tthger eigen-
sults, which apply these improvements, are discussed in théalues contain the potential,d pin(r)]; however, the cor-
paper as follows. Section Il describes the theoretical basis dECt exchange-correlation interaction energy is the integral
FIREBALL, discussing improvements made to the SN method) Pin(r) €xd pin(r) 1d%r. In general, the construction of formu-
Results of FREBALL are presented in Sec. IlI, with results for las for the hopping-matrix elements is outlined in the original
the Cu and GaN band structures in Sec. 1lIB and Il A, re-SN paper. With the given form of the total energy, the forces
spectively. In addition, to demonstrate the flexibility of the &cting on an atom at positioR, are determined by taking
method, results for the J® dimer are presented in Sec. Il C. the derivative of the total energy with respectRp. The
Fina”y’ Sec. IV contains a summary and Conc|uding remarkband-structure force is evaluated USing a variation of the

of FIREBALL in addition to further future developments. ~ Hellmann-Feynman theorem. .
In solving the one-electron Schiimger equation of Eq.

(2), a set of slightly excited pseudoatomic “fireball” wave

Il. THEORY functions are used. These orbitals are computed within DFT
and a norm-conserving separable pseudopoté?‘lmid are
A. Theoretical foundation chosen such that they vanish at some radifg/fieoai r=r,

The theoretical basis of the SN method is the use of the=0). This boundary condition is equivalent to an “atom in
density-functional theory with a nonlocal pseudopotentialthe box” and has the effect of raising the electronic energy
scheme. At the core of the method is the replacement of thievels(e, ,€p, €4, ... atomic eigenvalugsiue to confinement.
Kohn-Sham energy functional by the approximate Harris-The radial cutoffsr, are chosen such that these electronic
Foulkes functionaf;® eigenvalues remain negative and are mildly perturbed from
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28

Au d-state Au s-state pin(r) =2 nil¢i(r —Ry)[2. (5)
24 B
The orbitals ¢;(r —R;) are the slightly excited “fireball”
pseudoatomic wave functions, which are used as basis func-
tions for solving the one-electron Scklinger equatiodEq.
(2)]. The occupation numbens; determine the number of
electrons occupying each spherically confined atomic-like
density. In the Harris-Foulkes approximation implemented
12} 1 within the SN method, the input density is not determined
self-consistently, but rather the occupations numbers are
taken from a reference “atomic” densityn{= nio). It has
been shown that the Harris total energy functional has errors
that are only second order in the errors of the input dendity.

16

¥(r)

08 |

04

B. Pseudopotential approximation

In the SN method the form of the nonlocal pseudopoten-
r(a,) r(@g) tial is nonseparabl® therefore, more complex interactions
FIG. 1. The slightly excited pseudoatomic orbitals for thetate involving three-center integrals must be computed. To sim-

ands state of Au(solid line, free-atomic wave function; dashed line; plify this, the separable form of th_e ”On'OFa' pseudopotential
“fireball” wave functions). is used so that all the computed interactions can be reduced

to two-center integral$’

i ) . The pseudopotentialglso known as effective core poten-
the free altom. This methodology is also used in $IBSTA  ia|g) are derived from the solution of the SéHinger equa-
techniqué” and the given excitation energies are used to detions for the all-electron eigenstates of the free atom. Rela-
terminer’s. tivistic and other core-region effects are included by

Figure 1 shows a comparison between the “fireball” waveincorporating averaged spin-orbit coupling, the mass-
functions and the free-atomic wave functidissp, andd for  velocity and Darwin terms, and the effective all-electron po-
Au). It is very important that the,’s are chosen to preserve tential given as the sum of the Hartree potential, the
the chemical trends of the atoms, i.e., the excitation of theexchange-correlation potential, and the electrostatic potential
atoms must be done in a manner that preserves the relativé the nucleus. For the exchange-correlation energy and, re-
ionization energies and relative atomic sizes. A theoreticagpectively, for the exchange-correlation potential, various pa-
basis for judiciously choosing thesg's was discussed in a rametrizations of the LDA and of the GGA are availabie®
previous worlk® For this example, an excitation energy of The pseudopotential and pseudoatomic wave functions
~2.0 eV was chosen to determine the cutoffs, yieldigy ~may be generated in the Hamann form or in the Troullier-
=4.7ag andr®=5.0ag . Note that for the Aud state there is Martins form as discussed in detail in Refs. 23 and 33, em-

no distinguishable difference in the exact wave function and/oYing the scheme of Fuchs and SChéﬁd?Of the repre-

the wave function withr gd:4.7aB_ sentation of t_he pseudopotentlals in their semilocal form, the
The “fireball” boundary condition yields two promising 0@l potential is calculated foroc=lmact1 and e,

features. First, the range of hopping-matrix elements be= €__, wherel,,is the momentum of the highest occupied

tween orbitals on different atoms is limited; therefore, veryorbital ande s its energy. With the choice dfoc=Imax

sparse matrices are created for large systems. This inherent| for the local part, unphysical “ghost” states are usually

sparseness allows one to more readily implement linearyyoided when the pseudopotential is transformed into the

scaling algorithms to obtain the band-structure energy. Seqyly separable form of Kleinman and Byland&rThe ab-

ond, the slight excitation of the atoms somewhat accounts fogence of ghost states is checked by examining the band-state

Fermi compression in solids, which apparently gives a betteépectrum using the analysis of Gonze Stumpf, and
representation of solid-state charge densffem the SN gcheffler®

method, only a minimakp® basis set was implemented,
which limited the flexibility of the method. The improved
method presented hefealled FREBALL) now allows a more
flexible choice of basis set where double-numeri{&\) or In the SN method, the exchange-correlation interactions
additional-polarization sets are permitted. Earlier workwere not computed exactly, but rather approximated based
shows that the addition of the DN set yields very good re-on the “nearly uniform-density approximation.” A better ap-
sults inab initio tight-binding methods that are similar to proach for calculating the exchange-correlati®C) inter-
FIREBALL.'12 actions was proposed by Horsfifdwhich uses a many-

In evaluating the total energy of the systgky. (1)], the  center expansion based on an expansion of the density, a site
input density is a sum of confined spherical atomic-likeat a time. This method provides advantages over the approxi-
densities, mations, which were utilized in the SN method. Primarily,

C. Exchange-correlation interactions
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this is a higher-order approximation than the nearly uniform- The HREBALL method has been generalized to deal with
density approximation and it can be used with gradientsystems that exhibit a significant transfer of charge between
corrected functionals. The XC potential matrix elements aratoms and require a self-consistent determination of the oc-
calculated by including up to three centers in the approximaeupation numbers;, i.e., nowni=ni°+ én; . Thus, the total
tion; however, the on-site terms use only up to a two-energy is afunctionof the occupation number&,{ pin(r)]
center approximation. The exchange-correlation double= Etor[ni](n#nio), and a self-consistent procedure on the oc-
counting correction is also calculated using a two-centegypation numbers; is introduced. A more detailed descrip-

appro_ximation. _ o tion of this self-consistent method usddeferred to as
This approach for calculating exchange-correlation interpoGS is found in Refs. 6 and 13.
actions as presentEd in EC(ﬁ)—(S) of Ref. 12 facilitates When Se|f-consistency is Considered, the exchange_

storing integrals in tables in the same manner as the electr@orrelation interactions must take into account the change in
static integrals, the two-center approximation for thethe charge distributions between atoms. The procedure for
exchange-correlation contribution to the crystal-field resultsevamating the Hamiltonian matrix elements and the double-
in this contribution always being overestimated. On occasiofounting term for the exchange-correlation interactions is
this may result in poor geometries or ghost states. In thigytlined in Ref. 12. The underlying idea is that because the
situation, a correction must be added to the two-centegxchange-correlation interactions vary with the change in the
approximation as explained in Ref. 12. occupation numbersin;, these interactions can be approxi-
This approach for determining the exchange-correlatiofmated by an expansion abod;=0. A linear expansion is
interactions is independent of the type of functional usedysed for the terms in the Hamiltonian and a quadratic ap-

Currently two types of exchange-correlation density funC'proximation is used for the double-counting term.
tionals are available within IREBALL-LDA and Becke ex-

change(Ref. 28 with Lee-Yang-Parr(LYP) correlation?’
Within the LDA, the exchange-correlation energy is designed E. Localized orbitals and basis sets
to exactly reproduce the energy and potential of the uniform The use of localized “fireball” orbitals is found to be
electron ga¥"** (dn/dr=0); however this approach under- computationally advantageous. Given any two atomic orbit-
estimates the exchange energy, because exchange increaggs andj beyond some cutoff radius §+r;), the matrix
with increased density variability. Conversely, LDA consis- elementsH ; andS;; become exactly zero. Therefore, there is
tently overestimates correlation energy. To improve upon th@nly a preprescribed interaction range over which the inte-
chemistry predicted by the LDA approach, functionals thatyrals must be evaluated. Within theREBALL approach inte-
depend upon the gradient of the density were developed. grals are precalculated on a numerical grid and the specific
For exchange interactions, the Becke-exchange functionglajyes needed are gleaned from the tabulated values via in-
(E®°MM9=E[n(r),Vn(r)]) has enjoyed popularif, par-  terpolation. Because these integral tables depend only on the
ticularly because it has only one empirical parameter that igom type, theirr, values, and the type of DFT exchange-
fit to the exchange energies of the noble gases. The presenggyrelation functional used, the integral tables need to be
of a single parameter was an improvement over earliegenerated only once, for a given number of atomic species,
multiparameter ~ functionaf¥. ~ Similarly, the LYP  rather than once or more per molecular dynamics run. The
gradient-corrected  correlation  functional EQ™™"  «jirect” approacH’ in which integrals are calculated as
=E[n(r),Vn(r)]) has also enjoyed populartf.it is a re-  needed is similar to the approach taken withiReBALL .
formulation of the correlation formulas of Colle and Thjs pregeneration process lends itself to parallelization via
Salvett?® in terms of the electron density and the local spreading of these integrals out over multiple processors
kinetic-energy density. The combination of Bech and LYPpased on integral typd&° This parallelization is particu-
(BLYP) has proven to provide reliable energetics and mo-arly important, since the number of integrals needed grows
lecular geometrie®’ As of this work, BLYP is the most fa- as ordemN® with the number of different elemenié
vored DFT exchange-correlation functional, largely as a re- The original SN method is limited to single-numerical
sult of its effectiveness in predicting molecular propertiespasis sets of the minimap? type. Development of new
and its presence in popular quantum-chemistry codes.  pasis sets and deciding what type of functions to use is cur-
rently an area of extensive research within the field of elec-
tronic structure. A common theme throughout this literature
The Harris-Foulkes approximation is shown to work quiteis that one often needs more than a minimal basis set. The
well for a variety of systems, especially those that arebasis-set limitations within the SN method made studying
strongly covalent.Tests on this functional have shown that it transition metals impossible given the lackdbrbitals and
yields total energies, which are remarkably similar to themade it difficult to study chemical systems that required the
LDA approximation but lie below them rather than above additional flexibility that polarizingd functions and extra
them as in a variational Kohn-Sham calculation. Severaind p shells might provide. TheIREBALL method now al-
studies of this functional exists in the literatdte*®and the  lows for d functions and as many orbitals as the user desires.
reader is directed to these references for details. Howevefhe addition ofd functions has been previously considered
due to the non-self-consistent nature of the Harris functionalin a Sankey-Niiklewski approach, but with a different proce-
its applications are limited to systems without a significantdure for their implementatiotf. There is nothing inherent to
difference in the electronegativity of their constituents. the method to formally disallow extensivieg,h,... shells,

D. Self-consistency implementation
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but the current implementation does not support them. This TABLE I. Lattice constania,, bulk modulusB,, and gap en-
flexibility in generating the basis set allows the SN methodergy Ega, computed for zinc-blende GaN in the Harris-Foulkes ap-
to properly describe many chemical systems with only aProach and with the self-consistent charge-transfer approach
single-numerical basis set. (DOGS, usingsp*- or sp*d®-basis sets for Ga andsp®-basis set

DN basis sets are currently generated by holding thdor N. The values _in parentheses summarize result_s obtainfed with
ground-state wave function fixed and exciting electron denfzoo/:) Sga”e{t or;sute tV\llo-center eTchexlnge-cirrelatllor} :n(;;‘;;( ele-
sity to a higher orthogonal state with the samevalue. ~ MEN'S. RESULS Irom plane-wave local-density calcuiatihe
Th{are are otgher approximations for generating additional DN-PA) (Ref. 57, Hartree-Fock calculatiori$iF) (Ref. 62, and from
basis sets as discussed in Refs. 11, 12, and 50. Investigatig?ﬁper"mntal resultgRefs. 596} are included.
of these other approaches withirREBALL is the subject of
future work. Polarizingd functions (unoccupied orbitals in

Basis Charge transfera, (A) B, (Mbars Egap (€V)

the ground-state atonare generated by exciting the electron Ga(sp®) No 4.39 1.54 3.86
density into ad shell with a well-chosem, value. It should Ga(sp®) Yes 4.39 1.99 2.99
be noted that thel shells used in IREBALL consist of five  Ga(spd®) No 4.33 2.58 3.09
spherical-harmonid functions as opposed to the six Carte- Ga(sp3d®) Yes 4.35 2.99 2.39
siand functions used with some Gaussian basis sets. PoIar—Ga(sps) Yes (4.52 (1.64) (2.59
ization provides a flexibility in the basis set that was not Ga(sp’d®) Yes (4.52 (2.18 (1.80
available in the functions of lower angular momentum, and p\\. pa 452 1.91 1.60
thus may improve the chemistry. Going beyond DN with HE 452 254
polarization (DNP) is generally not necessary, because theExperiment 452 1.90 3.45

DN basis set allows for a wide range of wave-function cur-
vatures, and triple-numerical basis sets would not provide the

same qualitative improvement over DN as DN did overang 4p orbitals of Ga are confined to a sphere with a radius
single numerical. of 5.40ag. For the Ga8 states,r.=3.5ag is used. Given
this choice of cutoffs, the energies of both the N and Ga
Ill. RESULTS states are~2 eV above the unperturbed levels of the free
atoms.
Table | summarizes the lattice constant, bulk modulus,
Group-lll nitrides attract much attention because of theirand gap energy calculated with tisg®- and sp®d®-basis
potential in many technological applications. Importantsets, using the Harris-Foulkes approa@t and using the
progress was achieved in the fabrication of electro-opticaself-consistent charge-transfer approd&f0GS discussed
devices, leading to the realization of blue-light-emittimgn in Sec. 11 D. Our results are compared with experimental data
junctions® and laser diode¥ The energy gap of GaN is 3.4 and previous theoretical work by othéfs® %?The lattice
eV, lying between 1.9 and 6.2 eV measured for InN andconstant is similar in all cases, while the bulk modulus is
AIN.>® Hence, GaN is the key compound for group-III ni- increased when charge transfer is taken into account. For
tride alloys and heterostructures. GaN usually crystallizes imoth basis sets, the calculation underestimates the measured
the wurtzite phase, which is the ground-state structure. Stdattice constant by 3—4%. The bulk modulus is largely in-
bilization of the zinc-blende phase was reported for thecreased above the experimental value, when the dSst&es
growth of thin films on the(001) surfaces of GaAs, cubic are included in the calculation. These deviations are partially
SiC, MgO, and S* In electronic-structure calculations per- related to the multicenter expansion of the exchange-
formed for GaN, it is essential to include explicitly semicore correlation matrix elements, with the atom two-center contri-
states in the computation This means that thedBelectrons  butions being always overestimatédThis can be easily
of Ga have to be treated as valence states in the pseudopchecked by rescaling all respective two-center matrix ele-
tential method in order to obtain correct bonding ments by a constant facto<O\ <1. The lattice constant in-
properties®®’ like the lattice parameter, bulk modulus, or creases continously with the degree of the reduction of the
relative energies of surface structures, defects and boundhratrix elements. Good agreement with measured data for the
aries. lattice constant is achieved by this, the lattice constant is
Here, the results obtained withREBALL for the zinc- increased to 4.5 A for both basis sets and self-consistent
blende phase of GaN are summarized. To study the effectsharge transfer. The bulk modulus is decreased to 2.18 and
introduced by including the semicore states of Ga, we comi.64 Mbars for thesp®d®- and sp*-basis sets, respectively.
pare the computed lattice parameter, bulk modulus, and ele¢or a rigorous treatment, the multicenter expansion should
tronic band structure determined with ap® basis for Ga be replaced by a direct evaluation of the exchange-
and N with the results obtained from an extendgafd®  correlation matrix elements in terms of numerical integration
basis for Ga. The pseudopotentials of Ga and N were coref many-center contributions. These contributions are not
structed in the Hamann scherffe.For the exchange- currently obtainable within the scope of interpolating two-
correlation functional, we employ the local-density approxi-and three-center integrals as done in the current method.
mation using the parametrization of Perdew and Zufger. However, implementing the proper correction to the
The “fireball” orbitals were constructed with a confinement exchange-correlation interactions, necessary in some cases,
radius of 3.9@g for the 2s and 2 states of N, while theg  will be addressed in future work.

A. GaN properties
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FIG. 2. Dispersion of zinc-blende-phase GaN computed with L T X K T
sp’-fireball orbitals for Ga and N. Left: self-consistent charge trans-
fer included. Right: Harris-Foulkes approach. FIG. 4. Dispersion of zinc-blende-phase GaN computed with

sp’d®-fireball orbitals for Ga, including self-consistent charge
transfer and a 20% reduction of the two-center atom contribution to

Figures 2, 3, and 4 illustrate the electronic band structur X . .
e exchange-correlation-potential matrix elements.

of GaN computed wittsp*- and sp*d®-“fireball” orbitals,

using the Harris-Foulkes approach and_self-consisftent cha}r%ev so that they finally lie in the energy region of the N 2
transfer. In all cases, the corresponding theoretical Iattm% nd in agreement with other density-functional calculations.
constant was used. The band structure correctly shows th?ﬁe exact location of the ® bands in GaN is found in ex-
zinc-blende-phase GaN has a direct band gap ar tpeint, a%eriments below the N € state€® This behavior is only

with a separation of the valence and conduction bands reproduced by calculations that include self-interaction

summarized in Table I. Charge transfer reduces the gap e%brrectionsﬁ,“ but not by the usually applied LDA and GGA

ergies with respect to those of the Harris-Foulkes approach: - . ;
gThe electrorﬁ)ic bands computed in the valence—ggnd rés_chemeé? °" However, many properties of GaN, like the

gion and also the first conduction band agree nicely with th 225253&?;;‘9r(’jgftglétg]gggllf)so'u?}%;?::gvzzniggztglSurr]'ot
results of previous plane-wave calculatidt® (noting that : ’ y

LDA typically gives band-gap values that are approximatelyggeg;%?t/otr:ﬁedﬁcgrebp;]n dcsy In the relative location of the Ga

50% of experiment Because of the small basis used in our
approach, however, differences occur in the higher conduc-
tion bands. Consistent with the trends observed for the lattice B. Cu band structure
constant, the agreement with previous computations is |, this section we use the band structure of Cu as an
largely improved by reducing the atom two-center exchangeayample to show the performance oREBALL for transition
correlation matrix elements by 20%. Figure 4 shows that thgnetals. Figure 5 shows the Cu band structure along several
gap energy is 1.8 eV in this case, which compares very welhigh.symmetry directions, as calculated using two different
with the values from other pseudopotential methods as sunjasis setsfi) (dotted lines a minimalsd® basis set of “fire-
marized in Ref. 57.

Effects of the transfer of electronic charge from the Ga Copper
atoms to the N atoms in GaN are clearly illustrated in Figs. 3 ,

and 4. The Ga 8 bands are shifted downwards by about 3.5 27 1
) GaN & _Poes GaN é N_Harris
120 »
80 \; Nx P g
S 40N o~ /\ IV <
> oof - \
o 7
z ., 7 AZ BV =
Z 80 T |
B b A~
-12.0 — -12
(0,0,0) X w L (0,0,0)
16.0 f—__| -
L T X K r L T X K T FIG. 5. Copper band structure obtained for two different basis

sets:(i) sp°d® (solid lineg and (ii) sd® (dotted line$. The dashed

FIG. 3. Dispersion of zinc-blende-phase GaN computed withline represents the Fermi energy for thg*d® calculation. In this
sp’d®-fireball orbitals for Ga. Left: self-consistent charge-transferfigure, the Fermi energy for thed® calculation(not shown lies at
included. Right: Harris-Foulkes approach. 1.36 eV.
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Hoo tray hydrogen-bonded systems is inherently due to the lack
/ < Hay of GGA exchange-correlation functionals within the method.
01/-1‘5”11 ------------------------- ) ¢ Availability of the BLYP exchange-correlation functional in
e the improved method allows performing simulations where
hydrogen bonding is considered. As a model test case for
Hyo demonstrating the performance oREBALL to such systems,
results of the HO dimer(see Fig. 6 are presented in Table
FIG. 6. H,O dimer. II. For the results presented here, we use a double-numerical

ball” orbitals with a cutoff radius ofr ;=4.5ag: (i) (solid ~ Pasis set with the following cutoffs: H,;=4.1 and O,r.
lines an sp®d® basis set obtained from the previous One=3.8,4._1. Thes_e cutoffs are slightly Ionge_r than what would
addingp orbitals with a cutoff radius of .= 4.5¢5 . Both the ~ Pbe obtained using the cutoffs suggested in Sec. Il A. These
atomic and solid calculations have been performed using th@nger cutoffs are required for properly obtaining the
LDA for the exchange-correlation interactions. In a similar hydrogen-bonding characteristics, which is a longer-range
approach as in the GaN results, we have corrected the twdnteraction compared with covalent bonds found in crystals.
center exchange-correlation matrix elements. $te basis The structural results are quite comparable with the re-
orbitals are calculated b){) solving tge the atomic problemsyits of others, but the binding energy is high. Results from a
with occupation numberaoszl andny=10 instead of the  sjmilar DFT local-orbital methodsIEsTA) demonstrate that
atomic valuemng=2 andng=9, because the self-consistent jncjuding an additional polarization basis set decreases the
occupations numbers in the solid are going to be closer to thSinding energy as compared with the strictly double-

first set of values. - : I ;
. . numerical basis set. Investigation of different and more ex-
In order to facilitate the comparison between the two cal- 9

culations, thesd® band structure has been shifted upwards Sotenswe basis sets will be the topic of future work.
that the lowestd bands coincide at th&€ point with thed
bands of thesp®d® band structure. The overall agreement of
these band structures with more sophisticated calculations
(which can be found in Ref. 65s quite good. For thed® . .
band structure, the bands are quite well described, while Additionally, HREBALL was used to study a single gas-
thespband is only roughly represented due to the absence dthasea-HMX molecule as a benchmark test case of organic
thep orbitals in the basis set. The additionmérbitals in the ~ molecules. HMX is important in many industrial and military
basis set has a minor effect on ttidands, but, as expected, applications because of its high detonation velocity. In the
improves significantly the description of the parabadig  gas phase two nearly energetically equivalent polymorphs of
band. For Cu, we calculate the lattice parameter toabe HMX exist—a boat conformer and a chair conformer of the
=3.57 A and the bulk modulus to &= 1.61 Mbars, com- molecule as shown in Fig. 7. A minimap® basis set and the
pared with the experimental results e=3.6A and B  BLYP exchange-correlation functional predict that the en-
=1.34 Mbars, respectively. ergy difference between the two conformers is 190 kcal/mol.
_ This significant overestimation affirms that the minimal basis
C. HZ0O dimer set is insufficient for correctly predicting the energetics of
Hydrogen bonding has significant relevance in biologicalmany molecules, even though the “fireball” radii were
systems. The inability of the SN method to accurately porpicked to properly preserve trends in ionization energies.

D. HMX structure and energetics

TABLE Il. Results of bondlengths, bondangles, and binding energy for $edimer. A comparison with
the results from other methods are includesiesTa (Perdew, Burke, and Ernzerhof exchange-correlation
with DN and DNP(Ref. 11, deMon with Perdew and Wang exchange/Perdew correltiG/hO/PW) and
Becke exchange/Perdew correlatittCAO/BP) (Ref. 66, second-order Moller-Plesset calculatidivdP2)
(Ref. 67, and plane waves PL{Ref. 68. A summary of the experimental results found in Ref. 66 are also
included. The parameters are defined according to Fig. 6; lengths are in A angles are in degrees and the
binding energies are in kcal/mol.

Thiswork DN DNP LCAO/BP LCAO/PW MP2  PLW Expt.
r(0,-0,) 298 2752 2902  2.886 2.887 20911 2708 2.98+0.01
r(Oy-H) 1.01 0996 0981  0.979 0.981 0957  0.961
£ HOH 1046  111.2 1062  106.2 104.4 106.2
r(Op-Hay) 1.03  1.015 0988  0.990 0.990 0964  1.002
r(0y-Hy,) 1.02 0997 0980 0977 0.979 0.981
£ HOH 100.8 1108 1047  106.2 106.0 107.3

0 —44  —26 —-47  -70 151  —45 —484  —6*20
é 58.4 59.4 5% 10
Binding En.  8.88  11.76 7.36 451 5.993 5.44 9080 5.44+0.7
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ments such as polarization basis functions, exact exchange
will significantly increase the memory and CPU require-
ments during the computation, thus the need for a linear-
scaling algorithm is even greater for larger systems as these
demands are increased. Work on this extension is currently
underway, along with a systematic study of DN and DNP
basis-set design.

Boat Form Chair Form

FIG. 7. The boat and chair gas-phase conformers of HMX. IV. CONCLUDING REMARKS

Because of the need to maintain proper energetic trends in Improvements to the Sankey-Niklewskb initio tight-

the orbitals, different cutoffs are generally neededsfandp  binding method have been presented. The main feature of
shells. This is an improvement over the original SN methodhis new method, calledIREBALL, is that the flexibility of

that forced all shells on a given atom to have the same cutofthe basis set is incorporated through implementation of
Specifically, for thes and p shells, respectively, we choose double-numerical basis set capabilities as well as implemen-
H(r,=3.8), C(.=4.1,44), N(.=3.7,41), and Of tation ofd orbitals. Other major improvements to the method
=3.5,3.8) for the HMX results presented here. DN basis setfclude the following. First, the pseudopotential is now of
were generated by calculating the lowest-lying excitedthe generalized norm-conserving separable form of the Ha-
atomic states, subject to the saméoundary conditions and - mann type or the Troullier-Martins type, thus simplifying the
orthonormality constraints. Improving the basis set to DNrepresentation of the nonlocal pseudopotential Hamiltonian
(ss*p°p*?) reduces the energy difference between the chaipatrix elements into a separable foff?3334Second, the
and boat conformers to 6.8 kcal/mol. This energy differencgepresentation of the exchange-correlation interactions have

givles tﬁe Eame thefrmodyr)amic trend al? ”;f_" expedrirgnental "Been simplified and more accurately portrayed according to
sults (the boat conformer is energetically highand dem- o 15 afield-multicenter-expansion approximatiamp to

onstrates the need for an adequate basi; set to get the U ree-center terms? Third, the self-consistent method of
titative nature of the difference correct. Itis important to notey, .\ v o+ 2113 has peen irﬁplemented to allow charge trans-

that both basis sets predict the correct energetic trend. fer between atomic constituents, which is important when
For comparison, results found using several different lev- ' P

els of theory are presented. Using singlbasis set BLYP/ calculating systems with si_gnificant differenc_es i_n the elec-
STO-3G with Gussian 98 (Ref. 69 (closest equivalence to tronegatn_nt)_/ of those co_nstltuents. The comblngtlon_ of these
our single-numerical basis $etredicts the energy difference three main implementations as well as other minor improve-
to be 1.4 kcal/mol in the wrong direction. BLYP/6-31G ments to the method have produced a method that has wider
(closest equivalence to our double-numerical basismet ~ applications to the type of systems that can be calculated.
dicted that the boat form is 1.4 kcal/mol higher in energy The effectiveness and versatility ofREBALL has been
than the chair form. Increasing the basis set sizedemonstrated by applying the method to several systems—
to 6-311G™* reduces this energy difference to 0.81 kcal/ Cu, GaN, the HO dimer system, and a gas-phase HMX mol-
mol. Mixing in exact exchange with B3LYP/6-31f6  ecule. In the cases of Cu and GaN the band structures are
increased this energy difference to 2.33 kcal/mol.presented. In all cases, addition @forbitals, a feature not
Chakraborty et al. reported results of 3.5 kcal/mol for contained in the Sankey-Niklewski method, yields qualita-
B3LYP/6-311G™ //IMP2/6-311G* and 2.5 kcal/mol for tively better features of the band structure and quantitatively
B3LYP/6-31G."° Clearly none of these results have con- better band-gap energies for GaN. The Cu band structure was
verged to the chemically “exact” answer. Based upon theseot obtainable with the Sankey-Niklewski method because of
wide range of results, our BLYP/DN results are reasonablethe lack ofd orbitals, and with this new flexibility, we obtain
Improving the level of basis set and theory should im-an accurate representation of the Cu band structure. Finally,

prove upon our BLYP/DN results, although it is worth noting to demonstrate the flexibility of the method, results for the
that the energy differences do not always converge unit,0 dimer and HMX were presented.

formly, even if the separate energies are converging uni-

formly. Convergence with respect to basis-set size is known

to be erratic for correlated mgthods such as MP2nprove- ACKNOWLEDGMENTS
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