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Abstract .  The dependence orderings, "more associated" and "more regres- 

sion dependent", due to Schriever (1986, Order Dependence, Centre for Math- 

ematics and Computer Sciences, Amsterdam; 1987, Ann. Statist., 15, 1208- 

1214) and Yanagimoto and Okamoto (1969, Ann. Inst. Statist. Math., 21,489- 

505) respectively, are studied in detail for continuous bivariate distributions. 

Equivalent forms of the orderings under some conditions are given so that the 

orderings are more easily checkable for some bivariate distributions. For sev- 

eral parametric bivariate families, the dependence or@rings are shown to be 

equivalent to an ordering of the parameter. A study of functionals that are 

increasing with respect to the "more associated ordering" leads to inequalities, 

measures of dependence as well as a way of checking that this ordering does 

not hold for two distributions. 

Key words and phrases: Dependence ordering, regression dependence, concor- 

dance, copula. 

1. Introduction 

There have been several recent papers on bivariate and multivariate depen- 

dence or@rings, for example, Schriever (1986, 1987), Kimeldorf and Sampson 

(1987), Metry and Sampson (1988), Block et al. (1990), Joe (1990b). There is also 

recent work on families of multivariate distributions, for example, Marshall and 

Olkin (1988). One reason for this work on multivariate dependence is to obtain 

properties of multivariate distributions; these properties are useful for deciding 

on appropriate models for multivariate data. In this paper, we link the work on 

the "more associated" and "more regression dependent" orderings with families 

of continuous bivariate distributions. The importance of research in this area is 

emphasized in Kimeldorf and Sampson (1987). Our results and examples add 

substantially to the understanding of dependence orderings. 

* This research has been supported by NSERC Canada grants and a Scientific Grant of the 

University of Science and Technology of China. 
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The "more associated" partial ordering is due to Schriever (1986, 1987) and 

is studied in more detail in Block et al. (1990) for bivariate empirical distribu- 

tions. The "more regression dependent" partial orderings are due to Yanagimoto 

and Okamoto (1969). The definitions and alternative forms of these orderings 

are given in Section 2 as well as new results that make the orderings more easily 

checkable for some bivariate distributions. In Section 3, it is shown that these 

orderings are equivalent to an ordering on the parameter(s) for several parametric 

bivariate families. With orderings, it is natural to consider functionals that are 

increasing with respect to it (cf. Kimeldorf and Sampson (1989) and the refer- 

ences cited above). Some functionals are derived in Section 4 using the orderings 

for empirical distributions in Block et al. (1990). The link between the (discrete) 

empirical distributions and continuous distributions adds to the understanding of 

the orderings, and the functionals provide a way of checking whether two given 

bivariate distributions are ordered. Sections 3 and 4 can be considered as separate 

sequels to Section 2, although the functionals in Section 4 lead to inequalities for 

the bivariate families in Section 3. In both these sections, we have made more 

extensive studies than previous authors. Furthermore, new statistical measures of 

dependence are derived in Section 4 along with the functionals. The correspond- 

ing tests of independence versus positive dependence are then more powerful for 

bivariate distributions that are "more associated" or "more regression dependent". 

2. Definitions of orderings and new results 

We will mainly be using H for a continuous bivariate cumulative distribution 

function (cdf), and F and G for univariate margins, with subscripts or super- 

scripts (sometimes a prime symbol) as needed to distinguish distributions. Uni- 

variate quantile functions will have a superscript - 1  on a univariate cdfi We use 

the term "increasing" in place or "non-decreasing" and "decreasing" in place or 

"non-increasing'. For random variables or vectors, we use the symbol ,,~ to mean 

"distributed as" and the symbol d for "equal in distribution" or "stochastically 

equal". 

To study the dependence structure of continuous bivariate distributions, the 

effect of the univariate margins can be separated out because of the following well- 

known result (see, for example, Sklar (1959)). If g(z ,  y) is a continuous cdf with 

univariate margins F(x) and G(y), then C(u, v) = H(F-I(u) ,  G-l(v)) is a copula 

or a bivariate distribution with uniform (0, 1) margins and C(Fo(x), Go(y)) is a 

bivariate distribution with univariate margins F0, Go where F0, Go are arbitrary 

continuous univariate distribution functions. That  is, the bivariate structure is 

in C, "independent" of the univariate margins. Therefore, for dependence com- 

parisons of cdf's H(x, y) and H'(x, y), we could assume without loss of generality 

that F(x) = F'(x) and G(y) = G'(y), where F,  G and F' ,  G' are respectively the 

univariate margins of H and H ~. 

We now state definitions and prove results. Definition 2.1 is an adaptation of 

the definition of Schriever (1987) to continuous H, H p. 

DEFINITION 2.1. Suppose (X, Y) and (X', Y') are pairs of continuous ran- 

dom variables such that (X, Y) ,~ H, (X', Y') ~ H', X d X',  Y d y,.  Then 



BIVARIATE DEPENDENCE ORDERINGS 503 

(X', Y') is said to be more associated than (X, Y), denoted by (X, Y) _<a (X', Y') 

or H -<a H', if there exist functions ¢, ¢ such that  for xl, x2 in the support of X 

and yl, y2 in the support of Y, 

(2.1) Xl _< x2, Yl _< Y2 ~ ¢(x l ,y l )  < ¢(x2,Y2), 

(2.2) ¢(x l ,y l )  < >  (x2,y2) 

(2.3) (X', Y') d (¢(X, Y), ¢(X,  Y)). 

¢(xl ,  Yl) _< ~(x2, Y2); 

x~ < x2, yl > Y2; 

DEFINITION 2.2. (a) If in Definition 2.1 ¢(x, y) ---- x, then (X', Y') is said to 

be more regression-1 dependent than (X, Y), denoted by (X, Y) ~<~1 (X', Y') or 

H _<rl H'. (b) If in Definition 2.1 ¢(x ,y)  = y, then (X' ,Y ' )  is said to be more 

regression-2 dependent than (X, Y), denoted by (X, Y) _<r~ (X', Y') or H _<r2 H'. 

Note that (2.1) implies that ¢ and ¢ are increasing functions (with respect to 

all arguments). It is stated in Schriever (1986, 1987) and not difficult to check that 

_<a, _<rl, _<r2 are partial orderings. The orderings in Definition 2.2, stated in a 

different form, are called monotone regression dependence orderings in Yanagimoto 

and Okamoto (1969). Schriever (1986, 1987) mentions the equivalence without 

proofs or conditions. With some continuity assumptions, the above definitions can 

be put in alternative forms that are easier to use; these are the main results of this 

section. 

Let G(y I x) be the conditional cdf of Y given X = x and let G-l (u  I x) -- 

inf{y : G(y I x) > u}, 0 < u < 1, be the conditional quantile function; this quantile 

function is the right continuous version and not the usual left continuous version. 

Similarly define F(x I Y) as the conditional cdf of X given Y = y and let its right 

continuous inverse be F - l ( u  I Y). Before stating the definition of Yanagimoto 

and Okamoto (1969), we give an alternative form of Definition 2.2(a). There is a 

correspondence between results for .<rl and _<~2 by interchanging pairs of random 

variables, so we will not state equivalent results for _<~2 unless necessary. 

LEMMA 2.1. Suppose X -- X' ,  X ~ F, (X,Y) ~ H, (X ' ,Y ' )  ~ H', and 

that G(y I x), G'(y I x) are continuous in y for all x. Then Y'  d ¢(X,  Y) where 

= c ' - l ( C ( y  l x) I 

PROOF. Given X -- x, Y ~ G(. I x). Since G(y I x) is continuous in y, 

G(Y I x) is uniform conditional on X = x. Also if U is a uniform random variable 

on (0, 1), then conditional on X = x, G'-I(U I x) has distribution G'(y I x) by the 

continuity of this function in y. Therefore G'-I (G(Y IX)  IX) d y,.  [] 

Remark. With a little bit more effort, the conclusion of Lemma 2.1 can be 

shown to be still true i fG(y I x) and G'(y I x) are not continuous in y for all y (when 

x is fixed), provided G'-l(u Ix) is constant over an interval (G(y o Ix), G(yo Ix)) 
for any discontinuity point of Y0 of G(. I x). 

THEOREM 2.1. With the suppositions of Lamina 2.1, if H ~.<rl H', then 

¢(x ,y)  = G'-l(G(y I x) I x) can be taken to be the unique function satisfying 
the condition in Definition 2.2 and hence it is increasing in x. 
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PROOF. A function ~ such that  Yr = ¢(X,  Y) must be increasing by Defini- 

tion 2.2. ¢(x, y) must be strictly increasing for y in the support  of G(.  ] x) for all 

x, because if for a given x, ¢(x, .  ) has a constant region with positive probability, 

then Y' = ¢(x,  Y) has a mass at some point or G'( .  I x) is not continuous. It 

follows that  if G(.  I x) is constant on an interval (Yl,Y2) then G'( .  I x) is con- 

stant on (~(x, yl),~(x, y2)), so that,  given Z = x, ¢ (x ,Y)  d y ,  ~ G'( .  I x) 

and Pr(Y _< y I X = x) = P ( ¢ ( x , Y )  _< ~(x,y)  ] X = x). Therefore, G(y I 
x) = G'(¢(x,y) I x), which in turn implies ¢(x ,y)  _< G'-I(G(y I x) ] x), with 

equality whenever G'( .  I x) is strictly increasing at ~(x, y). Hence, given X -- x, 

¢ (x ,Y)  = G' - I (G(Y lx )  lx) if G'( .  Ix) is strictly increasing at ¢(x,Y).  The set 

of points where G'(. I x) is strictly increasing has probability one with respect to 

G'( .  ] x). So ~(x, Y) = G ' - I ( G ( Y l x )  ] x) with probability one. The conclusion 

follows. [] 

DEFINITION 2.3. (Yanagimoto and Okamoto (1969)) Suppose H, H' are 

continuous bivariate distributions with the same pair of univariate margins. H '  

is more monotone regression dependent than H (written H _<mr H ~) if for any 

xl < x2 and u, v in (0, 1), 

(2.4) a-~(u l x2) ~ c - l ( v  l xl) ~ G'-l(u l x2) ~ G'-l(v l xl). 

PROPOSITION 2.1. Assume G(y I x) and G'(y I x) are continuous in y for 
all x. Then H _<mr H' if and only if 

(2.5) G(y l xl) > G'(y' l xl) ~ G(y l x2) >_ G'(y' l x2) 

for any xl < x2 and any y, yr with y in the support of G(. I Xl) and y~ in the 
support of G(. Ix2). 

PROOF. Yanagimoto and Okamoto (1969) have this result with the added 

condition that  G(y I x) and G'(y I x) are strictly increasing in y for all x. A 

careful check of their proof shows that  this is not needed. [] 

THEOREM 2.2. Assume G(y [ x) and G'(y ] x) are continuous in y and x. 
Then H _<mr H' if and only if H _<~1 H p. 

PROOF. Let (X, Y) ~ H and (X', Y') ,,~ H'.  H _<rl H '  implies (X', Y') d 

(X, ~(X, Y)) with ¢(x ,y)  increasing in x and y. Suppose the left inequality of 

(2.5) holds for some xl, y, y'. Then Pr(Y < y ] X -- xl) _> Pr(~(X,  Y) _< y' I X = 

Xl) = Pr(¢(Xl ,Y)  <_ y' I X  = Zl) _> Pr(¢(x2,Y)  <_ y'IX = Xl) for all x2 _> Xl. 

Taking a limit as xl increases to x2 leads to the right inequality of (2.5). Therefore 
H _<mr H I. 

For the converse, assume that  (2.5) holds for Xl < x2. Let ~b(x, y) = G'-I(G(y I 
x) ] x). By Lemma 2.1 and Theorem 2.1, it suffices to show that  ~(x, y) is increas- 

ing in x. Fix xl < x2 and fix y. Let y' be the largest wlue  satisfying G(y ] xl) = 
G'(y' l xl). Then (2.5) implies that  ¢(x2, y) = G'-l(G(y l x2) l x2) >_ G'-I(G'(y' I 

x2) I x2) >_ y' = a ' - l ( a ' ( y ' l x l )  D z l )  = c ' - l ( c ( y  I I x l )  -- ¢ ( z l , y ) .  [] 
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Next we go on to results for the -~a ordering. Assuming ¢ and ¢ in Definition 

2.1 to be continuous, we obtain an equivalent definition. 

THEOREM 2.3. Let ¢(x,y) and ¢(x ,y)  be continuous functions such that 

(X, Y) ~ H, (X', Y') ~ g '  and X '  d ¢(X, Y), Y' d ¢(X,  Y). Then H _~a H' if 

and only if ¢ and ¢ are increasing in both arguments and 

(2.6) ~b1¢2 - ¢2¢1 >_ 0 Vx, y 

in the support of H, where ¢l (x ,y) ,  ¢2(x,y) are respectively the right partial 

derivatives with respect to the first and second arguments at (x,y), and ¢1, ¢2 

are similarly defined. 

PROOF. It suffices to show that  (2.2) and (2.6) are equivalent assuming 

(2.1). Note that  if x' = ¢(x,y) and y' = ¢(x ,y) ,  then the lines y = Yo and 

x = xo get transformed to the increasing curves C1 = (¢(x, y0),O(x, y0)) and 

C2 = (¢(Xo, y), ¢(xo, y)) respectively. Condition (2.6) means that  the orientation 

of the curves does not change compared with the original lines, that  is, the right- 

hand slope of C2 at (x0, Y0), which is ¢2(Xo, yo)/O2(Xo, Y0), is greater than or equal 

to the right-hand slope of C1 at (x0, yo), which is ¢1(x0, yo)/¢l(XO, Yo). This and 

the remainder of the proof can be easier seen via a few diagrams, which the reader 

is invited to supply. 

Suppose (2.6) holds. For increasing functions, ¢(x, y) and ¢(x,  y), 

(2.7) ¢ (x l ,y l )  < ¢(x2,y2) and ¢(xl ,y l )  > ¢(x2,y2) 

imply either 

(2.8) x l < x 2  and Yl>Y2 or x l > x 2  and Yl<Y2. 

However assuming (2.6), (2.7) is never consistent with (2.8), so that  (2.2) holds. 

Now suppose that  (2.6) does not hold, so that  for some (xo,Yo), ¢1(Xo, Yo)" 

¢2(xo, yo) - ¢2(Xo, yo)¢1 (xo, Yo) < 0. This means that  the right-hand slope of the 

curve C2 at (Xo, Yo) is less than the right-hand slope of the curve C1 at (xo, Yo)- 

Then there exist 6, c > 0 such that  ¢(Xo + 6, Yo) < ¢(Xo, Yo + e) and ¢(Xo + 6, Yo) > 

¢(xo, y0 + e). Hence (2.2) does not hold. [] 

Remark. If (X', Y') is obtained from (X, Y) via a linear transform, then 

¢, ¢ increasing and condition (2.6) mean that  the matrix of the transform is 

nonnegative and has a nonnegative determinant.  

If in the above theorem, we assume the stronger condition ¢1¢2 - ¢2¢1 > 0, 

which implies ¢1 > 0 and ¢2 > 0, then the transform from (x, y) to (x', y') -- 

(¢(x, y), ¢(x, y)) is one-to-one and the inverse transform has the Jacobian matrix 

-¢2 
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That  is, if the inverse transform is (x, y) = (~}(x', y'), {(x', y')), then ~}1~2-~}2~1 > 0, 

~/2 _<0, ~1 < 0 .  

This leads to the following more symmetric definition of a "more associated" 

ordering, in which there are more conditions on 0, ¢ than in Definition 2.1. With- 

out the conditions, results would contain too much technical details or not be 

true. 

DEFINITION 2.4. Let (X, Y) ~ H, (X ' ,Y ' )  ~ H' ,  where H, H '  are continu- 

ous bivariate distributions and X d X',  Y d y , .  Let S, S' be connected subsets 

of T42 that  include the supports of H, H '  respectively. Then, H _<A H p if 

(a) there exist continuous increasing functions ¢(x, y), ¢(x,  y), from S to S', 

such that  (X', Y') d (¢(X, Y), ¢(X,  Y)) and (i) ¢1¢2 - ¢2~;1 > 0 or (ii) ¢1 > 0, 

~b2 = 0, ¢2 = 0, ¢1 >_0, or 

(b) there exist continuous functions 7}(x', y'), ~(x', y'), from S' to S, such 

that  ( X , Y )  d (~ (X ' ,Y ' ) ,~ (X ' ,  Y')),  ~}(x',y') is increasing in x' for fixed y' and 

decreasing in y' for fixed x', ~(x', y') is decreasing in x' for fixed y' and increasing 

in y' for fixed x', and (i) ~/1~2 - 772~1 > 0 or (ii) ~h > 0, ~2 = 0, r/~ = O, ~l <_ O. 

DEFINITION 2.5. With the same assumptions as in Definition 2.4, H _<m H ~ 

if ¢(x, y) = x or ~/(x, y) = x and H _<R2 H'  if ¢(x,  y) = y or ~(x, y) = y. 

The conditions (ii) of parts (a) and (b) of Definition 2.4 are to take care of 

the Fr~chet upper and lower bounds (H+(x, y) = min[F(x),  G(y)] and H - ( x ,  y) -- 

max[F(x) + G(y) - 1,0] respectively). Note that  for the special case x' = x for the 

_<m ordering, if the conditions of Theorem 2.1 hold, then ~(x, y') = G-I (G ' (y  ' I 

x) Ix), and ~ is increasing in y' and decreasing in x. 

Kimeldorf and Sampson (1987) define a positive dependence ordering (PDO) 

as one satisfying 10 properties (P0) to (P9). The extended "more associated" 

ordering _<d satisfies 9 out of 10 properties of a PDO, whereas -<~ satisfies fewer 

of the 10 properties. Without  proof, we state the following results. 

PROPOSITION 2.2. The ordering _<A satisfies properties (P0) to (Pb), (P7) 

and (PS) of a PDO. (P6) is satisfied if the class of functions a is restricted to 

those that are continuous and strictly increasing. 

PROPOSITION 2.3. The orderings _<m and _<R2 both satisfy properties (P0) 

to (Pb), and (P7) of a PDO. (P6) is satisfied if the class of functions is restricted 

to those that are continuous and strictly increasing. (PS) is not satisfied but 

( X , Y )  _<m (X ' ,Y ' )  if and only if (Y ,X)  _<R2 (Y ' ,X ' ) .  In addition, (P9) is 

almost satisfied for _<R1 (or _<.a2): if Hn, H~, H, H' are all continuously differen- 

tiable and strictly increasing, Hn _<R1 H~, and Hn --* H, H~ --* H' in distribution 

as n --+ oc, then H _<rl H t. 

The property (P1) is the concordance ordering of Yanagimoto and Okamoto 

(1969) and Tchen (1980). We use the notation H <c H'  if H(x,  oc) = H'(x,  cc), 
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H(cc,  y) = H'(cx~, y) and (P1) is satisfied, that  is, H(x, y) <_ H'(x, y) for all x, y. 

All of the orderings in this section imply the concordance ordering. 

In Block et al. (1990), one result for bivariate empirical distributions is that  

the _~A ordering can be handled through a "bridge" distribution by the _~RI and 

_<n~ orderings. This is extended to bivariate continuous distributions below and 

it provides a better understanding of the .~A ordering. 

THEOREM 2.4. (a) If H _~A H' then there exists H* such that H _<R2 H* 

and H* _~m H ~ and there exists H. such that H _<m H. and H. .<R2 H'. 

(b) Suppose H _~a H' with ¢ and ¢ in Definition 2.1 being continuous. If 

¢(. ,  y) is strictly increasing for all y or if ¢1 (x, y) = 0 implies ¢1 (x, y) = O, 

then there exists H* such that H _~2 H* and H* _~rl H ~. If ¢(x, .  ) is strictly 

increasing for all x or if ¢2(x, y) = 0 implies 02(x, y) = 0, then there exists H. 

such that H _~rl H. and H. _<~2 H ~. 

PROOF. ( a )  We will prove the first conclusion as the second is similar. Sup- 

pose (X, Y) ~ H, (X', Y') ~ H'  and H _~d H'.  First assume that  H is not the 

Fr~chet lower bound and that  H ~ is not the Fr~chet upper bound. Then there ex- 

ist continuous increasing functions ¢, ¢ such that  (X', Y') d (¢(X, Y), ¢(X,  Y)) 

and the mapping is one-to-one and has a positive Jacobian. Let (X*,Y*) = 

(¢(X, Y),Y) and denote its cdf by H*. Then H _~R2 H*. Let X(u, y) = inf{t : 

¢(t, y) > u}; that  is, X( ", Y) is the functional inverse of the function ¢(. ,  y) with 

y fixed; since ¢(. ,  y) is continuous and strictly increasing, X( ", Y) has these same 

properties and x = X(O(x, y), y). Therefore, ¢(X,  Y) d ¢(X(¢(X, y ) ,  y ) ,  y ) .  Let 

¢*(s, t) = ¢(X(s, t), t). Then 

(x', Y') £ (¢(x, Y), ¢(x, Y)) £ (x*, ¢(x(x*, Y), Y)) 

£ (x*,¢*(x*, Y)) £ (x*,¢*(x*,Y*)). 

Hence H* ..~R1 H'  if ¢*(s , t )  is increasing in s and t. Since X(s,t) is increasing 

in s, so is ¢*(s,t). The right partial derivative of ¢*(s,t) with respect to t is 

¢~ = ¢1X2 + ¢2 = ¢1( -¢2 /¢1)  + ¢2 > 0. The identity X2 = -¢~/¢1  follows from 

the identities ¢(X(u, y), y) = u and X(¢(x, y), y) = x. 

If H ~ is the Fr~chet upper bound or H is the Fr~chet lower bound, then 

H _~m H'  and H _<R2 H',  by Proposition 2.3. 

(b) Again because of symmetry we will prove just the first part. The above 

proof is almost valid with the following additional technical details, y d 

¢(X(¢(X, Y), Y), Y) holds as before with ~((., y) being the right continuous inverse 

of 4)( ', y). X has a right derivative everywhere, ¢(X(u, y), y) = u is still valid and 

X(¢(x,y),y) = x is satisfied unless ¢ l (x ,y)  =- 0. Now, ¢~ = ¢1( -02 /¢1)  -~-¢2 --- 0 

if (~1 :> 0 and ¢5 =- ¢1X2 Jr- ¢2 = ¢2 ~ 0 if (~1 ~- 0. Therefore H* _<rl H' .  [] 
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3. Bivariate parametric families and examples 

One objective of this section is to show that some frequently-mentioned para- 

metric bivariate families are ordered by the _<m (or _<R2 or _<A) ordering and 

hence the _<c ordering. At the same time, the use of the results in Section 2 is 

illustrated. A second objective is to have examples and counterexamples to show 

that certain results in Section 2 cannot be strengthened or that some conditions 

cannot be relaxed. 

The multivariate normal distribution is widely used, probably more for con- 

venience than for physical reasons. The families here that are _<R1 ordered enjoy 

dependence properties similar to the bivariate normal family, and because of this, 

could be competing models to the bivariate normal family for bivariate data, such 

as lifetime or reliability data. 

Example 3.1. (Clayton (1978), Cook and Johnson (1981) and Oakes (1982)) 

This family has had several applications. We write it in the form 

(a.1) H(x ,  y; O) = [F(x) - °  + G(y ) - °  _ 1]-1/0, 0 ~ O. 

The case 0 = 0 corresponds to independence and the other limit 0 = cc corresponds 

to the Frdchet upper bound. If 0 < 01 < 02 < oc, then 

¢(x ,y ;01 ,02)  = G - I ( G ( y  [ X;01) I X;02) 

= G - I ( { [ { ( F ( x )  -01 + G(y) -0'  _ 1)-1-1/01 

. F(x)-l-Ol}-o2/(o2+1) _ 1]F(x) -°~ + 1}-1 /°2) .  

A sketch of the proof that ~b(x,y;01,02) is increasing in x is, as follows: let 

/~ ~--- 02/01, O~ • 02(01 -]- 1)/[01(02 -~- 1)], W = G(y) -°1 - 1, z = F (x ) - ° I ;  then 

r(z)  = [(1 + w / z )  ~ - 1]z ~ is increasing in z for fixed w, since d r ( z ) / d z  >_ O. 

By Theorem 2.1, H(-; 0) is increasing with respect to _~RI as 0 increases. Since 

H ( F - I ( u ) , G - I ( v ) ; O )  = H ( G - I ( v ) , F - I ( u ) ; O ) ,  the last statement is also valid 

with ~R1 replaced by _<R2. 

Example 3.2. (Prank (1979), Genest (1987)) We write Frank's family in a 

different parametrization than previous authors: 

1 I (1--e-OF(x))(1--e-OG(y))]  
(3.2) H ( x , y ; O ) = - - o l o g  1 -  -(f----~-_~ , - o c  < 0 < oo. 

The case 0 = 0 corresponds to independence and the limits 0 = - co ,  oo correspond 

to the Frdchet lower and upper bounds respectively. If - o c  < 01 < 02 < c~, 

01,02 ~ 1, then 

~)(x,y;01,02) =G-I(G(yIx;01) Ix;02) 

= G-1 ( _ o l o g  {1 - 1-e-°~ })  
2 (U -1 ---l~-e--2°2F(x) + 1 ' 
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where u = G(y I x; 01) = [1 - e -°1 - (1 - e-01F(x))(1 -- e-O~a(Y))]-le-Olt(x)(1 - 

e-°la(v)) .  ~b(x, y; 01,02) is increasing in x since (u - 1 - 1 ) e  -°=F(x) = e (°~-°2)r(x) ( 1 -  

e-°~a(Y))- l (e  -°la(y) - e  -01) is decreasing in x for fixed y. Again, by Theorem 

2.1, H(x ,  y; O) is increasing in the _<m ordering as 0 increases. 

Example 3.3. (Gumbel (1961)) This family and also (3.1) lead to families 

of bivariate extreme value distributions (Joe (1990a)). Let 

(3.3) H(x ,y ;O)  = e x p ( - [ ( - l o g F ( x ) )  ° + ( - l o g G ( y ) ) ° l U ° } ,  0 >_ 1. 

The case 0 = 0 corresponds to independence and the other limit 0 = oc cor- 

responds to the Frdchet upper bound. If 1 < 01 < 02 < oo, and y are fixed, 

then  ¢(x ,y;Ox,02)  = a - l ( a ( y  I X;O1) I X;02) --- y2(x), where Y2 -- y2(x) or 

w = w(z)  = w(z ,  02) = w(02) is the root of 

(02  1 -- 1)log(z °2 + w) - (z °2 + w) 1/02 - (Oi -1 - 1)log(z °1 + v) 

+ (z °1 + v) + (02 - o l ) logz  = 3( z ,w( z ) )  = o, 

with z = - log F(x) ,  w = ( -  log G(y2(x))) °2, v = ( -  log G(y)) °1. This example 

is more complex than  the previous two because G - l ( y  I x;O) does not have an 

explicit form. A sketch of the proof tha t  ¢(x ,y ;Ol ,02)  is increasing in x is as 

follows: It suffices to show tha t  Ow/Oz >_ 0; from 03 /Oz  = O, 

OW(Z) Z {(zO ~ + W)_I[(z02 .~_W)I/O 2 -~- 02 -- 1]} 
Oz 02 

z02 
- -  zO 2 q _ ~  [(z 02 -I-W) 1/02 q-02 -- 11 

z01 
zO ' _1_-----~ [(z01 n t- v)l/Oaq t- 0 1 -  1] + ( 0 2 -  01). 

Since w --+ v as 02 --* 01, it is enough to show for 01, V, Z fixed tha t  -z°2[(z  °2 + 

W(02))  1/02 -t- 02 -- 1]/(z °2 + w(02)) + 02 is increasing in 02 > 01. Let t = t(O) = 
(Z 0 -}- W) 1/0, 8 = (Z 01 + V) 1/01 and r(O) = - ( z / t ) ° ( t  + 0 - 1) + 0, 0 > 01. Then 

Or/O0 = 1 - ( z / t )  ° - ( z / t ) °c ( t ) log(z / t ) ,  where c(t) = t - ( 0 -  1)/( t  + 0 - 1) is 

increasing in t and c(0) = -1 .  By definition, u = z / t  E [0, 1], so Or/O0 >_ 0 if 

a(u) = 1 - u  ° - c u ° l o g u  > 0 for all 0 < u < 1, 0 >_ 1, c >_ - 1 .  Note tha t  a(0) = 1, 

a(1) -- 0 and (da/du)(uo) = 0 implies - l o g u o  = (c + O)/(cO) is the only root; 

- log u0 > 0 only if c > 0. Therefore, for c > 0, a(u) increases to a peak at u0 and 

then decreases; for c = 0, a(u) = 1 - u ° decreases, and for - 1  _< c < 0, a(u) also 

decreases. 

Example 3.4. Let C(u,  v; 0) be a family of copulas and F ,  G be strictly in- 

creasing and continuous univariate cdf's. Then C(F,  G; 0) is a family of bivariate 

cdf 's  with margins F ,  G and C(1 - F, 1 - G, 0) is a family of survival functions 

with margins F ,  G. Tha t  is, 

(3.4) K ( x ,  y; 0) = F(x )  + G(y) - 1 + C(1 - F(x) ,  1 - G(y); O) 
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is another family of bivariate cdf's based on the family C(u, v; 0). If C(F, G; 8) is 

ordered by _<m, then (3.4) is also ordered by _<m. Similar results hold with _<R1 

replaced by _~R2 or _~A. This result applies to the copulas implicit in (3.1), (3.2) 

and (3.3). The proof is straightforward and is omitted. 

Example 3.5. (subclass of bivariate stable distributions, Press (1972), 

Paulauskas (1976)) This example differs from the previous ones in that  the depen- 

dence is indexed by two parameters and the .~A ordering corresponds to a partial 

ordering among these two parameters. Let a E (0, 2] be a fixed index of the stable 

law. Let V, W be independent standard symmetric stable random variables with 

index a (characteristic function is X(s) = exp{-[sl~}).  Let 3, 0/e  [(.5) 1/~, 1] and 

let ~ = (1 - u~) 1/~ if u e [0, 1]. Let (X,Y) = (X~,Y~) = (~V + ~ W , ~ V  + ~/W). 

The cdf of (X, Y) does not have a closed form but the characteristic function 

is ) ( (s , t ;~,7)  = exp{-[Is/3 + t/3[ ~ + Is~ + tvl~]}. This family reduces to a one- 

parameter family only if a = 2 (bivariate normal). (t3, V) = (1, 1) corresponds 

to independence and (t3,~) = ((.5) 1/~, (.5) l /a) corresponds to the Fr@chet upper 

bound. If 1 >/31 >_/32 > (.5) 1/c~ and 1 > 7~ -> ~/~ > (.5) 1/~, then 

 1 1,1F 2 1 [X x ] 
Y~: / 717~ 72~1 3172 - 3172 Y'71  " 

All of the entries of the matrix of transformation are nonnegative and the determi- 

nant is positive so that  by Definition 2.4, (XZl, Y~I ) _~A (X~2 ' Y'~2 )" The measure 

of association given in Press (1972) and Paulauskas (1976) does not separate these 

bivariate distributions as well because it is one-dimensional. 

Example 3.6. (linear combinations) In this example, we have two stable 

random variables that  are each linear combinations of more than 2 symmetric 

stable random variables (with the same index a). The following theorem will be 

used. 

THEOREM 3.1. Let Z z (Z1 , . . . ,  Zk) T, where k > 2 and the superscript T 

denotes a transpose. Suppose that the support of Z includes a rectangle in T¢ k. Let 

(X' ,  y , )T  = A Z  and (X, y ) T  = B Z ,  where A, B are 2 x k matrices and A, B,  Z 

are such that X d X ' ,  Y d y~. I f  there exists a nonnegative 2 × 2 matrix C with 

positive determinant such that A = CB,  then (X,Y) .~d (X' ,Y ' ) .  If B has full 

row rank, then candidates for C have the form A B - ,  where B -  is a generalized 

inverse ( B B -  equals the identity matrix of order 2). 

PROOF. (X ' ,  y , ) T  = A Z  z C B Z  -~ C ( X ,  y ) T  implies A = C B  since A Z  = 

C B Z  for all Z in a neighbourhood of some point in T~ k implies A = CB. The 

_~A ordering is satisfied only if C is nonnegative and ICI > 0. If B B -  = I2, then 

A B -  = C B B -  = C. For such a B - ,  B B - B  = B, so that  by a result on p. 24 of 

Rao (1973), A B - B  = A. [] 

Example 3.6. (continued) Suppose Z1, Z2, Z3 are independent standard 

symmetric stable random variables of index a. Let (X0, Yo) T = AoZ,  0 < 0 < 
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where Ae = a (0 ) I l l  1-t)0 1 - 0  ' 0 ] a ( t ) ) =  [ 1 + ~ + ( 1 - 8 ) ~ ] - 1 "  Let O.5, 
I_ .] 

0 < 01 < 02 < 0.5. Then (Xe=,Ye2) T = C(Xe~,Ye~) T, with C = a(02)[a(01)(1 - 

02 - 0~ 1 - - 02 ; this is based on the choice of A o -- [a(0)(1 - 

iOo 1-o-01  - 0  1 0 Since the matrix C is nonnegative and has determi- 

nant being a positive constant  times (1 - 01 - 02) 2 - (02 - 01) 2 = (1 - 201)(1 - 202), 

(X< , Y< ) ..<A (Xo~, Ye=). 

Schriever ( 1 9 8 6 ) h a s  essentially this example with Ae = a ( 0 ) [ ~  0 0]  
1 0 ' 

a(O) = [1 + 0~] -1.  In this case, there is no solution C to Ao= = CAol for 

02 > 01 > 0, and the resulting (Xe, Ye) are not _<A ordered. 

Example 3.7. (bivariate exponential distr ibutions with singular component)  

This example consists of a family that  is _<~1 ordered but  not _~m ordered because 

the mapping from (x, y) to (x', y') via the function ~b in Definition 2.1 is not one-to- 

one. The representat ion in Lemma 2.1 and Theorem 2.1 is still valid even though 

the conditional distr ibutions G(y I x) are not continuous in y for a fixed x; see 

the remark following Lemma 2.1. In this example, /} and G(- I x) are survival 

functions. 

Let X,  Y be two independent  exponential  random variables with mean 1. For 

0 < ~ < 1, let (X~, Y~) = (X, min{X/~ ,  Y/(1 -/k)}) .  The case )~ = 0 corresponds 

to independence and the ease )~ = 1 corresponds to the Frdchet upper  bound.  The 

survival function is 

/}(x,  y; ~) = e x p { -  max[x, ky] - (1 - A)y}, x, y _> 0. 

For 0 <_ /kl < /k2 <_ 1, (XM,YM) = (XM,min{Xxl/)~2,(1 - A 1 ) Y M / ( 1 -  )~2)}) = 

(X~,I,¢(X~,I,Y:~I;)~I,)~e)), with ¢ ( x , y ; k l , A 2 )  increasing in x and y, so that  

H(.;)~I) _<~1 H(.;A2).  Also it can be directly verified that  ¢(x,y;A1,)~2) = 

O-l(0(y  I x; ~ ) I  x; ~2). 

In the next example, we show what  can happen when the continuity assump- 

tions on the conditional distr ibutions in Lemma 2.1 and Theorem 2.1 are not 

satisfied. The following lemma is needed. 

LEMMA 3.1. Let Y ,  Y '  be random variables such that Y '  = ~p(Y) for an 

increasing function ~b. Suppose Y ~ G and Y '  ~ G'. If  ¢ is strictly increasing at 

z, then G'-I(G(z)  - )  E ,b(z) <_ G'-I(G(z)+). I f  ~b is fiat at z, say on the interval 

(Zl, z2) containing z, then G'- l (G(zl)  -)  < ~b(z +) = ¢(z2)  < G'-l(G(z2)+). 

PROOF. Pr(Y < z) < Pr(Y' _< ~b(z)) < Pr(Y _< ~b-l(~(z)+)), where 
¢-1 is the inverse of ~. Therefore G(z) <_ G'(¢(z)) <_ G(¢-l(ga(z)+)) and 
C'-I(C(z) -)  _< ¢(z) _< G'- l (O(¢-l(¢(z)+))+) .  [] 
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Example 3.8. (bivariate exponential, Marshall and Olkin (1967)) A sub- 

family of the Marshall-Olkin bivariate exponential survival functions is 

(3.5) [ I ( x , y ; , \ ) = e x p { - ( 1 - h ) ( x + y ) - h m a x [ x , y ] } ,  x,y_>0,  0 < A _ < I .  

A = 0 corresponds to independence and A -- I corresponds to the Fr4chet upper 

bound. It is straightforward to show that H(.; A) is increasing with respect to -<~ 

as h increases. We will show, for 0 < Ai < A2 < 1, that H(.; hi) and H(.; h2) are 

not _<r] ordered. Let (X ,Y )  ,.~ H(.; hi) and let (X ' ,Y ' )  ~ H(.; h~) with X = X'.  

The conditional survival function given x is 

e-(1-A)Y, 
1 - G ( y [ x ; A ) =  ( 1 - A ) e  - y + ~ ,  

if y < x ,  

if y>_x. 

This has a jump discontinuity at x for all A > 0 and (G(x-  Ix; A), C ( x l x ;  A)) = 

(1 - e -(1-~)~, 1 - (1 - A)e -(1-~)~) = (L(A), U(A)), say. L(A) is decreasing in 

A, and dU(A)/dA is positive if x < (1 - A) -1 and negative if x > (1 - A) -1. 

For fixed 0 < A1 < A2 < 1, (L(A1),U(A1)) is not nested in (L(A2),U(A2)) if 

e (x2-al)~ > (1 - hi) / (1 - h2). For a fixed x in this region, we will show that  there 

is no increasing function ~(x, y) such that conditional on X = x, Y'  d ¢(x,  Y). 

Let G(y) = G(y I x; A1) and let G'(y) = G(y 1 x; h2). Suppose Y ~ G, Y' ~ G' 

and Y' = ¢(Y), where ~ is increasing (reference to x has been suppressed). Since 

Y, Y' have support on [0, co), each with a mass only at x, ~(x) = x. ¢(y)  

must be strictly increasing outside of a neighbourhood Ix1, x2] of x, where xl, x2 

satisfy G(x2) - G(Xl) = G'(x) - G'(x-) .  By Lemma 3.1, ¢(y)  = G'-I(G(y)),  
for y ¢_ [xl,x2]. However G'-I(G(x2)) > G'-I(G(x)) > x which implies that ¢ 

does not take values from (x, G'-I(G(x2))). This contradicts the assumption that 

Y' = ¢(Y) and ¢ is increasing. 

Example 3.9. (Morgenstern (1956), Farlie (1960)) This last example illus- 

trates the use of Proposition 2.1 and Theorem 2.2 to show the _<rl ordering. The 

family below is probably not very statistically useful because the distributions are 

perturbations of a bivariate distribution representing independence, so its range of 

"dependence" is smaller than the families in (3.1), (3.2) and (3.3). For functions 

A(x), B(y) on the interval [0, 1] with continuous first derivatives and satisfying 

A(1) = B(1) = 0, consider the family 

(3.6) H(x, y; c~) = xy[1 + c~A(x)B(y)], 0 < x, y < 1, a_  < c~ < a+,  

where a_ ,  a+ are defined by the requirement that [P(x)Q(y)]]a] _< 1, with P(x) = 

(d/dx)(xA(x)) and Q(y) = (d/dy)(yB(y)). The conditional distributions given 

x and y are respectively G(y I x;a) = y(1 + aP(x)B(y))  and E(x [ y;a) = 

x(1 +aA(x)Q(y)) .  Analytic forms for the inverses of these are not always possible. 

The following proposition gives condition under which (3.6) is _~rl or ~r2 ordered. 

PROPOSITION 3.1. Let a_ < a l  < a2 _< a+.  (a) H(. ;a~) _<rl H( . ;az)  if 
P(x) is decreasing and B(y) is nonnegative or P(x) is increasing and B(y) is 
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nonpositive. I f  these conditions are not satisfied, then H(.; a) and H(.; 0) are not 

~ 1  ordered i ra  > 0. (b) H( . ; a l )  ~ 2  H(. ;a2)  i fQ(x)  is decreasing and A(y) is 

nonnegative or Q(x) is increasing and A(y) is nonpositive. I f  these conditions are 

not satisfied, then H(. ;a )  and H(-;0) are not _~r2 ordered ira  > O. 

PROOF. Because of the symmetry, we prove only (a) under the condition 

P(x) decreasing and B(y) nonnegative. Let 0 < y, y' <_ 1, A -- a lyB(y)  - 

a2y'B(y') and F(x) = y 'B(y ' )P(x)(a l  - ~2). It is straightforward to show that  

(3.7) 

and 

(3.8) 

C(y I x; o~1) - -  G(y'  I x; ~2) = y - y' + P ( x ) A  

~(y I X; Otl) - -  G ( y '  I x; ~2) = G(y I x; ~1) - G(y' I x; ~1) + r ( x )  

We check (2.5) in two cases, that  is, assuming y, y', xl are such that  G(y I xl; al) >_ 

G(y'] xl ;a2) ,  we want to show that  G(y[x2;a l )  >_ G(y']x2;a2) for x2 > Xl. 

Case (1) y > y': If P(x2) < 0, then F(x2) > 0 and this implies G(y ] 

x 2 ; a l ) - G ( y ' [ x 2 ; a 2 )  >_ 0 by (3.8). I fP(x2)  _> 0 a n d  A > 0, G ( y l x 2 ; a l ) - G ( y ' [  

x2; a2) >_ 0 by (3.7). If P(x2) _> 0 and A < 0, the monotonicity of P implies 

P(x2)A > P ( x l ) A  and this leads to 

(3.9) G(y l x2;al) - G ( y '  [ x2;a2) = y -  y' + P(x2)A >_ y -  y' + P (x l )A  

---- G ( y ] x l ; a l )  - G(y[xl;a2)  >_ O. 

Case (2) y < y': (3.8) ~ F(xl)  _> 0 ~ P(xl)  <_ 0 =~ P(x2) <_ P(xl )  <_ 0 

A <_ 0 by (3.7) ~ P(x2)A >_ P(x l )A .  Now (3.9) obtains again. 

For the last part of (a), H(x, y; O) .<rl H(x, y; a) if and only if G - l ( y  [ x; a) is 

increasing in x or G(y [ x; a) is decreasing in x. If B(y) is nonnegative, the latter 

condition holds if and only if P(x) is decreasing. [] 

Example 3.9. (continued) If A(x) = x ( 1 -  x) and B(y) = 1 -  y. Then 

P(x) = x 2 - x 3 is not monotone and the family (3.6) is not _<~1 ordered. However 

Q(y) -- 1 - 2y is decreasing so (3.6) is _~r2 ordered and hence .<a ordered as a 

increases. 

4. Functionals preserving the orderings 

In this section, we consider functionals that  preserve the _<A, . ~ R 1  and _<R2 

orderings. The functionals lead to inequalities and measures of dependence, and 

also provide a way of showing that  two distributions which are ordered by _<c 

may not be ordered by _<A. Note that  there is no simple way of proving or 

disproving that  two distributions are _<A ordered, when it is known that  they are 

_<c ordered but not _<R1 ordered or _~R2 ordered. We combine results from Section 

2 and Block et al. (1990) to study a particular class of functionals on continuous 

bivariate distributions. Use is made of a coupling argument,  which is natural from 

the definitions of "more associated" and "more regression dependent",  but which 

is not possible for the concordance ordering. 
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Some notat ions are: (1) a bold-faced symbol  denotes an n-vector while the 

same symbol  wi thout  a bold-face and with a subscript  indicates a component  of 

the vector, for example, a = ( a l , . . . ,  an), (2) I (A)  is the indicator function of the 

set A. 

Let H and H t be such that  H -<A H t (or H -<R1 H 1 or H -<R2 H I) via 

increasing functions ¢(x, y) and •(x, y). Let (Xi, Yi), i -- 1 , . . . ,  n, be a random 

sample of size n from H; since H is continuous, we can assume that  the Xi ' s  are 

distinct and the Y~'s are distinct. Let (X~, y/i) = (¢(Xi,  Y/), ~ (Xi ,  Y/)). Since ¢ is 

strictly increasing in x and ~ is strictly increasing in y, the X~'s are distinct and 

so are the Y('s. 

For n pairs (ai, bi), with the a~'s distinct and the bi's distinct, a permuta t ion  

J ( a , b )  of { 1 , . . . , n }  is defined as follows. Let h l , . . . , h n  be such that  ah~ < 

• " < ah~. Define Ji(a,  b) to be the rank of bh~ among b l , . . .  ,bn, with a rank of 1 

meaning the smallest. For the coupled random samples, let j = J ( X ,  Y )  and j l  = 

j ( X  I, y I ) .  The orderings -<A, - < m  -<R2 imply orderings for the permuta t ions  j ,  

j l .  We state  the necessary definitions and results from Block et al. (1990). 

DEFINITION 4.1. Let i = ( i l , . . .  ,i~) be a permuta t ion  of {1 , . . .  ,n}. For k, 

I distinct integers in { 1 , . . . ,  n}, let Akt = (k - l)(ik - it). An interchange of ik 

and it is said to be a correction of an inversion of type  1 if Akt < 0, of type  2 if 

A k t < 0 a n d l i k - i t l = l a n d o f t y p e 3 i f A k t < 0 a n d l k - 1  I = 1 .  

DEFINITION 4.2. i I is said to be bet ter  ordered than i in the sense of the 

ordering bt, t -- 1, 2, 3, wri t ten i -<b~ i I, if i = i / or i I is obtainable  from i in a 

finite number  of steps, each of which consists of correcting an inversion of type  

t. i I is said to be bet ter  ordered than i in the sense of the ordering ba, wri t ten 

i -<b4 i I, if i = i t or i t is obtainable from i in a finite number  of steps, each of 

which consists of correcting an inversion of type  2 or of type  3. 

The implications among these orderings is that  both  i -<b2 il and i -<ba it 

imply i -<54 i I and i -<b4 il implies i -<bl i/. The theorem below follows from 

Theorems 3.7 and 3.8 of Block et al. (1990) and Theorem 4.1 of Schriever (1987). 

THEOREM 4.1. Let H,  H t, X ,  Y ,  X t, y I ,  j ,  j l  be defined as above. (a) I f  
H -<R1 H' ,  then j _<52 j l .  (b) I f  H -<R2 H I, then j -<53 jr.  (c) I f  H -<A H t, then 
j -<b4 j, .  

Now consider functionals on permutat ions  of ( 1 , . . .  ,n} that  are increasing 

with respect to _~bl, -<b2, _<b3 or -<b4. Note that  the relationships among the or- 

derings mean that  a functional increasing with respect to _~bl is also increasing 

relative to the other  3 orderings. In some cases, by Theorem 4.3, there will be 

corresponding functionals on continuous bivariate distr ibutions that  are increasing 

relative to -<R1, -<R2 or _<A. We will focus on -<b4 and -<A. Let Tn be a functional 

on permutat ions  of order n, then Tn is increasing with respect to -<b4 if and only 

if it is increasing with respect to bo th  -<b2 and -<b3. It is enough to compare Tn 

for i and i I which differ by a type  2 or a type  3 inversion. An obvious example is 

Tin(i)  -= 2[n(n - 1)] -1 ~-~,i<_k<l<_n[I(ik < il) -- I(ik > iZ)]. This is also increasing 
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with respect to _<bl. We are interested in Tn that  are increasing with respect to 

_<54 but not -451 , as this can lead to a functional increasing in ..<A but not _<c. An 

example is given by T2~ in the theorem below. 

THEOREM 4.2. Forn >_ 3, let T2n(i) = 6[n(n-1)(n-2)]  - l  ~-~l<k<t<.~<n[I(ik 

< it < ira) - I(ik > it > ira)]. Then T2n(i) <_ T2n(i') if  i _<54 i' but not necessary 

if  i _<51 i' and n > 4. The inequality - 1  _< T2n(i) _< 1 holds for all i with equality 

at the tower and upper bounds i f  i satisfies ik = n -- k + 1 and ik = k respectively. 

PROOF. For -<b4, it is straightforward to enumerate all patterns for which 

i and i '  differ just by an inversion of type 2 or one of type 3. For .<hi, consider 

i = (3,4, 1,2) and i '  -- (3,2, 1,4). Then T2n(i) = 0 and T2~(i') = - 1 / 4 .  The last 

s tatement is obvious. [] 

THEOREM 4.3. 

from the continuous 

verges almost surely 

]I3 I < < 

Pr((X1, X2, X3) and 

Let (Xi, Y~), i = 1 , . . . , n ,  be a random sample of size n 

distribution H. Then, as n ~ oc , T2,~ ( J ( X , Y ) ) con- 

to Pr(Y1 < Y2 < Y3 [ Xl  < X2 < 3 ( 3 ) -  Pr(Y1 > Y2 > 

--- Pr((Xl ,  X2, X3) and (Y1, ]I2, ]13) are similarly ordered) - 

(Y1, Y2,Y3) are oppositely ordered). 

PROOF. T2n is equivalent to a bounded two-sample U-statistic. See, for 

example, Chapter  5 of Serfling (1980). [] 

THEOREM 4.4. Let (Xi, Yi), i = 1,2,3, be a random sample of size 3 from 

the continuous distribution H. Then the functional ~'2(H) = Pr(Y1 < ]I2 < II3 I 

X1 < )(2 < )(3) - Pr(Y1 > II2 > Y3 ] X1 < )(2 < X3) is increasing with respect to 

_<A but not necessarily for -<c. 

PROOF. Let H, H '  be such that  H _<A H'.  Let (X~, Y/), (X~,Yi~), i : 

1 , . . . ,  n, be the coupled random samples of size n. By Theorem 4.1, j = J ( X ,  Y )  

_<b, j ,  = J ( X ' ,  Y ' ) .  Therefore, T2,~(j) <_ T2~(j') by Theorem 4.2. By Theorem 

4.3, T2(H) < T2(H'). 

An example of H, H' with H _<c H' ,  ~-2(H) > ~'2(H') is the following con- 

tinuous version of the example in the proof of Theorem 4.2. Let H have support  

on the union of the four squares, A1, A2, A3, A4, where A1 = [0, .25] × [.5, .75], 

A~ = [.25, .5] × [.75, 1], A3 = [.5, .75] x [0, .25] and A4 = [.75, 1] × [.25, .5]; H is 

conditionally uniform on each of the four squares with total probabilities of 1/3, 

1/6, 1/3, 1/6 respectively on A1 to A4. H' is similar to H but with A2 replaced by 

A~ = [.25, .5] 2 and A4 replaced by A~ = [.75, 1] ~. It can be checked that  H -<c H '  

and that  T2(H) ---- --1/8 > --5/24 ----- 72(H'). [] 

COROLLARY 4.1. I f  H, H' are such that H _<c H'  and~-2(H) > r2(H'), then 
H, H ~ are not ~A ordered. 

From Theorem 4.4, inequalities can be obtained for the families in Section 

3. For a family such that  H(x,  y; 0) is increasing relative to _.<A a,s ~ increases, 
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T2(H('; 01)) <_ T2(H('; 02)) if 01 < 02. This result would not be obtainable analyt- 

ically (that is, by expressing T2 (H) as a sum of integrals). 

The use of a statistic like T2,(i) leading to some functional T(H) is a way of 

trying to show that H, H I are not .~A ordered when it is known that they are 

_<c ordered but not _<R1 ordered or _<R2 ordered. The statistic Tln(J(X, Y)) 
converges to Kendall's tau, a well-known measure of bivariate concordance or 

monotone association. T2n(J(X, Y)) can also be considered as a measure of 

monotone association. T2n(i) can be generalized to Tp-l,n(i) (p > 3), where all 

subsequences of size p of i are compared for monotonicity (with a contribution of 

1 for increasing and - 1  for decreasing). The proof of Theorem 4.2 carries over to 

this more general case. When these statistics are used for tests of independence, 

the power increases as the distribution becomes more associated. Also the results 

and applications in Chapter 4 of Schriever (1986) are valid for these statistics. 

Other related statistics to T2~ which involve triplets are T~(i) = 6[n(n - 

1) (n-2) ]  -1 ~-~l<k<l<m<n[I(ik < min{i~, i ,~})--I(ik > max{iz,im})] and Ti~(i ) = 

6 [ n ( n -  1 ) ( n -  2)] -1El<k<Z<m<_n[I(im > max{ik,il})- I(im < min{ik,il})]. 

Ti~(~ ) _< Ti~(~ ) if i for t = 1, 2, 3, 4, so that  However Tin(i ) < Tin(i  t) a n d  tt • ,, .t _~b, i '  

these do not help to show that continuous cdf's H, H'  are not _~A ordered. 

The problem of characterizing all functionals increasing with respect to ,,~A 

does not appear solvable. 

5. Discussion and future work 

We have studied thoroughly the "more associated" and "more regression de- 

pendent" orderings of Schriever (1986, 1987) and Yanagimoto and Okamoto (1969) 

for continuous bivariate distributions, including deriving various forms of their def- 

initions under some conditions. We have applied all of these forms (the structural 

form of Schriever in Definition 2.1, the condition of Yanagimoto and Okamoto 

in Proposition 2.1 and the representation in Theorem 2.1) to show that  several 

families of bivariate distributions are ordered according to ~A or .~R1. 
With dependence concepts, the multivariate version is harder to study than 

the bivariate version. The geometric interpretation of Definition 2.4 suggests a 

multivariate "more associated" ordering, but most bivariate results do not gen- 

eralize. For example, two cdf's ordering by this multivariate "more associated" 

ordering need not be ordered by the multivariate concordance ordering in Joe 

(1990b). Multivariate dependence orderings will however be a subject of further 

research. 
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