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Asymptotic safety

@ A fully-fledged quantum field theory may exist fundamentally
provided the short distance fluctuations of the quantum fields lead
to an (interacting) fixed point

@ In gravity for the metric field an interacting fixed point is required

@ Residual interactions in the UV modify the power counting of
interaction terms

@ Well-known in asymptotically free theories, otherwise only in
exceptional cases

@ No natural small expansion parameter and non-perturbative
techniques required
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Testing asymptotic safety

@ Assume that interaction terms with increasing canonical mass
dimension remain increasingly irrelevant at an interacting UV fixed
point

Bi = —djA; + quantum correction

@ This hypothesis can be falsified and therefore allows for
systematic tests of the asymptotic safety conjecture
@ Feasible: polynomial f( R)-truncations
o Offers sufficient complexity
Interaction terms sorted by canonical mass dimension
Similarities to local potential approximation for scalar field theories
Of phenomenological relevance for cosmology
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RG flow of F(R)-gravity

Flow equation C. Wetterich (1993)

1
Mgk = =STr—+——
Ok QSTrr(2)+R

0tRk
k k

M = / d*x\/det g k*f(R)/167 + Sar + Sam

M. Reuter (1996); M. Reuter, O. Lauscher (2002); D. Litim (2004);

A. Codello, R. Percacci, C. R. (2007,2008 = same conventions);

P. Machado, F. Saueressig (2007); A. Bonanno, A. Contillo, R. Percacci (2011);

D. Benedetti, F. Caravelli (2012); D. Benedetti (2013); J. Dietz, T. Morris (2013); I. Bridle, J. Dietz, T. Morris (2014)

RG equation with optimised cutoff o. Liim (2004)

(Or+4 —2R0R) f = I[f]
Il = lo[f] + h[f] - Oef + bo[f] - D"
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Quantum fixed points (9;f = 0)

Polynomial expansion around R =0

f(R) =) _ AR
n=0

with free boundary conditions

AN=0; Mg =0

@ Region where the heat-kernel expansion is most reliable
@ [, depends on couplings up to A\, 2

@ (3, = 0 gives fixed points

@ Solving s, = 0 provides us with an expression for A, »

@ Doing that subsequently, we can eliminate all but two couplings
(Ao and Aq)
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Fixed point conditions

@ Two-parameter family of fixed point candidates for n > 2:

)\n — )\n()\Oa >\1) — Pn/Qn J

@ Recursive relations are extremely involved!
Pn, Qn are polynomials with up to around 45000 terms!

@ Sets limit on computability, here up to N = 35

Fixed point conditions:

Pn(Xos A1) = 05 Pny1(Xo, A1) =0
Qn(Xos A1) # 05 Qur1(Xo, A1) #0
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Consistency conditions

@ l|dentify the stable roots for each approximation order

@ In principle, there are a large number of potential fixed point
candidates in the complex plane.

@ In practice, we only find a small number of real solutions at any
order, and a unique one which consistently persists from order to
order.

@ Guiding principle for the identification of a fixed point:

e Consistency condition I: fixed point coordinates at expansion order
N should not differ drastically from those at order N — 1

e Consistency condition Il: universal eigenvalues at expansion order
N should not differ drastically from those at order N — 1
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Nullclines for fixed points
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Dashed green lines: Pg =0, Pos =0

Black lines: Qg = 0, Qx4 = 0; Qg, Qo5 out of range

Full red point: fixed point fulfilling consistency condition
Empty red point: fixed point failing consistency condition
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Fixed point results
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Convergence of the first polynomial couplings
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Rate of convergence of the three leading couplings

10707 = [1 = Ap(N)/An(Nina )|

2+ Dy

0 5 10 15 20 25 30 35

The accuracy in the fixed point couplings increases steadily by roughly
one decimal place for N — N + 20.

Christoph Rahmede (KIT) Asymptotic safety 11/23



Convergence of first few exponents
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@ Fast convergence

@ Oscillations: eight-fold periodicity pattern as known from scalar
field theory o Liim, L. vergara (2003)
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Accuracy reached for the three leading couplings

Periodicity pattern for signs of couplings: (++++ — — ——)

1 N, max

Kp=g > X(N)

N:Nmax*7

= 0.25574 +0.015%

—1.02747 + 0.026%
0.01557 +0.9%

= —0.4454 +0.70%

—0.3668 £ 0.51%

= —-0.2342 +25%

N
~ Y~ ~— ~— ~— ~—
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Eigenvalue distribution in the complex plane
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@ Gray-filled circles: eigenvalues 9, at order N = 35
@ Small coloured circles: eigenvalues for 4 < N < 35
@ Most eigenvalues are real

@ The imaginary parts show slower convergence
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Order-by-order evolution of eigenvalue spectrum
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f(R)=>_XR"
n=0

A — (018 A =10

@ Stable convergent behaviour towards fixed point values
@ Characteristic: appearance of complex scaling exponents

@ Higher-derivative truncation with Weyl curvature:
only real scaling exponents b. senedeti, . Machado, F. Saueressig (2009)

@ Slow convergence of dimensionless coupling A,
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R2-gravity with higher-order information
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Splice-in information about higher-order couplings

AN = a- Ay

np
o AN

AN+1

@ O, decreases quickly, curves are essentially flat around o = 1
@ Scaling exponents end up within 15 % of their asymptotic values
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Is the mass dimension a good
guiding principle?
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Bootstrap for asymptotic safety
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Dy connects the largest eigenvalue at approximation order Ny, with
the largest at order N,x — 1, and so forth.

The positive slope of all curves D; indicates that the working hypothesis
is satisfied on average, although not for each and every order.
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Near-Gaussianity
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= Can be used to extrapolate to larger N
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Relative variation of the non-perturbative eigenvalues

va(N) = 1 —ReIn(N)/V.n J
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Gray line: data at order N = 35
Green line: mean val. for each n; v = 0.220 +0.003; n, = 46.68 =0.92
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@ Stable picture in the polynomial f(R)-approximation

@ Slow convergence requires going to very high order

@ Near-Gaussianity establishes mass dimension as a
good guiding principle

@ Agreement with all previous results so far

@ Generalise beyond f(R)-approximation in the future
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