Further evidence for asymptotic safety of quantum gravity

K. Falls, D. Litim, K. Nikolakopoulos, C. Rahmede arXiv:1301.4191, arXiv:1410.4815

17/11/2014

Asymptotic safety

- A fully-fledged quantum field theory may exist fundamentally provided the short distance fluctuations of the quantum fields lead to an (interacting) fixed point
- In gravity for the metric field an interacting fixed point is required
- Residual interactions in the UV modify the power counting of interaction terms
- Well-known in asymptotically free theories, otherwise only in exceptional cases
- No natural small expansion parameter and non-perturbative techniques required

Testing asymptotic safety

- Assume that interaction terms with increasing canonical mass dimension remain increasingly irrelevant at an interacting UV fixed point

$$
\beta_{i}=-d_{i} \lambda_{i}+\text { quantum correction }
$$

- This hypothesis can be falsified and therefore allows for systematic tests of the asymptotic safety conjecture
- Feasible: polynomial $f(R)$-truncations
- Offers sufficient complexity
- Interaction terms sorted by canonical mass dimension
- Similarities to local potential approximation for scalar field theories
- Of phenomenological relevance for cosmology

RG flow of $F(R)$-gravity

Flow equation c. Weteriech (1993)

$$
\partial_{t} \Gamma_{k}=\frac{1}{2} \operatorname{STr} \frac{1}{\Gamma_{k}^{(2)}+R_{k}} \partial_{t} R_{k}
$$

Ansatz

$$
\Gamma_{k}=\int d^{4} x \sqrt{\operatorname{det} g_{\mu \nu}} k^{4} f(R) / 16 \pi+S_{G F}+S_{G H}
$$

M. Reuter (1996); M. Reuter, O. Lauscher (2002); D. Litim (2004);
A. Codello, R. Percacci, C. R. (2007,2008 \Rightarrow same conventions);
P. Machado, F. Saueressig (2007); A. Bonanno, A. Contillo, R. Percacci (2011);
D. Benedetti, F. Caravelli (2012); D. Benedetti (2013); J. Dietz, T. Morris (2013); I. Bridle, J. Dietz, T. Morris (2014)

RG equation with optimised cutoff p . Ltim (2004)

$$
\begin{gathered}
\left(\partial_{t}+4-2 R \partial_{R}\right) f=I[f] \\
I[f]=I_{0}[f]+I_{1}[f] \cdot \partial_{t} f^{\prime}+I_{2}[f] \cdot \partial_{t} f^{\prime \prime}
\end{gathered}
$$

Quantum fixed points $\left(\partial_{t} f=0\right)$

Polynomial expansion around $R=0$

$$
f(R)=\sum_{n=0}^{\infty} \lambda_{n} R^{n}
$$

with free boundary conditions

$$
\lambda_{N}=0 ; \lambda_{N+1}=0
$$

- Region where the heat-kernel expansion is most reliable
- β_{n} depends on couplings up to λ_{n+2}
- $\beta_{n}=0$ gives fixed points
- Solving $\beta_{n}=0$ provides us with an expression for λ_{n+2}
- Doing that subsequently, we can eliminate all but two couplings (λ_{0} and λ_{1})

Fixed point conditions

- Two-parameter family of fixed point candidates for $n \geq 2$:

$$
\lambda_{n}=\lambda_{n}\left(\lambda_{0}, \lambda_{1}\right)=P_{n} / Q_{n}
$$

- Recursive relations are extremely involved! P_{n}, Q_{n} are polynomials with up to around 45000 terms!
- Sets limit on computability, here up to $N=35$

Fixed point conditions:

$$
\begin{aligned}
& P_{N}\left(\lambda_{0}, \lambda_{1}\right)=0 ; P_{N+1}\left(\lambda_{0}, \lambda_{1}\right)=0 \\
& Q_{N}\left(\lambda_{0}, \lambda_{1}\right) \neq 0 ; Q_{N+1}\left(\lambda_{0}, \lambda_{1}\right) \neq 0
\end{aligned}
$$

Consistency conditions

- Identify the stable roots for each approximation order
- In principle, there are a large number of potential fixed point candidates in the complex plane.
- In practice, we only find a small number of real solutions at any order, and a unique one which consistently persists from order to order.
- Guiding principle for the identification of a fixed point:
- Consistency condition I: fixed point coordinates at expansion order N should not differ drastically from those at order $N-1$
- Consistency condition II: universal eigenvalues at expansion order N should not differ drastically from those at order N - 1

Nullclines for fixed points

Blue lines: $P_{8}=0, P_{24}=0$
Dashed green lines: $P_{9}=0, P_{25}=0$
Black lines: $Q_{8}=0, Q_{24}=0 ; Q_{9}, Q_{25}$ out of range
Full red point: fixed point fulfilling consistency condition
Empty red point: fixed point failing consistency condition

Fixed point results

Convergence of the first polynomial couplings

Rate of convergence of the three leading couplings

$$
10^{-D_{n}} \equiv\left|1-\lambda_{n}(N) / \lambda_{n}\left(N_{\max }\right)\right|
$$

The accuracy in the fixed point couplings increases steadily by roughly one decimal place for $N \rightarrow N+20$.

Convergence of first few exponents

- Fast convergence
- Oscillations: eight-fold periodicity pattern as known from scalar field theory
D. Litim, L. Vergara (2003)

Convergence of eight-fold periodicity pattern

Accuracy reached for the three leading couplings

Periodicity pattern for signs of couplings: $(++++----)$

$$
\langle X\rangle=\frac{1}{8} \sum_{N=N_{\text {max }}-7}^{N_{\text {max }}} X(N)
$$

$$
\begin{array}{ll}
\left\langle\lambda_{0}\right\rangle=0.25574 & \pm 0.015 \% \\
\left\langle\lambda_{1}\right\rangle=-1.02747 & \pm 0.026 \% \\
\left\langle\lambda_{2}\right\rangle=0.01557 & \pm 0.9 \% \\
\left\langle\lambda_{3}\right\rangle=-0.4454 & \pm 0.70 \% \\
\left\langle\lambda_{4}\right\rangle=-0.3668 & \pm 0.51 \% \\
\left\langle\lambda_{5}\right\rangle=-0.2342 & \pm 2.5 \%
\end{array}
$$

Eigenvalue distribution in the complex plane

- Gray-filled circles: eigenvalues ϑ_{n} at order $N=35$
- Small coloured circles: eigenvalues for $4 \leq N \leq 35$
- Most eigenvalues are real
- The imaginary parts show slower convergence

Order-by-order evolution of eigenvalue spectrum

So far

$$
\begin{gathered}
f(R)=\sum_{n=0}^{\infty} \lambda_{n} R^{n} \\
\lambda_{N}=0 ; \lambda_{N+1}=0
\end{gathered}
$$

- Stable convergent behaviour towards fixed point values
- Characteristic: appearance of complex scaling exponents
- Higher-derivative truncation with Weyl curvature:
only real scaling exponents D. Benedetti, P. Machado, F. Saueressig (2009)
- Slow convergence of dimensionless coupling λ_{2}

R^{2}-gravity with higher-order information

Splice-in information about higher-order couplings

$$
\begin{aligned}
\lambda_{N} & =\alpha \cdot \lambda_{N}^{n p} \\
\lambda_{N+1} & =\alpha \cdot \lambda_{N+1}^{n p}
\end{aligned}
$$

- θ_{2} decreases quickly, curves are essentially flat around $\alpha=1$
- Scaling exponents end up within 15% of their asymptotic values

Is the mass dimension a good guiding principle?

Bootstrap for asymptotic safety

D_{1} connects the largest eigenvalue at approximation order $N_{\max }$ with the largest at order $N_{\text {max }}-1$, and so forth.
The positive slope of all curves D_{i} indicates that the working hypothesis is satisfied on average, although not for each and every order.

Near-Gaussianity

$$
\begin{gathered}
\vartheta_{n}=a \cdot n-b \\
a_{G}=2 ; b_{G}=4 \\
a_{\mathrm{UV}}=2.17 \pm 5 \% ; b_{\mathrm{UV}}=4.06 \pm 10 \%
\end{gathered}
$$

\Rightarrow Can be used to extrapolate to larger N

Relative variation of the non-perturbative eigenvalues

$$
\mathrm{v}_{n}(N)=1-\operatorname{Re} \vartheta_{n}(N) / \vartheta_{\mathrm{G}, n}
$$

Gray line: data at order $N=35$
Green line: mean val. for each $n ; v=0.220 \pm 0.003 ; n_{e}=46.68 \pm 0.92$

Summary

- Stable picture in the polynomial $f(R)$-approximation
- Slow convergence requires going to very high order
- Near-Gaussianity establishes mass dimension as a good guiding principle
- Agreement with all previous results so far
- Generalise beyond $f(R)$-approximation in the future

