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ABSTRACT

Recently Perron (1989) has carried out tests of the unit root hypothesis against the
alternative hypothesis of trend stationarity with a break in the trend occurring at the
Great Crash of 1929 or at the 1973 oil price shock. His analysis covers the Nelson—Plosser
macroeconomic data series as well as a post—war quarter real GNP series. His tests reject
the unit root null hypothesis for most of the series.

This paper takes issue with the assumption used by Perron that the Great Crash
and the oil price shock can be treated as exogenous events. A variation of Perron’s test is
considered in which the break point is estimated rather than fixed. We argue this test is
more appropriate than Perron’s, since it circumvents the problem of data—mining.

The asymptotic distribution of the "estimated break point" test statistic is deter-
mined. The data series considered by Perron are reanalyzed using this test statistic. The
empirical results make use of the asymptotics developed for the test statistic as well as
extensive finite sample corrections obtained by simulation. The effect on the empirical
results of fat—tailed and temporally dependent innovations is investigated. In brief, by
treating the break point as endogenous, we find that there is less evidence against the unit
root hypothesis than Perron finds for many of the data series, but stronger evidence against
it for several of the series, including the Nelson—Plosser industrial production, nominal

GNP, and real GNP series.

JEL Classification Numbers: 210, 211, 212, 220.
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1. INTRODUCTION

A major debate concerning the dynamic properties of macroeconomic and financial
time series has been going on since Nelson and Plosser (1982) published their stimulating
article in the Journal of Monetary Economics nearly a decade ago. The primary issue
involves the long~run response of a trending data series to a current shock to the series.
The traditional view holds that current shocks only have a temporary effect and that the
long-run movement in the series is unaltered by such shocks. Nelson and Plosser
challenged this view and argued, using statistical techniques developed by Dickey and
Fuller (1979, 1981), that current shocks have a permanent effect on the long—run level of
most macroeconomic and financial aggregates. Others, including Campbell and Mankiw
(1987,1988), Clark (1987), Cochrane (1988), Shapiro and Watson (1988) and Christiano
and Eichenbaum (1989), have argued that current shocks are a combination of temporary
and permanent shocks and that the long—run response of a series to a current shock
depends on the relative importance or "size" of the two types of shocks.

Recent research has cast some doubt on Nelson and Plosser’s conclusions. In partic-
ular, Perron (1988,1989) argues that if the years of the Great Depression are treated as
points of structural change in the economy and the observations corresponding to these
years are removed from the noise functions of the Nelson and Plosser data, then a
"flexible" trend stationmary representation is favored by eleven of the fourteen series.
Similarly, Perron shows that if the first oil crisis in 1973 is treated as a point of structural
change in the economy then one can reject the unit root hypothesis in favor of a trend
stationary hypothesis for postwar quarterly real GNP. These results imply that the only
observations (shocks) that have had a permanent effect on the long—run level of most
macroeconomic aggregates are those associated with the Great Depression and the first oil

Pprice cx:isis.1



We enter this debate by taking issue with the unit root testing procedure used by
Perron (1989) (hereafter referred to as Perron). In particular, we examine the sensitivity
of Perron’s results to his exogeneity assumption concerning the Great Depression and the
1973 oil crisis. A skeptic of Perron’s approach would argue that Perron’s choices of break
points are based on prior observation of the data and hence problems associated with "pre-
testing" are applicable to his methodology. Simple visual inspection of the Nelson and
Plosser data shows that there is an obvious jump down for most of the series occurring in
1929. Due to the sudden change in the data at 1929, Perron chooses to treat the drop in
the Nelson and Plosser series as an exogenous event. This jump, however, could be inter-
preted as a realization from the tail of the distribution of the underlying data—generating
process. This interpretation views the Great Depression as a shock or a combination of
shocks from the underlying errors.

Similarly, an examination of the postwar quarterly GNP data shows a slowdown in
GNP growth after the oil crisis in 1973. Analogous to his treatment of the Nelson and
Plosser data, Perron’s statistical model handles the slowdown in growth after the 1973 oil
crisis as an event external to the domestic economy. While it seems reasonable to regard
the formation of OPEC as an exogenous event, there are other big events such as the 1964
tax cut, the Viet Nam War and the financial deregulation in the 1980’s that could also be
viewed ez ante as possible exogenous structural break points. Perron’s preference for the
1973 oil price crisis is undoubtedly influenced by his prior examination of the data.

If one takes the view that these events are endogenous then the correct unit root
testing procedure would have to account for the fact that the break points in Perron’s
regressio‘ns are data dependent. The null hypothesis of interest in these cases is a unit root
process with drift that excludes any structural change. The relevant alternative hypothesis
is still a trend stationary process that allows for a one—time break in the trend function.
Under the alternative, however, we assume that we do not know exactly when the break

point occurs. Instead, a data dependent algorithm is used to proxy Perron’s subjective



procedure to determine the break points. Such a procedure transforms Perron’s unit root
test which is conditional on a known break point into an unconditional unit root test.

We develop a unit root testing procedure that allows for an estimated break in the
trend function under the alternative hypothesis. Using our procedure on the data series
analyzed by Perron, we find less conclusive evidence against the unit root hypothesis than
Perron finds. In particular, using our asymptotic critical values we cannot reject the unit
root hypothesis at the 5% level for four of the ten Nelson and Plosser series for which
Perron rejects the hypothesis, viz., real per capita GNP, GNP deflator, money stock, and
real wages. We still reject the unit root hypothesis, however, for six of the series. Further,
contrary to Perron, we cannot reject the unit root null at the 5% or 10% level for the post-
war quarterly real GNP series.

We also investigate the accuracy of our asymptotic approximations by computing
the exact finite sample distributions of our test statistics for the two data sets by Monte
Carlo methods, assuming normal ARMA innovations. Here we find that our asymptotic
critical values are more liberal thar the finite sample critical values. Using the finite
sample critical values, we cannot reject the unit root hypothesis at the 5% level for three
more of the series for which Perron rejects, viz., employment, nominal wages and common
stock prices (although the latter two are very close to being rejected at the 5% level). We
can, however, still reject the unit root null at the 5% level for the real GNP and nominal
GNP series and we can reject the unit root null at the 1% level for the industrial produc-
tion series.

For the series that we reject the unit root null using our finite sample critical
values, we investigate the possibility that the distributions of the innovations driving these
series have tails thicker than the normal distribution. Our estimates of the kurtosis of
these series lead us to believe that Student—t innovations may be more appropriate than
normal innovations for some of these series. We recompute the finite sample distributions

using Student—t ARMA innovations, with degrees of freedom determined by equating



sample kurtosis values to theoretical kurtosis values. Although the percentage points of
the finite sample distributions using the t—innovations are uniformly larger (in absolute
value) than the corresponding percentage points assuming normality, our unit root testing
conclusions remain the same as in the normal case. Thus, our finite sample results for
these series are robust to some relaxations of the normality assumption.

Last, we consider the effects of relaxing the assumption of finite variance by com-
puting the finite sample distributions of our test statistics using stable ARMA innovations.
QOur conclusion is that it would take only slightly more than infinite variance for us not to
reject the unit root hypothesis for all of the series. On the other hand, the estimates of
kurtosis do not indicate that the series have infinite variance innovations.

The approach of this paper is similar to that taken by Christiano (1988).
Christiano’s results, however, are based solely on bootstrap methods. The latter have
questionable reliability in regression models with dependent errors and small sample sizes.
Christiano also limits his analysis to the postwar quarterly real GNP series.

The asymptotic distribution theory developed here is quite similar to that of
Banerjee, Lumsdaine, and. Stock (1989), although our empirical applications are
substantially different. Our asymptotic theory was developed simultaneously and
independently of the theory presented in Banerjee et al.

The outline of this paper is as follows. Section 2 reviews Perron’s unit root testing
methodology and presents our testing strategy. Section 3 contains the requisite asymptotic
distribution theory for our unit root test in time series models with estimated structural
breaks. We derive the asymptotic distributions for the test statistics, tabulate their
critical values, and compare the latter to the critical values used by Perron. In Section 4
we apply our results to the Nelson and Plosser data and the postwar quarterly real GNP
data. Section 5 investigates the finite sample distributions of the test statistics by Monte
Carlo methods. This section determines the difference in test size between the finite

sample distributions and the asymptotic distributions and determines the effect of



fat—tailed innovations on the finite sample distributions of our test statistics. Section 6

contains our concluding remarks.

2. MODELS AND METHODOLOGY

Perron develops a procedure for testing the null hypothesis that a given series
{yt}rf has a unit root with drift and that an exogenous structural break occurs at time
1< TB < T wversus the alternative hypothesis that the series is stationary about a deter-
ministic time trend with an exogenous change in the trend function at time TB . He
considers three parameterizations of the structural break under the null and the altern-

ative. Following the notation in Perron, the unit root null hypotheses are:

Model (A) y, = p+dD(Tg), + Yig te
Model (B) Yy =y + ¥y _1 + (g —p)DU; e,
Model (C) Vi =#y tyy_g +dD(TR), + (uy— # DU, + e, ,

where D(TB)t =1 if t=Tg+1, 0 otherwise; DU, =1 if t> Ty, 0 otherwise;
A(L)e, = B(L)v, , v, £iid(0, 02) , with A(L) and B(L) pth and qth order poly-
nomials in the lag operator respectively. Model (A) permits an exogenous change in the
level of the series, Model (B) allows an exogenous change in the rate of growth and Model
(C) admits both changes.

The trend stationary alternative hypotheses considered are:

Model (A) Yy =4y + B+ (4 —p)DU, +ee
Model (B) Yy = H + ﬁlt + (62 - ﬁl)DT: + et’
Model (C) Yy = #+ Bt + (g —)DU, + (B, — B)DTF + ¢, ,

where DT’; =t-Tg if t> Ty and 0 otherwise. As with the unit root hypotheses,

Model (A) allows for a one time change in the level of the series and, appropriately, Perron



calls this the "crash" model. The difference u,—p, represents the magnitude of the
change in the intercept of the trend function occurring at time Ty . Perron labels Model
(B) the "changing growth" model and the difference f, —f3; represents the magnitude of
the change in the slope of the trend function occurring at time Tg . Model (C) combines
changes in the level and the slope of the trend function of the series.

Perron proposes Model (A) (the "crash" model) for all of the Nelson and Plosser
series except the real wage and common stock price series for which he suggests Model (C).
He submits Model {B) as the representation for the postwar quarterly real GNP series. His
arguments for these representations are based primarily on visual inspection of the data.

Perron employs an adjusted Dickey—Fuller (ADF) type unit root testing strategy
(see Dickey and Fuller (1981) and Said and Dickey (1984)). His tests for a unit root in

Models (A), (B) and (C) involve the following augmented regression equations:

A, s . . . LA .

y, = i* + DU, + ﬁAt +dA(Tg), + dty, | + 21;=1c Ayt ey (1)
_B_ .B.B .

Yi =2 ¥4 + Ek yt —j e (2)
¥, = C 9CDU + ﬁ t + CDT* + dC D(Tg), + yt 1 +2k Ayt —+ & é&, (3)

where {?t} are the residuals from a regression of y; on a constant, a time trend and
DT’{ . The k extra regressors in the above regressions are added to eliminate possible
nuisance parameter dependencies in the limit distributions of the test statistics caused by
temporal dependence in the disturbances. The number k of extra regressors is determined
by a test of the significance of the estimated coefficients E} (i=A,B, C) {(as described
below).

To formally test for the presence of a unit root, Perron considers the following

statistics computed from (1)—(3):

t,(A) (i=A,B,C), (4)
(4]

where (4) represents the standard t-statistic for testing o' = 1. These statistics depend



on the location of the break fraction (or break point), A =Tp/T, and we exhibit this
dependence explicitly since this notation will be useful for the analysis that follows.
Perron’s test for a unit root using (4) can be viewed as follows: reject the null hypothesis

of a unit root if
t&i()\) < £, (A), (5)

where & () denotes the size a critical value from the asymptotic distribution of (4) for a
fixed A=Tg /T . Perron derives the asymptotic distributions for these statistics under
the above null hypotheses and tabulates their critical values for a selected grid of A values
in the unit interval. Based on the critical values for (4), he rejects the unit root hypothesis
at the 5% level of significance for all of the Nelson and Plosser data series except consumer
prices, velocity and interest rates. He also rejects the unit root hypothesis at the 5% level
for the postwar quarterly real GNP series.2

We construe Perron’s test statistic (4) in a different manner. Perron’s null hypothe-
ses take the break fraction A to be exogenous. We question this exogeneity assumption
and instead treat the structural break as an endogenous occurrence. That is, we do not
remove the Great Crash and the 1973 oil price shock from the noise functions of the appro-

priate series. Our null hypothesis for the three models is

Ve=k+¥ 1 te, (6)
which is an integrated process with drift.

Since we consider the null that the series {y,} is integrated without an exogenous
structural break, we view the selection of the break point, A, for the dummy variables in
Perron’s regressions (1)—{3) as the outcome of an estimation procedure designed to fit {yt}
to a certain trend stationary representation. That is, we assume that the alternative
hypothesis stipulates that {yt} can be represented by a trend stationary process with a

one time break in the trend occurring at an unknown point in time.> The goal is 10



estimate the break point that gives the most weight to the trend stationary alternative.
Our hope is that an explicit algorithm for selecting the break points for the series will be
consistent with Perron’s (subjective) selection procedure.

One plausible estimation scheme, consistent with the above view, is to choose the
break point that gives the least favorable result for the null hypothesis (6} using the test
statistic (4). That is, A is chosen to minimize the one-sided t—statistic for testing
cri =1, i=A,B, C, when small values of the statistic lead to rejection of the null. Let

Alnf denote such a minimizing value for model i. Then, by definition,

¢ 1[Amf] = ig}f\tai(,\) (i=A,B,C), (7)

where A is a specified closed subset of (0,1).
With the null model defined by (6) we no longer need the dummy variable D(Tg),
in (1) and (3). Therefore, following Perron’s ADF testing strategy, the regression

equations we use to test for a unit root are:
A s Iy, ; ~A ~A .
v, =i+ ¥'DU ) + AP + & yt_1+ z]?_lcj Ay, + 8, (1)

700 = &P5Y_ () + B et agt (R + 4, (27)

C

.C c .C . C )
y, = i€ + °pu,(3) + 8% + 3°pTr(h) + 6%y, + E]j(:lcj Ay, ;+8 (3)

where DU.(A)=1 if t> {TA], 0 otherwise; DTF(A)=t—[TA] if t>[TA], 0
otherwise; {j'r?(i)} are the residuals from a regression of y, om a constant, a time trend
and DT’{()\) A we put "hats" on the A parameters in (1/)—(3’) to emphasize that they
correspond to estimated values of the break fraction.

Table 1 reports the values of 'i‘B (= [TA]) that correspond to ;\inf and the min-

imum values of t ;() obtained from the procedure defined in (7) for the data series
o

analyzed by Perron. The break points and minimum t-statistics were determined as
follows. For each series, (17}, (2°) or (3’) was estimated by OLS with the break fraction,
A =Tg/T, ranging from j=2/T to j=(T-1)/T . For each value of A, the number



of extra regressors, k, was determined using the same procedure as in Perron and the
t—statistic for testing @ =1 was computed.6 The minimum t—statistics reported are the
minimums over all T—2 regressions and the break years are the years corresponding to the
minimum t—statistics.

From Table 1 we see that the break year that minimizes the one—-sided t—statistic
for testing aA = 1 does, in fact, correspond to the year of the Great Depression, 1929, for
the eight series that Perron rejects the unit root hypothesis. The three series with esti-
mated break points not consistent with Perron’s choice are consumer prices, velocity and
the interest rate. These are also the series for which Perron does not reject the unit root
hypothesis. The break years for these series are 1873, 1949 and 1932 respectively. The
estimated break date for the velocity series corresponds to the widely noted leveling off of
the series in the mid to late 40’s.

For the postwar quarterly real GNP series, the minimizing break point occurs in the
second quarter of 1973. Perron’s choice of 1973:I produces the third smallest t—statistic.
The numerical difference between the t-statistics for these two dates, however, is very
small. The break years corresponding to the minimum t—statistics for the Model (C) series
do not coincide with the year of the Depression. The estimated break year for the common
stock price series is 1936 and the break year for the real wage series is 1940. As these
results show, our break point algorithm is generally, though not completely, consistent
with the subjective selection procedure used by Perron for the Nelson and Plosser series
and the postwar quarterly real GNP series.

When we treat the selection of A as the outcome of an estimation procedure we can
no longer use Perron’s critical values to test the unit root hypothesis. To see this, consider
the minimum t—statistic break point estimation procedure. With this definition of the
break fraction, our interpretation of Perron’s unit root test becomes: reject the null of a

unit root if
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. i .
;\21{ t&i(A) < Knfa (i=A,B,0), (8)
where inf o denotes the size o left tail critical value from the asymptotic distribution of

inft (3). By definition, the left tail critical values in (8) are as least as large in abso-
XA @

lute value as those computed for an arbitrary fixed A. If one takes this unconditional
perspective, then Perron’s unit root tests are biased towards rejecting the unit root null
hypothesis because he uses critical values that are too small (in absolute value). The
extent of this size distortion depends on the magnitude of the difference between the crit-
ical values defined in (8) and those defined in (5). To determine this difference, the asymp-

totic distributions of the test statistics in 1{ t ;(A) (=A,B, C) are required. These
AeA @

distributions are derived in the next section.

3. ASYMPTOTIC DISTRIBUTION THEORY

The asymptotic distributions of the minimum t—statistics may be compactly ex-
pressed in terms of standardized Brownian motions. Following Phillips (1988a), Park and
Phillips (1988) and Ouliaris, Park and Phillips (1988), define Wi(A,r) to be the stochastic
process on [0,1] that is the projection residual in L,[0,1] of a Brownian motion projected
onto the subspace generated by the following: (a) i=A:1,r,du(Ar); (b) i=B:1,1,
dt*(A1); (¢) i=C:1,1,du(Ar), dt*(A,r); where du(Ar)=1 if r> A and 0 other-
wise, and dt*(Ar)=1-2X if 1> ) and 0 otherwise. Here, L,[0,1] denotes the Hilbert
space of square integrable functions on [0,1] with inner product (f,g) =/ (lJfg for
f,ge L2[0,1] . For example, in Model (A), WA(A,r) is the L, projection residual from

the continuous time regression
. . . A
W(r) = oy + &1 + dydu(Ar) + W (Ar). (9)

That is, &0, &1 and 312 solve
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min ][1}|W(r) —ay—ayr— a2du(A,r)|2dr . (10)
% %1 %

Notice that if we allow A =0 or 1, the above minimization problem, and the minimiza-
tion problems for Models (B) and (C), do not have unique solutions due to the singularity
of the matrix defining the normal equations.

The following theorem gives the asymptotic distributions for the minimum

t—statistics in terms of W'(A,1) .

THEOREM 1: Let {y;} be generated under the null hypothesis (6) and let the errors {e,}

be iid, mean zero, variance o> random variables with 0 < o2 <w. Let t_ i(’\) denote the

t—statistic for testing d=1 computed from either (17), (2°) or (3’) with k=0 for
Models i = A, B and C respectively. Let A be a closed subset of (0,1). Then,

. . i 2, 1-1/2[ ;1
ileljf\ tai()\) = ;2]{[[(1) Wi()1) dr] / [IO Wl(}\,r)dW(r)] as T o

fori=A BandC.

The proof is given in Appendix A.

The limiting distributions presented in Theorem 1 are for the case where the distur-
bances are independent and there are no extra lag terms in the regression equations
(1/)—(3). I we allow the disturbances to be correlated and heterogeneously distributed,

then the asymptotic distributions in the theorem become nonstandard in that they depend
. 2. —1,¢T, 2 2 .. 14T 2

on the nuisance parameters o¢° =limp, ET "(37e,)” and o =limp ET “Ije}.

Two approaches have been employed in the time series literature to eliminate this

nuisance parameter dependency. One approach is due to Phillips (1987). His technique is

based on the result that if consistent estimators of 02 and arg are available then one can

derive a nonparametric transformation of the test statistics whose limiting distributions are

independent of the population parameters o® and og . The other approach is the ADF

approach referred to above. It is based on the addition of extra lags of first differences of
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the data as regressors. The number of extra regressors must increase with the sample size
at a controlled rate. With the ADF procedure, the errors are restricted to the class of
ARMA(p,q) processes. Since we follow Perron and use the ADF approach, we consider the

following assumption.

ASSUMPTION 1: (a) A(L)e, = B(L)v, , A(L) and B(L) are 't and o' order poly-
nomials in the lag operator L and satisfy the standard stationarity and invertibility
conditions.

4+6 < w for some

(b) {v;} is a sequence of iid(0, 02) random variables with Ej}v, |
6>0.

(c) kB o and T3P 0as Too.

When the error sequence {et} satisfies Assumption 1, we conjecture, based on
arguments outlined in Said and Dickey (1984), that the limiting distributions of the test
statistics computed from the ADF regression equations (1/)—37) are free of nuisance
parameter dependencies and have the limiting distributions presented in the theorem. As
in Perron, we do not give a proof of the efficacy of the ADF procedure, but we use it in the
empirical applications below.

Critical values for the limiting distributions in the theorem are obtained by simula-
tion methods. That is, the integral functions in the theorem are approximated by functions
of sums of partial sums of independent normal random variables. The method used is
described in Appendix B.

The critical values for the limiting distributions of the minimum t—statistics and for

7

the t—statistics used by Perron are presented in Tables 2A — 4B." Estimates of their dens-

ities are plotted in Figure 1. As expected, for a given size of a left—tailed test, the critical

values for ;\ n 1{ t_;(A) arelarger in absolute value {more negative) than the critical values
€A &

obtained by Perron for any fixed value of the break fraction . The biggest difference

occurs for the Model (A) densities. At the 5% level the critical value for inf t ,()) is
AEA @
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—4.80 and the average value, over A, of Perron’s critical values is —3.74. Thus, at the 5%
level, our critical value is roughly 24% larger (in absolute value) than Perron’s and at the
1% level our critical value is about 23% larger. For the Model (B) densities, our 5% crit-
ical value is —4.42 and Perron’s average critical value is —3.84. For the Model (C)
densities, our 5% critical value is —5.08 and Perron’s average value is —4.07.

We can now address the magnitude of the size distortion of Perron’s test statistics
incurred by ignoring the pre—test information concerning the location of the trend break.

Table 5 gives the actual asymptotic sizes of tests based on the statistic inf t ,(A) that
AEA @

use Perron’s 5% critical values. We see that the size distortion is quite dramatic for
Models (A) and (C), where the actual sizes of Perron’s 5% tests are 55.1% and 34.5%
respectively. The size distortion for Model (B) is more moderate with an actual size of
14.2%. The density plots in Figure 1 clearly illustrate this distortion. For all models the
asymptotic densities of the minimum t—statistics are shifted to the left of the Perron
densities. The densities for the minimum t—statistics also have thinner tails than the

Perron densities.

4. EMPIRICAL APPLICATIONS

We now apply the unit root test developed in the previous sections to the data
series analyzed by Perron.3 We analyze the natural logarithm of all the data except for the
interest rate series, which is analyzed in levels form. Tables 6A—C present the estimated
regressions for all of the series using the regression equations (1/)—(3"). t—statistics are in
parentheses. The t—statistic for al s for testing the hypothesis that o =1
(i=A,B,C).

These results a.ré somewhat different from the results in Perron’s Table 7 for two

reasons. First, the break years defining the dummy variables are estimated according to

(7) instead of being fixed at 1929 or 1973:1. This has relevance only for the series whose
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estimated break years are different from the ones used by Perron. Second, we do not
impose a structural break under our null hypothesis, and hence, the variable D(TB)t is
not included in the regressions. This affects only the Model (A) and Model (C) regressions.
For this effect, the most notable change in the regression results is that the estimated
t—statistics for testing d=1 (i= A and C) increased (in absolute value) for a majority
of the series, see footnote 4. Often this increase was substantial. For example, the abso-
lute change in the t—statistic for the real per capita GNP series is 0.52 (—4.61 — (—4.09)),
which is roughly 13%. For most of the affected series, this change favors the trend station-
ary alternative.

The results of our unit root tests are also presented graphically in Figure 2, which
contains time plots of the natural logarithm of the fourteen data series. Superimposed on
the time plot of each series are the estimated t—statistics (in absolute value) for testing
ol =1 for each possible break date Tg =[TA], a line indicating the appropriate asymp-
totic 5% critical value (in absolute value) for the minimum t—statistic, and a line depicting
the appropriate 5% critical value from Perron’s asymptotic distributions for a fixed break
date. Also superimposed on the time plots is a line labeled "Finite Sample 5% C.V.",
which will be explained later.

Consider first the results for the Model (A) series, presented in Table 6A. From
Table 1, we know that Perron’s break fraction for eight of the eleven series corresponds to
the break fraction associated with the minimum t—statistic for testing aA = 1. This can
also be seen graphically from Figure 2 where, clearly, the largest t—statistic (in absolute
value) for these series occurs at Tg = 1929 . These eight series are also the ones for which
Perron rejects the unit root null hypothesis at a 5% significance level using his critical
values for a fixed break point. Now, treating the break fraction as the outcome of the esti-
mation procedure defined by (7) and using the critical values from Table 2A, we can reject
the unit root null at the 1% level for the real GNP, nominal GNP and industrial produc-

tion series. We can reject the unit root null at the 2.5% level for the nominal wage series,
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at the 5% level for the employment series, and at the 10% level for the real per capita GNP
series. We cannot reject the unit root null at the 5% or 10% level, however, for the GNP
deflator, consumer prices, money stock, velocity and interest rate series. In fact, the

p—values for these series, computed from the asymptotic distribution of inf t A()\) , are
AEA &

278, 951, .174, .737 and .999 respectively. Thus, by endogenizing the break point selec-
tion procedure, we reverse Perron’s test conclusions for the GNP deflator and nominal
money stock series, and weaken the evidence against the unit root hypothesis for the
remaining series.

Next, consider the results for the Model (B) series presented in Table 6B. The esti-
mated break date for the postwar quarterly real GNP series occurs one quarter after
Perron’s choice of 18731, so it seems reasonable to apply our methodology to this series.
Using the critical values from Table 3A, we find, contrary to Perron, that we cannot reject
the unit root null at the 5% or 10% level. The asymptotic p—value for the t—statistic is
131,

Finally, the results for the Model (C) series are given in Table 6C. For these series
the estimated break years do not coincide with Perron’s choices. Nevertheless, using our
estimated break points for these series and the critical values from Table 4A, we reject the
unit root null for the common stock price series at the 1% level but, contrary to Perron, we
cannot reject the unit root null at the 1%, 5% or 10% level for the real wage series. The
asymptotic p—value for the t—statistic is .119.

Table 11 compares the p-values computed from Perron’s fixed—A distributions to
the p—values computed from our asymptotic distributions, as well as p—values from distri-
butions that will be explained below. The table clearly shows the effects of incorporating
the pre—test trend break information on the asymptotic distributions of the unit root tests.
In sum, by endogenizing Perron’s break point selection procedure, we reverse his conclu-

sions for five of the eleven series for which he rejects the unit root null hypothesis at 5%
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and for four of the eleven series for which he rejects at 10%.9 On the other hand, even
after adjusting for pre—test examination of the data , we reject the unit root null for six
series using our 5% asymptotic "estimated break point" critical values and for seven series

using 10% critical values.

5. FINITE SAMPLE RESULTS

The sample sizes for the series under consideration range from T =62 to
T = 111 . In addition, there appears to be considerable temporal dependence in the data.
In consequence, our asymptotic critical values may differ from the appropriate finite
sample critical values. In this section we investigate this possibility by computing the
finite sample distributions of our test statistics, under specific distributional assumptions,
by Monte Carlo methods.

To compute the finite sample distributions of the minimum t—statistics one has to
make specific assumptions concerning the underlying error sequence {et} for each series.
First, we suppose the errors driving the data series are normal ARMA(p,q) processes. In
this case, the first differences of the series are normal ARMA(p,q) processes, possibly with
nonzero mean, under the null hypothesis. To determine p and q, we fit ARMA(p,q)
models to the first differences of each series and we use the model selection criteria of
Akaike (1974) and Schwartz (1978) to choose the optimal ARMA(p,q) model with
p,q ¢ 5. The Akaike criterion minimizes 2lnL + 2(p+q), where L denotes the likeli-
hood function. The Schwartz criterion minimizes 2InL + (p+q)lnT, where T is the
sample size. The Schwartz criterion penalizes extra parameters more heavily than does the
Akaike criterion. We then treat the optimal estimated ARMA(p,q) models as the true
data generating processes for the errors of each of the series.

Tables TA and 7B present the chosen models for each of the data series. In most

cases the Akaike and Schwartz criteria select the same model. ARMA(1,0) models are
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selected by both criteria for the real GNP, nominal GNP, real per capita GNP, GNP
deflator and money stock series, whereas ARMA(0,1) models are selected by both criteria
for the employment, nominal wages, velocity and real wages series. In addition, an
ARMA(0,5) model is selected by both criteria for the industrial production series. The
Akaike criterion favors an ARMA(5,0) model for stock prices, an ARMA(3,0) mode! for
interest rates, an ARMA(1,1) model for consumer prices and an ARMA(0,3) model for
postwar quarterly real GNP; the Schwartz criterion chooses ARMA(0,1), ARMA(2,0),
ARMA(0,1) and ARMAC(1,0) models for these series respectively. In those cases where the
two criteria choose different models, we select the most parsimonious model.

To determine the finite sample distributions of our test statistics under the null
hypothesis with the above error distributions, we perform the following Monte Carlo exper-
iment. For each series, we construct a pseudo sample of size equal to the actual size of the
series using the optimal ARMA(p,q) models described above with iid N(0, 02) innova-

tioas, where 02

is the estimated innovation variance of the optimal ARMA(p,q) model.
Then, for each j=2, ..., T-1, weset A= j/T, determine k as in footnote 6, and

compute t ;(A) using either (1), (27) or (3’). Our test statistic is then determined to be
&

the minimum t—statistic over all T—2 regressions. We repeat this process 5000 times and
the critical values for the finite sample distributions are obtained from the sorted vector of
replicated statistics.

Tables 8A—C display the percentage points of the finite sample distributions of the
minimum t—statistics for all of the data series under the assumption of normal ARMA(p,q)
errors.'0 The salient feature of these critical values is that they are all uniformly larger (in
absolute value) than the corresponding asymptotic critical values. At the 5% level, the
Model (A) finite sample critical values range from —5.12 to —5.38, the average of which is
9.2% larger (in absolute value) than the corresponding asymptotic critical value. At the
same level, the Model (B) finite sample critical value is —4.86 and the Model (C) finite
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sample critical values are —5.63 and —5.68. These finite sample critical values are 9.0% and
11.8% larger (in absolute value), respectively, than their corresponding asymptotic values.
For the Model (A) series, the difference between the finite sample and asymptotic critical
values abates for the series with larger sample sizes. For the two Model (C) series, how-
ever, the critical values are nearly identical even though the sample size for the real wage
series is 71 and the sample size for the common stock price series is 100. Furthermore, for
the series with comparable sample sizes, the finite sample distributions generated from
different ARMA models are fairly similar. The latter result suggests that the ADF
methodology works fairly well in finite samples for our data set.

Using the finite sample distributions of the Model (A) t-statistics, the actual sizes
of the asymptotic 5% tests range from 10.7% to 16.0%, producing an average size distortion
of 8.2%. The size of the Model (B) asymptotic 5% test is 13.8% and the average size for
the Model(C) t—statistics is 16.0%. These size distortions are presented graphically in
Figure 1, where we see that the finite sample densities of the minimum t—statistics are
shifted to the left of the asymptotic densities of the minimum t—statistics.

Assuming that the fitted ARMA models of the Nelson and Plosser series and the
postwar quarterly real GNP series are correct, we can use the Monte Carlo generated finite
sample distributions of our test statistics to test these series for a unit root. From the
above discussion we know that the asymptotic tests are too liberal, allowing us to reject the
unit root null too often. This effect can be seen graphically in Figure 2, which shows the
finite sample 5% critical values lying above the corresponding asymptotic critical values.
Using the finite sample distributions, we can no longer reject the unit root null at the 5%
level for the employment, nominal wage and common stock price series. On the other
hand, we can reject the unit root null at the 1% level for the industrial production series,
we can reject the null at the 2.5% level for the nominal GNP series and we can reject the
null at the 5% level for the real GNP series. The p—values computed from the above finite

sample distributions are presented, for comparison with the previous asymptotic results, in
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column three of Table 11. Thus, after endogenizing the break point selection procedure
and correcting for small sample biases we do not reject the unit root hypothesis for eight of
the eleven series for which Perron rejects the hypothesis. In accordance with Perron, how-
ever, we do reject the unit root null for the real GNP, nominal GNP and industrial
production series.

For the above series for which we do reject the unit root hypothesis, we investigate
the effect of relaxing the normality assumption on the finite sample distributions of our
test statistics. In particular, the large changes in the series at the estimated break points
suggest that the distributions of the innovations underlying the series may have fatter tails
than the normal distribution. In repeated samples under a distribution with a higher prob-
ability of generating tail events than the normal, our break point selection procedure will
tend to produce larger (in absolute value) t—statistics than in the normal case. Therefore,
with fat—tailed innovations, we expect the finite sample distributions of our test statistics
to shift further to the left.

To assess the normality assumption, Table 9 gives the estimated skewness and
kurtosis values for the residuals from the optimal ARMA models for the first differences of
the logarithms of the data series. Most of the series exhibit mild negative skewness. The
estimated kurtosis values for real GNP, industrial production and employment are only
slightly larger than three (the kurtosis for a standard normal random variable), whereas
the the values for nominal GNP, nominal wages and common stock prices are considerably
larger than three. 11 Hence, there is some evidence of leptokurtosis for some of the series.

A plausible family of distributions close to the normal but with thicker tails is the
Student—t family with n degrees of freedom. To determine the appropriate degrees of
freedom, we use a modified method of moments a.pproa.ch.12 In particular, for each series
under consideration, we compute by Monte Carlo the means of the sample kurtosis statistic
using the appropriate ARMA(p,q) model with iid Student—t innovations for various values

of 7. We then determine the t—distribution for each series by finding the closest match



20

between the observed sample kurtosis and the finite sample mean kurtosis values. The
finite sample mean values of the sample kurtosis and the degrees of freedom of the selected
t—distributions are given in the third and fourth columns of Table 9. Four degrees of
freedom are chosen for nominal GNP, five are chosen for nominal wages, six for common
stock prices, nine for both industrial production and real GNP and ten for employment.

Table 10A gives the percentage points of the finite sample distributions of our test
statistics for the above series. Table 11 (column four) reports the p—values computed from
these distributions. The percentage points obtained using the Student—t innovations are
uniformly larger than the corresponding percentage points determined from normal innova-
tions. Our test conclusions based on the Student—t distributions, however, remain
essentially the same as in the normal case. That is, we reject the unit root null at the 1%
level for the industrial production series, we reject at the 5% level for the real GNP and
nominal GNP series and we reject at the 10% level for the common stock price series. We
no longer reject at the 10% level for the nominal wage series, but we are still close to reject-
ing since the p—value is onty 11.7%. Thus, our rejections of the unit root hypothesis for
these series are not very sensitive to the relaxation of the normality assumption.

Lastly, we briefly investigate the effect that infinite variance innovations would
have on our test results, although the sample kurtosis estimates are not indicative of inno-
vations whose tails are that fat. We compute the finite sample distribution of our test
statistic, using the parameters of the nominal GNP series, under the assumption of ARMA
errors with innovations that follow a stable distribution with characteristic exponent « .13
Table 10B reports the percentage points of this distribution for various values of a. From
these results, we see that if the innovations have only slightly less than two moments finite
(e.g., a=1.9) one cannot reject the unit root hypothesis at the 5% level for any of the

series.
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6. CONCLUDING REMARKS

In this paper, we transform Perron’s unit root test that is conditional on structural
change at a known point in time into an unconditional unit root test. We also take into
consideration the effects of fai—tailed innovations on the performance of the tests. Our
analysis is motivated by the fact that the break points used by Perron are data dependent
and plots of drifting unit root processes often are very similar to plots of processes that are
stationary about a broken trend for some break point. The null hypothesis that we believe
is of most interest is a unit root process without any exogenous structural breaks and the
relevant alternative hypothesis is a trend stationary process with possible structural change
occurring at an unkrown point in time.

We systematically address the effects of endogenizing the break point selection pro-
cedure on the asymptotic distributions and finite sample distributions of Perron’s test
statistics for a unit root. Using our "estimated break point" asymptotic distributions, we
find less conclusive evidence against the unit root hypothesis than Perron finds for many of
the data series. We reverse his conclusions for five of the eleven Nelson and Plosser series
for which he rejects the unit root hypothesis at the 5% level, and we reverse his unit root
rejection for the postwar quarterly real GNP series. When we take into consideration small
sample biases and the effects of fat—tailed (but not infinite variance) innovations, we
reverse his conclusions for three more of the Nelson and Plosser series.

The reversals of some of Perron’s results should not be construed as providing evi-
dence for the unit root null hypothesis, since the power of our test against Perron’s trend
stationary alternatives is probably low for small to moderate changes in the trend func-
tions. Rather, the reversals should be viewed as establishing that there is less evidence
against the unit root hypothesis for many of the series than the results of Perron indicate.
On the other hand, for some of the series (industrial production, nominal GNP, and real

GNP), we reject the unit root hypothesis even after endogenizing the break point selection



22

procedure and accounting for moderately fat—tailed errors. For these series, our results

provide stronger evidence against the unit root hypothesis than that given by Perron.



APPENDIX A

One way to establish the convergence result in the theorem is to first show that the
finite dimensional distributions of t Eui(’\) , indexed by A, converge; i.e., for any finite
number J of A values one must show that (tzi(};),....t;i(A))" converges weakly to
(L{A), .-+, L{A5)) . Next one must show that the sequence of probability measures
associated with t Ezi(’\) is tight. If the above two conditions hold then we have the weak

convergence result t&i( )2 L{-) . Then, provided inf L()) is a continuous functional of
A€A

L{-) a.s. {L(-)] we get the desired result: inf t,i(A)= inf L{}).
AeA Y7 deA

Establishing the finite dimensional convergence of t &i()\) is trivial given Perron’s
results. Showing tightness, however, is a difficult task. We avoid the problem of
establishing tightness by using a different method of proof from the "fidi plus tightness"
method. The method we use appeals directly to the continuous mapping theorem (CMT).

the partial sum process XT(-), a rescaled version of the deterministic regressors

—1/2,T
¥

ZT("') , the process T Zp(+t/T)e, , the average squared innovations cr% and

an estimate 52(-) of the error variance. If we have joint weak convergence of the process
-1/2¢T 2 2
(Xp(+)s Zp(+,+), T / 51Zq(-, t/T)e,, o, 8°(+))°  to a process  (W(:), Z(-,-),
f%Z(-,r)dW(r), 02, 021(-))’ and if g is continuous with respect to (W(.), Z(-,-),
[32(-1)AW(r), %, 6*1(-))* on a set C with P{(W(-),Z(-,), [oZ(-.1)dW(r),
2 2 —1/2T 2 2
g,0 1('))1 € C} =1, then g(xT(')? ZT(':'): T / EIZT('it/T)et: oy 8 ('))
3 g(W(')r Z(':')’ f:(l)z( ’I)dw(r): 02, 021(')) by the CMT.
t —=1—1/2 . .
Let §, = Elej (Sg=0) and Xp(r)=¢ T / S[Tr] , (F1)/T<r<jfT for
j=1, ..., T, where o = limT_mT—IES% and [Tr] denotes the integer part of Tr.
Here, as in the theorem, we assume that the disturbances are iid so that

0“ = Ee% = oz € (0,0) . Under these assumptions, the disturbances {e,} satisfy an



invariance principle. Specifically, as processes indexed by r € {0,1], we have

XT('):W(') a8 T-o,

where W(r) denotes a standard Brownian motion or Wiener process on [0,1]. In addition,

a,?r = T_IE'{e% B, g%, Asin the theorem, we take A to be a closed subset of (0,1).
Throughout what follows " 3 " denotes weak convergence and " =" denotes equiv-
alence in distribution. For notational convenience we shall often denote W(r) by W .
Similarly, we will often write integrals with respect to Lebesgue measure such as | {I)W(r)dr
1
as [ OW'

We consider least squares regressions of the form

v, = B ap) + @A)y, + 80 (t=1,...,T)
for Models i=A,B and C. The vector ziT()\) encompasses the deterministic
components of the regression equation and it depends explicitly on the location of the break
fraction and the sample size. For example, in Model (A) we have z'?T(A)'
= (1,1,DU(})) , where DU,(A) =1 if ¢ > [TA] and 0 otherwise.
Let Z,}(A,r) = &:irziTr]T(A) denote a rescaled version of the deterministic regres-
sors, where 6,}, is a diagonal matrix of weights. For each i=A,B,C, thereis a
nonrandom function Zi(A,r) such that Z,iI,(A,r)—tZ(A,r) as T-o uniformly over
(A1) € A x[0,1). For example, in Model A we have
oA = [é To ]—1
001
and ZA(Ar) - Z2(01) = (1,1, du(A1))” , where du(Ag) =1 if 1> A, O otherwise,
The coefficient &i()\) and its t—statistic are invariant with respect to the value of
the drift p in the null model (6). Therefore, without loss of generality, weset g =0 in
(6).

The normalized bias for testing the null hypothesis ai =1 is given by



T(@(0) - 1) = (1728, O [TE Ty (e
and the t—statistic for testing o' = 1 is given by
500 = 178y, )2 2@ 00 - /sa)
= 7%y T E Y] e s

T i i ~1,T 2 T 1yT
where yt()\) =y, - (A)'[ 1z;T(A)z;T(A)’] 1z o(Ny, and s2(A) = TE1(y,
—ﬂl()\) z T()\) - (,\)yt 1) for Models i=A,B and C. For brevity we drop the
superscript i and only consider Model (A) for which z‘?T(A)’ =(1,t, DU, (1)) . The
proofs for Models (B) and (C) are analogous and are therefore omitted.

The test statistic of interest is

inf 1500 = inf [17253y (0 Ay, e 15OV

. . . _ o ~1/2,T
which we may write as a function of X [— XT(-)] y L [— Zp(-, )] , T L] 2qe,
[: T_l/ 2Er{‘ZT(-,t/T)et] , a.% and s> [: 52(-)] plus an asymptotically negligible
term:

inf 150) = gy, 2 T 25T 8e,,0%.5%) + 0,,(1), (A1)
€

where g is defined below. The symbol " o, 5(1) " denotes any random variable ¢(A) such

that sup |[¢(M\)]| B 0.
AEA

It will be useful to re—express g as the following composite functional

8(X g Zp, T 25720, 02, 6%)
2
- h*[h[Hl[aXT,ZT], H[oXp, Zp, T/ 251 Z e, 02), 5 ]] ,

where H, maps a function on [0,1] and a functionon A x [0,1] into a functionon A, H,

1/25T (A2)

maps a function on [0,1], a function on A x [0,1], a function on A, and a positive real
number into a function on A, h maps three functions on A into a function on A, and h*

maps a function on A into a real number. Specifically, for any real function m = m{-)
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on A,

h*(m) = inf m(}), (A3)
XA

and for any functions m; =m,(-), my = m,(-) and my = mg(-) on A,
bfm,, mg, mg)(-) = my(+) ™/ my(-)/my(-) - (Ag)

The fanctionals H, and H, are the functional analogs of the sample moments

~25T 2 ~15T ,
T 221Yt_1()\) and T Elyt—l(A)et, plus an opA(l) term. In particular,

2
—2.T 2 —2.T T ,1—1¢T
4Ty 0 = T2y, 2O [Bla gV ) 8 rgg ()

16T fr—1/2
-7 EI{T S,
2
, —1sT , —lp=1aT —1/2
—2,0(}) 6T[T 57 bz (Mg () aT] T8 602 (V)T /ss_l} +0,,(1) (45)

2
= ;},{axT(r) — Zp(A)’ [fng(A,s)zT(,\,s)fds]'l jéZT(A,s)aXT(s)ds} dr +0,,(1)

= H,[oXp, Z)00) + 0,3(1)
and

5Ty, (e, = T oy ~ 200 (Elrgg (g )] 5T2a 0 Je
=T8S, e,

— 1 %Te 1 1 (0) 6y [T_lzr{éTst(A)st(A) : ‘51‘] 05T s a VTS

+o0, 13(1) (AS)
= (1/2)(¢*X (1) - 03)

— 1% e 2, (At/T) [j(l]ZT(A,s)ZT(,\,s)ds] b2 (09)oXp(8)ds + 05(1)

~1/2,T 2
= HyloXq, Zp, T 25T 27, a2)(3) + 0,,(1)

For the analysis that follows, we require the following lemma.
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—1/2T 1
LEMMA At T H/2512.(., t/T)e, 3 ofL2(- )aW(z)

PROOF: The individual components of the vector T /281Z (At/T)e, are

T"ll 22}1et, T—3/ 2E}1tet and T_Il 2ETTA] +18 respectively. By straightforward man-
ipulations, we may express the above sums as functions of XT. That is,
~1/2¢T _ -3/2¢T, . _ 1 —1/2,T

T /75 e, = oXp(1), T 7% te, = a[XT(l) IOXT(r)dr] and T 2[TA]+1et

= 0Xp(1) = Xp(2)) - By joint convergence and the CMT, we have that

[T*llzz"sz(- ,t/T)et] ) [aW(l), a[wu) - f})w], o(W(1) - W(.))] ’
= 0/g2(- P)AW(r) . ©

Note that the convergence result of Lemma Al holds jointly with X(-)3 W(-).
Further, using arguments similar to those wused below it can be shown that

52(,\) =%+ opA(l) . Since Zgp(-,-) has the degenerate limiting distribution Z(:,.},

and a,% and s2(-) have the degenerate limit distributions o* and 021(-), where 1(-)
is the comstant function equal to 1 VieA, it follows that
(Xp(+)s Zrp(+5+)s 71/ 2E¥ZT(- 4/ T)ey, 02, 52(-))’ converges weakly 10

(W(-), Z(+,+), [gZ(-,X)AW(s), 0, o*1(-))" . Hence the desired result follows from the
CMT provided (A2) defines a continuous functional with probability one with respect to
the limit process (W(-), Z(-,), f(l)Z(-,r)dW(r), 02, 021(-))' . In what follows, continuity
is defined using the uniform metric on the space of functions on A and on the space of
functions on [0,1].

We prove the continuity of g in a series of steps. The first step establishes con-
tinuity of H; at (W,Z) and H, at (W,Z, I(I}Z(-,r)dW(r), 02) a.s. [W]. The second
step establishes comtinuity of him;, my, my)(-) at (m;, m,, m,) =(H,[cW,Z],
Hy[oW, Z, féZ(-,r)dW(r), 02], 021) a.s. [W]. The last step establishes the continuity of
h*{(m) at all real functions m on A . The continuity of g then follows from the con-

tinuity of a composition of continuous functions and the result of the theorem follows from

the CMT.
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LEMMA A2: The functions H; and H, defined in (A5) and (A6) are continuous at
(W,Z) and (W, Z, [ (l)Z(-,r)dW(r), 02) , respectively, with W —probability one.

PROOF: From (A5) we see that the functional H,[¢W,Z](A) is simply the sum of pro-
ducts of the functions | (I)W2 , | (I)Z(A,I)W(r)dr , and [IéZ(z\,r)Z(A,r)'dr] -1 , each of
which is being viewed as a map that maps oW(-) on [0,i] and Z(-,-)on A x{0,1] toa
function on A . From (A6) we see that H,[oW,Z, | (I]Z(-,r)dW(r), 02]()\) is similarly
defined with the addition of the terms W(1), [LZ(Ar)dW(r), and o°.

H, with respect to (W,Z) and H, with respect to (W, Z, I[I)Z(-,r)dW(r), 02) follows

Continuity of

from continuity of each of the above functions  with respect to (W,Z)

(W, Z, | éz(-,:)dW(r), 02) respectively) with W—probability one provided each function

is bounded over A ; i.e., provided suR |/ éZ()\,r)W(r)dﬂ < o and likewise for the other
A€

functions. Let [g2Z’ = [gB(AT)Z(),x) dr . The function [f(l)zzf]‘l will be continuous
and bounded over [0,1] provided in}f\ det [][I)ZZ'] > 0. Since det [[%)ZZ'] = (1/3)(1-2)
€

— (1/8)(1=3D)? — (1)) 1022 + (1/4)(1=X)(1-22) — (1/3)(1-2)2 , inf det [;ézzf} >0
€

if A is a closed subset of (0,1), which we assume. For the integral functions involving
W, consider | (l]W2 for example. Let W and W be two Wiener processes on [0,1] such

that for some >0 sup |W(r) — W(r)] < §. Then
re|0,1

152 _ Ly 2 _ w2
oW = 1)W lgrefg?ulw(r) W(r)|

¢ sup |W(t)—W(r)|- sup |W(r)+ W(r)|
re[0,1] r€[0,1]

<6 sup |W(r) + W(r)| .
1e[0,1]

Since W and W are continuous functions with probability one on the compact set [0,1],

sup |W(r) + W(r)] <= with probability one and continuity follows on a set with
re{0,1

W—probability one. Similar proofs hold for j{IJZ(/\,r)W(r)dr and féZ(A,r)dW(r), using



the fact that the latter function can be written as an explicit function of W(-) as in the

proof of Lemma Al.

REMARK: The functions H [oW,Z|(A) and Hy[oW, Z, [ Z(-,0)dW(r), S*](A)
may be expressed as 02]{1)W(A,r)2dr and azj(I]W(,\,r)dW(r), respectively, where W(Ar)

is the limit expression of the projection residual yt(A) ; e,

W(A,1) = W(t) — Z(\2)" [jéZ(g,s)Z(A,g)fds] 20 )W(s)ds . (AT)

LEMMA A3: The function h defined in (A4) is continuous at (m,, m,, m3)
= (H,[¢W,Z], Hy[oW, Z, féZ(-,r)dW(r), 02], 021) with W—probability one.

PROOF: Since bfmy, my, mgl(-) = my(-) "/ 2my(-)}/my(-), h is continuous at
(m,, my, mg) = (H, [0W,Z], Hy[oW, Z, [Z(+,1)dW(r), 0%}, °1) with W—probability one

provided ¢°>0 and inf|H,[oW,Z)(3)| >0 with probability one.  Suppose
A€

Hl[aW,Z]()\) = 0 with positive W—probability. Then, since Hl[aW,Z](A) is continuous
in A with W—probability one and A is compact, there exists a [0,1]—valued random var-

iable A, such that for those realizations of W for which inf|H,[cW,Z](A)| =0 we
AEA

0
have H;[oW,Z](Ag) =0 and Ay €A, for other realizations of W A; =0, and A; >0
with positive probability. In consequence, on a set with positive probability W(Ao,r) =0
Vr e [0,1] . From the definition of W(,\O,r) given in (A7) above, this implies that

1 -1,1
W) = Z(Ag, 1)° [!OZ(AO,S)Z(AO, s)’ds] 13203y, YW (s)ds

(A8)

= (1, 1, du(Ag, 1))- C(W, A)

¥re[0,1], where C(W, ;) is a (3x1) vector, independent of 1, with elements
Cl(W, ’\0) , Cz(W, AO) and C3(W, )\0) respectively. Now consider any 0<r, <1,
<1y <inf{d:Xe A}. By definition of the Wiener process, the increments
W(rs) - W(r;) and W(ry) —W(r;) are independent. On the other hand, by (A8),
W(rg) — W(r,) = Co(W, Ag)(rq —15) and W(ry) —W(r,) = Co(W, Ag)(zy —1;) on a set
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with positive probability. This implies that these increments are not independent, which is
a contradiction. Hence we conclude that AO = 0 with probability one and the desired

result follows. o
LEMMA A4: The function h* defined in (A3) is continuous at all functions m on A .

PROOF: Given ¢>90, let m and m be two functions on A such that

iug m(A) -~ m(A)| < €. Then the result follows from the inequality
€

|inf m(A) —inf @m(A)| € sup |m(A) —m(A)| <e.o
AEA AEA AcA )

The proof of the theorem follows from Lemmas A1—A4, the continuity of a compo-
sition of continuous functions and the CMT. The expression for the limit distribution
given in the theorem may be verified by using the integral representations of H,[oW,Z](-)
and Hy[oW, Z, | éZ(- ,I)dW(r), 02](-) described in the above remark.



APPENDIX B

This appendix details the approach used to approximate the limiting distributions
in Theorem 1. It is instructive to outline the steps of the approximation since our metho-
dology for approximating the limiting distributions differs slightly from the procedure used
by Perron. First we generate N = 1000 iid N(0,1) random variables, {et}, and form the
(N = 1) vector of partial sums, S. Then for each value of A = j/N, where j runs from
2 to 999, we create the data matrix Xi(A) = (Zi()\), S ,), where Zi()\) contains the
deterministic components of the regressions, and construct the projection residual vector
sl = (1= xied(a) xi(2)71x1(2))S for each model i=A, B, C. We then form
sample moments that converge as N -« to the functions of the standardized Wiener pro-

cesses that are involved in the expressions in the theorem. That is, we form

~1gN i 1 g

I\ sj‘()\)j_lej [=> fo WH(AT)AW as qu] and
N S [= LW s N..m] .

Using these values we form the approximate expressions for the limiting distributions of

the statistics for a fixed value of A, eg.,

L= [N—%If si(,\)?_l]_ll 2{N'121f si(,\)j_lej] .

We do this for each value of A = j/N for 1 < j< N and from these N—2 expressions we
define Aiinf to be the value of A that minimizes the above expression. The test statistic
approximations evaluated at these values of A give the corresponding approximate limit-
ing distributions of the test statistics. This process gives us one observation from the
asymptotic distributions of the test statistics. We repeat this process 5000 times and

obtain the critical values for the limiting distributions from the sorted vector of replicated

statistics.
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FOOTNOTES

1Phi}lips (1988b) argues, on the other hand, that the need for structural shifts to eliminate
the statistical evidence in favor of the unit root hypothesis actually provides support for
this hypothesis because such adjustments attach unit weight, and hence persistence, to
certain observations.

2perron also considers the normalized bias statistic, T(&{)) —1) . This statistic cannot be
used to test the unit root hypothesis with the ADF methodology, however, since its asymp-
totic distribution depends on an infinite number of nuisance parameters. On the other
hand, it can be used if Phillips type corrections are employed. Since we use the ADF
methodology we will not consider this statistic.

3Several recent papers in the econometric literature consider the problem of testing for
structural change with unknown change point, see Ploberger, Krimer, and Kontrus (1989),
Andrews (198?5, Chu (1989), and Hansen (1990). The problem considered here differs from
that considered in the aforementioned papers. The problem considered here is one of test-
ing for a unit root against the alternative of stationarity with structural change at some
unknown point.

4Except for one series, the effect of excluding D(Tg), from (1/) and (3") is to increase (in

absolute value) the magnitude of the t—statistic for testing o' = 1. The actual changes in
the t—statistics for the series with estimated break points equal to Perron’s break points
are: —55 (real GNP), —40 (nominal GNP), —.52 (real per capita GNP), —.48 (industrial
production), —44 (employment), —.08 (GNP deflator), .11 (nominal wages), —05 (money
stock). For the series with estimated break points different from Perron’s choices, the
changes in the t—statistics are: —1.48 (consumer prices), —1.73 (velocity), —53 (interest
rates), —01 {quarterly real GNP), —.74 (common stock prices) and —.46 (real wages).

SThis range corresponds to our choice of A =[.001,.999] . In fact, the results are not
sensitive to this particular choice of A .

611; is important to note that the number of extra regressors, k, required for the ADF
regressions was allowed to vary for each tentative choice of A. We determined k using
the same selection procedure as that used by Perron. That is, working backwards from

k = k, we chose the first value of k such that the t—statistic on Ek was greater than 1.6
in absolute value and the t—statistic on ¢ { for {> k was less than 1.6. For the Nelson

and Plosser series we set k=8 and for the postwar quarterly real GNP series we set
k = 12. These are the same values of k used by Perron (although a typographical error
in his paper erroneously indicates that he used k = 12 for the Nelson and Plosser series).
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"The critical values for Perron’s test statistics presented in our Tables 2B, 3B and 4B were
generated from projection residual approximations instead of the approximations used in
Perron’s Theorem 2 to give more accurate comparisons with the critical values derived in
this paper. The two techniques give approximately the same results and any difference can
be attributed to simulation error.

8The Nelson and Plosser data were generously provided by Charles Nelson. The postwar
quarterly real GNP series {GNP82) was extracied from the Citibase databank.

90f course, our inability to reject the unit root null hypothesis for these series should not
be interpreted as an acceptance of the unit root hypothesis.

10’1‘11e finite sample distributions of our test statistics are sensitive to the procedure used to
determine k, the number of lags of first differences of the data used in the regressions
(1)~(37). In particular, when k is fixed at some value, say k*, for each tentative
choice of the break fraction X instead of being allowed to vary, the fixed—k finite sample
distributions of the minimum t—statistics are much closer to the appropriate asymptotic
distributions than the random-k finite sample distributions. Furthermore, this result
obtains regardless of the value of k* chosen (for k* < 8 for the Nelson and Plosser data
and k* < 12 for the postwar quarterly real GNP data). For example, the 1%, 2.5%, 5%
and 10% points (based on 5000 repetitions) of the fixed—k distributions for the nominal
GNP series are: (1) k¥ = 2: —5.55, —5.21, —4.89, —4.62; (2) k* = 4 : —5.52, —5.18, —4.94,
—4.63; (3) k* = 6: —5.56, —5.19, —4.91, —4.60; (4) k* = 8: —5.61, —5.17, —4.88, —4.60. These
percentage points are, on average over k* 10% smaller (in absolute value) than the
random—k percentage points reported in Table 8A. The p—values for nominal GNP com-
puted from the above four fixed—k distributions are .005, .003, .05 and .005, whereas the
asymptotic p—value is .003 and the p—value computed from the random—k distribution is
017,

11For a sequence of iid normal random variables, the sample kurtosis has standard error

equal to (24/T)1/ 2 Using this formula, the estimated kurtosis values for the nominal
GNP, nominal wages and common stock prices are 4.3, 2.3 and 5.7 standard deviations
larger than the kurtosis values of a normal random variable.

2we originally tried the traditional method of moments approach to estimate 7 by using
the fact that the kurtosis of a Student—t random variable with 75 degrees of freedom is
3+ 6/(n—4). Using this method, six degrees of freedom were determined for nominal
GNP and common stock prices, eight were chosen for nominal wages, twelve for both
industrial production and employment and sixteen for real GNP. Our test conclusions
based on these t—distributions are the same as in the normal case.

13The characteristic function for a symmetric stable random variable Z is of the form
é(u) = exp(—d|u|%), where ae€ (0,2] is referred to as the characteristic exponent and
at/ee [0,0) is the scale parameter. If a=2 then Z~N(0,2d). If a=1, then Z has

the Cauchy distribution with probability density f(z) = (d/1r%[d2 + zz] 1. The use of
stable ARMA models is discussed by Brockwell and Davis (1987), chapter 12. The authors
would like to thank Mico Loretan for generously providing the GAUSS code to simulate
stable random variables.
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TABLE 1
Minimum t—Statistics

| Rank
?ieieSAl,B,C) t—elstat year t—jtat year t—-gtat year
Real GNPA 558~ 1020  —434 1928  -3.89 1927
Nominal GNPA 582" 1020  —436 1027  —4.23 1928
Real Per Capita GNPA 461" 1020  —4.20 1928  —4.00 1027
Industrial Production®  —5.95 1920  —5.40 1928  —5.00 1927
Employment® 495" 1929 —4m 1928 —4.38 1927
GNP Deflator™ 412 1929 -390 1928  -3.82 1930
Consumer Prices’ —2.76 1873  -2.60 1872  -2.64 1864
Nominal Wages™ 530 1029 510 1930  —4.61 1928
Money Stock” 434 1920 434 1928 —4.32 1930
Velocity® ~3.39 1949  ~3.35 1047  —3.21 1946
Interest Rate” —0.98 1932  —0.96 1965  -0.91 1967
Quarterly Real GNP 390" 107301 —3.99 19741 —3.98 19731
Common Stock PricesC ~ -5.61 1036  —5.60 1937  -~552 1939
Real Wages© 47a™ 1040 467 1941 450 1031

Notes: The minimum t—statistics were determined as follows.

T—2 regressions.

For each series, equation
(1), (27) or (3") was estimated with the break point, Tg, ranging from t=2 to

t = T-1. For each regression, k was determined as in footnote 6 and the t—statistic for
testing o' =1 was computed. The minimum t—statistic reported is the minimum over all

The symbols *, ** and *** indicate that the unit root hypothesis is rejected at the 10%, 5%
and 1% levels, respectively, using Perron’s critical values.



TABLE 2A

Percentage Points of the Asymptotic Distribution of inf t A (1)
AeA

1.0% 2.5% 5.0% 10.0% 50.0% 90.0% 95.0% 97.5% 99.0%
—5.34 —-5.02 480 -4.58 -=3.75 -299 =277 -2.56 —2.32

TABLE 2B
Percentage Points of the Asymptotic Distribution of t.A (1) for a Fixed A

A 1.0% 25% 5.0% 10.0% 50.0% 90.0% 95.0% 97.5% 99.0%
0.1 —430 -3.93 -3.68 -—-340 -235 -138 -1.09 -0.78 046
0.2 —439 —4.08 -=3.77 -347 -245 -145 -114 0980 —0.54
0.3 —4.39 -4.03 -3.716 -3.46 -242 -143 -1.13 -0.83 -0.51
0.4 —434 —4.01 -3.72 -344 -240 -126 -0.88 -—0.55 021
0.5 432 —4.01 -3.76 -346 -237 -117 -0.79 045 -0.15
0.6 445 -—4.09 -3.76 -347 -238 -1.28 -0.92 —-0.60 -—0.26
0.7 —4.42 —407 -3.80 -3.51 -—245 -142 -1.10 -0.82 —0.50
0.8 433 -3.99 -3.75 -3.46 —243 -1.46 -1.13 —0.89 —0.57
0.9 -427 -397 -369 -3.38 239 -137 -1.04 —0.74 047

Notes: A = time of break relative to total sample size. Percentage points are based on 5000
repetitions.
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TABLE 3A

Percentage Points of the Asymptotic Distribution of :\ n K t.B(})
€

1.0% 25% 50% 10.0% 50.0% 90.0% 95.0% 97.5% 99.0%
—493 467 —442 411 -3.23 -248 231 =217 -1.97

TABLE 3B
Percentage Points of the Asymptotic Distribution of t.B (A) for a Fixed A

A 1.0% 25% 50% 10.0% 50.0% 90.0% 85.0% 97.5% 99.0%
0.1 4927 -394 -3656 -3.36 234 -135 -1.04 -0.78 -0.40
0.2 —-441 408 -380 -349 -250 -148 -1.18 -0.87 —0.52
0.3 —451 417 -3.87 -358 -254 -1.69 -1.27 097 -—0.69
0.4 —4.55 -—4.20 -3.94 -366 -2.61 -1.69 -~137 -1.11 —0.75
0.5 —455 —4.20 -3.96 -3.68 -270 -1.74 -140 -118 —0.82
0.6 . 457 —420 -3.95 -3.66 -261 -1.71 -136 -1.11 —0.78
0.7 —4.51 —4.13 -3.8 -3.57 -2.55 -1.61 -1.28 —0.97 -0.67
0.8 —4.38 407 -382 -3.50 -247 -1.49 -116 —0.87 -—0.54
0.9 —4.26 -3.96 -—3.68 -3.35 -233 -1.34 -1.04 077 043

Notes: A = time of break relative to total sample size. Percentage points are based on
5000 repetitions.
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TABLE 4A

Percentage Points of the Asymptotic Distribution of inf t.C (1)
A€A

1.0% 25% 50% 100% 50.0% 90.0% 95.0% 097.5% 99.0%
-5.57 —5.30 -5.08 —4.82 -3.98 -3.25 -3.06 -2.91 -—2.72

TABLE 4B
Percentage Points of the Asymptotic Distribution of t.C (1) for a Fixed A

A 1.0% 2.5% 5.0% 10.0% 50.0% 90.0% 95.0% 97.5% 99.0%
0.1 438 —4.01 -3.75 -3.45 -2.38 -144 111 -082 -045
0.2 -465 -4.32 -—-39% -3.66 —2.67 -1.60 -—-1.27 —0.98 —0.67
0.3 478 446 —4.17 -3.87 275 -1.718 -146 -1.15 -0.81
0.4 481 448 —4.22 -395 -2.88 -1.91 -1.62 -1.35 -1.04
0.5 490 -453 —4.24 -396 -291 -196 -1.69 -143 -1.07
0.6 488 —449 —424 -395 -2.87 -1.93 -1.63 -1.37 -1.08
0.7 475 444 —4.18 -3.86 -2.77 -1.81 -147 -1.17 —0.79
0.8 470 —4.31 —4.04 -369 -2.67 -1.63 -120 -1.04 —0.64
0.9 —4.41 —4.10 -3.80 -3.46 -241 -144 =112 —0.80 ~0.50

Notes: ) = time of break relative to total sample size. Percentage points are based on
5000 repetitions.

TABLE 5
Model Critical Value Size
A —3.68 0.551
B —3.96 0.142

C —4.24 0.345




TABLE 6A
Tests for 2 Unit Root: Model (A)

Regression: y, = ILA + ?PADU(.S\)t + E?At + &Ayt—l + E]i‘c‘? Ayt_j + &

Series T 'i‘B k ﬁA A ﬁA e S(é)

Real GNP 62 1929 8 3.514 —.195 027 267 .05
(5.62) (—4.92) (5.71) (=5.58)%+*

Nominal GNP 62 1929 8 5.040 —.311 032 532 07

(5.85) (~5.12) (5.97) (-5.82)***
Real Per Capita 62 1929 7 3.584 —117 012 494 056

GNP (4.62) (-3.41) (4.69) (4.61)*

Induystrial 111 1929 8 122 =317 034 .290 .088

Production (446) (-5.12) (5.91) (—5.95)%**

Employment 81 1929 7 3.564  —.051 .006 651 029
(4.97) (-3.14) (4.79) (—4.95)**

GNP Deflator 82 1929 5] 641 —-.091 007 .786 .044
(4.17) (-3.23) (4.14) (—4.12)

Consumer Prices 111 1873 2 217 —055 001 941 .043

(2.79) (-2.51) (3.27) (-2.76)

Nominal Wages 71 1920 7 2.126 —161  .017 660  .054
(5.35) (—4.16) (5.32) (-5.30)**

Money Stock 82 1920 6 288 —064 011  .823 044
(4.76) (-2.54) (4.25) (—4.34)

Velocity 102 1949 0 224 .095 —.002 .840 .064
(2.99) (3.09) (-2.95) (-3.39)
Interest Rate 71 1932 2 .065 —.444 013 945 272

(31) (—2.55) (3.09) (—98)
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TABLE 6B
Tests for a Unit Root: Model (B)
Regression: y, = > + B5t + ADTHR), + 72(4) ;
~B by pond y B ~fry ~
Yt(’\) = ﬂ’yt_l(A) + El{chY(A)t_j + €

 Series T oty kP BB 5B B s()
Quarterly Real 159 7311 10 6.978 .009 —.003 857 .010
GNP (1150) (97.3) (-11.4) (-3.99)

TABLE 6C

Tests for a Unit Root: Model (C)

Regression: y, = i© 4 I?CDU(J\)t + B+ :yCDT*(i)t + &Cyt_l + Ell‘é(j: By, i+ &
Series T Ty k€ §C i 5C & s(e)
Common 100 1936 1  .471  —226  .007 021 642 139
Stock Prices (5.12) (-3.25) (4.83) (4.80) (—5.B1)***

Real Wages 71 1940 8 2678 085  .012 008 115  .030
(4.81) (4.33) (4.49) (3.68) (—4.74)

Notes: t—statistics are in parentheses. The t—statistic for & is for testing o' =1. k is
determined as in footnote 6.

The symbols *,** and *** denote significance of the test of o =1 at the 10%, 5% and 1%
levels, respectively, using the critical values from TABLE 24, 3A or 4A.



TABLE 7A
Selected ARMA Models

Model: Ay, = B+ ?Ayt_l +e + P,

Series Model & ¥ B & AIC SBIC Q(x)
Real GNP (1,0) 341 — 029 061 —165 161 Q(22)

(2.78) (—) (2.50) 18.06
Nominal GNP (1,0)  .440 — .055 089 =120 116 Q(22)

(3.76) (—) (1.36) 23.57
Real Per (1,0) 331 — 016 062 164 —160 Q(22)
Capita GNP (2.69) (—) (1.36) 17.60
Employment (0,]) —  .388 016 .036 ~-302 278 Q(22)

(—) (38.712) (2.38) 18.53
GNP (1,0) 43¢ — 20 047 -262 257 Q(22)
Deflator 427y (—) (219) 21.55
Consumer (0,1) — 655 012 .046 365 360 Q(22)
Prices (—) (9.21) (1.73) 25.78
Nominal (0,1) —_ 474 .040 061  —192 188 Q(22)
Wages (—) (4.44) (3.81) 34.90
Money (1,0) 622 — 059 .048 —257 253 Q(22)
Stock (7.068) (—) (4.28) 22.19
Velocity (00) — 116 —012 068 -254 248 Q(22)

(—) (1.16) (~1.55) 21,53
Quarterly (1,0) .368 —  .005 .010 —992 986 Q(28)
Real GNP (4.94) (—) (6.08) 19.8(
Stock (0,) — 313 029 156 —84.6 -T9.5 Q(22)
Prices (—) (3.22) (1.40) 21.41
Real Wages (0,) — 205 018 .036 263 258 Q(22)

(—) (1.72) (3.50) 10.80

Notes: All models were estimated using PROC ARIMA in SAS. t—statistics are in
parentheses. AIC denotes the Akaike information criterion, SBIC denotes the Schwartz
criterion and Q(x) denotes the Box—Pierce statistic.



TABLE 7B
Selected ARMA Models

. — 7 Pz q
Model: Ay, =i+ Y08y, +e + Lide ;

T-8

Series Model 8, v i &  AIC SBIC Q(x)
Industrial (05) — 033 .043 095 ~-198 182 Q(18)
Production (—) (.36) 13.42

— —.087

(=) (-88)

— =022

(—) (24

—  —199

(—) (2.2

— =402

(—) (—446)
Interest (2,00 177 — 079 282 245 313 Q(21)
Rates (1.43) (—) (1.10) 14.98




TABLE 8A
Percentage Points of the Finite Sample Distribution of in J{ t A()\)
AeA @
Assuming Normal ARMA Innovations

Series/Model T 1.0% 25% 5.0% 10.0% 50.0% 90.0% 95.0% 97.5% 99.0%

Asymptotic o 534 —5.02 —4.80 —458 -3.75 -2.99 -2.77 -2.56 —2.32
Real GNP 62 —6.03 —5.65 -535 —4.99 -—3.96 -—2.90 -—247 -2.07 -1.51
ARMA(1,0)

Nominal GNP 62 —6.12 —5.67 -5.38 —5.05 —4.00 —-2.90 —-2.53 -2.14 -1.52
ARMA(1,0)

Real P.C. GNP 62 —6.03 —563 -532 —5.01 -3.99 —292 -—252 -223 -162
ARMA(1,0)

Ind. Prod. 111 —5.73 —5.41 -5.14 —4.86 -3.88 -3.01 -2.74 -2.52 -2.15
ARMA(0,5)

Employment 81 —5.92 —5.55 -526 —4.95 —3.97 —3.00 —2.66 -226 -171
ARMA(0,1)

GNP Deflator 82 -585 -5.50 521 -—4.87 =391 -2089 -262 -233 -1.82

CPI 111 —5.76 -5.46 -514 —4.85 —3.88 —2.97 -2.68 -2.34 —105
ARMA(0,1)

Nominal Wages 71 —5.93 —5.60 -5.33 —5.02 —4.01 -296 —255 —2.16 -1.90
ARMA(0,1)

Money Stock 82 —5.91 —5.49 —5.19 —4.90 -3.96 -2.94 -2.60 -2.22 -1.7
ARMA(1,0)

Velocity 102 —5.67 —537 512 -—4.85 -3.88 —3.02 -275 -247 -2.16
ARMA(0,1)

Interet Rate 71 —5.90 -5.64 -5.30 —5.00 -3.99 —2.95 -2.60 -231 -1.96
ARMA(3,0)
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TABLE 8B
Percentage Points of the Finite Sample Distribution of inf t B()\)
AeA &
Assuming Normal ARMA Innovations

Series/Model T 1.0% 25% 50% 100% 50.0% 90.0% 95.0% 97.5% 99.0%

Asymptotic o —493 467 442 411 323 -248 -231 =217 -197
Quarterly 159 —5.41 -5.16 —4.86 —4.59 -3.54 -2.70 -2.51 -2.34 ——-2.21
Real GNP
ARMA(1,0)

TABLE 8C

Percentage Points of the Finite Sample Distribution of inf t_ (1)
A€A &
Assuming Normal ARMA Innovations

Series/Model T 1.0% 25% 5.0% 10.0% 50.0% 90.0% 95.0% 97.5% 99.0%

Asymptotic o —557 —530 -508 —482 -398 —325 -3.06 -291 -2.72

Stock Prices 100 —6.30 —593 -5.63 531 —430 -330 -3.09 285 264
ARMA(0,1)

Real Wages 71 —6.25 -5.92 -568 -5.38 -—4.32 -3.36 -3.04 —281 -2.57
ARMA(0,1)

Note: Percentage points are based on 5000 repetitions.



TABLE 9
Skewness and Kurtosis Values for Residuals from ARMA Model for Ay,

T-11

Sampie Sample Finite Sample
Series Skewness Kurtosis Kurtosis df
Real GNP ~.317 3.400 3.426 9
Nominal GNP -1.146 5.868 4.804 4
Real Per Capita GNP -.235 3.257
Industrial Production -.737 3.722 3.815 9
Employment —424 3.469 3.420 10
GNP Deflator —.907 9.739
Consumer Prices 1.023 6.852
Nominal Wages -.304 4.658 4.283 5
Money Stock —.270 4.636
Velocity -.329 2.927
Interest Rate 751 4.413
Quarterly Real GNP —.061 3.828
Common Stock Prices —.390 4.324 4.351 6
Real Wages —.040 3.161

Note: The column labeled "Finite Sample Kurtosis" gives the mean kurtosis value
obtained from the finite sample distribution of the sample kurtosis using Student—t ARMA
innovation with degrees of freedom given in the adjacent column.
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TABLE 10A

Percentage Points of the Finite Sample Distribution of inf t .(})
AEA @
Assuming Student— ARMA Innovations

Series dd 1.0% 25% 5.0% 10.0% 50.0% 90.0% 95.0% 97.5% 99.0%
Nominal GNP 4 756 -640 -5.86 -531 —4.05 -3.01 263 220 -1.84
Real GNP 9 -616 -5.75 -53% -b.04 -398 -292 -257 213 -1.56
Ind. Prod. 9 -594 -560 -529 491 -395 -3.03 -273 -248 -~1.93

Employment 10 -5.98 -—5.67v -5.27 -b6.01 -3.98 -3.06 266 —2.32 -1.90
Nominal Wages & -7.26 -—-631 -5.81 -539 —411 -3.12 -282 -240 -1.86
Stock Prices 6 -666 -603 -584 546 -429 -337 -3.12 -291 271

Notes: The column labeled "df" gives the degrees of freedom of a Student—t random variable
which gives the closest match between the observed sample kurtosis and the finite sample mean
kurtosis value. Percentage points are based on 1000 repetitions.

TABLE 10 B
Percentage Points of the Finite Sample Distribution of inf t ,(})
Assuming Stable ARMA Innovations red @
o 1.0% 25% 5.0% 10.0% 50.0% 90.0% 95.0% 97.5% 99.0%
2.0 —-6.12 565 =537 505 -—4.00 -290 =253 -215 -1.51
1.9 -999 669 -6.00 -533 -408 -—292 -—-243 -195 -1.52
1.8 -12.0 -9.14 7.05 -5.87 411 -294 =251 -196 ~1.54
1.5 —49.3 -18.2 -12.2 -9.32 457 -3.00 257 -1.70 -1.50
1.0 —221 -93.0 —429 -208 572 -3.02 -245 -1.52 -1.01
0.5 -15622 —4518 893 205 -7.18 -3.42 -232 -141 —0.73

Notes: o is the characteristic exponent of a standard stable random variable. a=2
corresponds to a normal variate and « =1 corresponds to a Cauchy variate. The ARMA
innovations use the nominal GNP parameters. Percentage points are based on 5000
repetitions.
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TABLE 11
One Sided P—Values for the Minimum t—Statistics

Perron’s Asymptotic  F.S.N. F.S.T.
Series t—stat P—Value P—Value P—Value Value
Real GNP —5.58 .000*** 003 *** .029%* .035%*
(9)
Nominal GNP —5.82 000*** L001*** 017+ .(0%0*
4
Real Per Capita GNP —4.61 .003*** .091%* 216
Industrial Production —5.95 .000*** .000*** L005%** .(0(;9***
9
Employment —4.95 001%F¥* 031%* 101 .(12%
10
GNP Deflator -4.12 017 278 302
Consumer Prices -2.76 .340 951 .939
Nominal Wages —5.30 000*** 012%* .053* .(1%7
5
Money Stock -4.34 L008*** 174 .293
Velocity —3.39 104 137 174
Interest Rate -.08 939 999 999
Quarterly Real GNP —3.99 .033** 131 .286
Common Stock Prices —5.61 .000*** 009*** .055%* .(0';5*
6
Real Wages —4.74 .005*** 119 208

Notes: The symbols *, **, and *** denote rejection at the 10%, 5% and 1% levels respec-
tively. The column labeled "Perron’s P—Value" gives the p—values computed from
Perron’s fixed A distributions for the appropriate A value, the column labeled "F.S.N"
gives the p—values computed from the finite sample distributions using normal innovations
and the colurn labeled "F.S.T" gives the p—values computed from the finite sample distri-
butions using Student—t innovations. The degrees of freedom for the t—distribution
p—values are in parentheses.
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Figure 2 (cont'd)
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Figure 2 (cont'd)

Money Stock

Log Maney Stock T-Stats (abse value) 7

i mw/-/ e
d mple 5% GC.V.

a5 / Asymptotle 5% CV5

Perron'a §% C.V]4

413

12
25

41
1sHtu I p s il

18086 1906 1918 1928 1638 1946 1956 1066
Year

———1{og Money Stock - T-Statlstics

Interest Rates

T-Stats (abs valuas} 6

Finlte Sample 5% C.V.
Asymplotic 5% Vs

Intarest Rates

Parron's 5% G/V:[4

] ,_Ll pENEN) .l.L‘J_LLLLLI
1903 1913 1823 1933 1843 1953 1983
Year
—— Intwreat Rales T-Statiatica

Velocity

2 Log Velocity T-State (abs valua) 6

Finlte Sampile 5% C.V.
N A Asymptotic 5% C.V|

15

Perron's 5% C.V|4

o JMI.UWLWMI}UMWuUWM*MMHWJL o
1870 1880 1890 1900 1910 1620 1930 1040 1050 1960
Year

— Log Veloclty T-Statistics

Quarterly Real GNP

l.og Quarterly Real GNP T-Stats (abs vatua)

8,15 L]
705

7.76 |Finite Sampla 5% C.V.
Asymptotic 5% C.V., /
Perron’s 5% G.V.

7.55

7.35 VW }3
7.5 !
’ 12
sas5fF -
] 1 |
-3 43 oo B o o o A s o o o e e e A e o e e |
1847 1657 1873 1877 1886

Year

— Loy Quurieily RENP - T-Blatinties



Figure 2 {cont'd)
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