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Abstract: This paper considers input-to-state stability (ISS) analysis of discrete-time systems using
continuous Lyapunov functions. The contributions are as follows. Firstly, the existence of a continuous
Lyapunov function is related to inherent input-to-state stability on compact sets with respect to both inner
and outer perturbations. If the Lyapunov function is K -continuous, this result applies to unbounded
sets as well. Secondly, continuous control Lyapunov functions are employed to construct input-to-state
stabilizing control laws for discrete-time systems subject to bounded perturbations. The goal is to design
a receding horizon control scheme that allows the optimization of the ISS gain along a closed-loop

trajectory.

Keywords: Discrete-time, Stability, Input-to-state stability, Lyapunov methods, Predictive control.

1. INTRODUCTION

This paper focuses on the design of robust stabilizing con-
trol laws in general and the design of robust model predictive
control (MPC) laws in particular. A main motivation for this
research is that nominally stabilizing (MPC) controllers might
have no robustness properties with respect to disturbances. This
aspect was for the first time shown in (Grimm et al., 2004),
where it was indicated that asymptotically stable MPC closed-
loop systems may have zero robustness in the presence of
arbitrary small perturbations. This undesired phenomenon was
revealed in (Grimm et al., 2004) by showing that an asymptot-
ically stable MPC closed-loop system is not robustly asymptot-
ically stable for arbitrary small perturbations. More recently,
in (Lazar et al., 2009) the same phenomenon was exposed
for globally asymptotically stable (GAS) discrete-time systems
in terms of a lack of input-to-state stability (ISS) (Jiang and
Wang, 2001) to arbitrarily small inputs. The conclusion drawn
in (Lazar et al., 2009) is that GAS discrete-time systems which
admit a discontinuous Lyapunov function are not necessarily
inherently ISS, not even locally. As such, this observation is-
sued a valid warning for nominally stabilizing MPC schemes,
as in the case of nonlinear or hybrid systems the MPC candidate
Lyapunov function is typically a discontinuous function.

To deal with the phenomenon of non-robustness, it would be
useful to establish sufficient conditions under which nominally
stable systems are inherently ISS. A conjecture that is fre-
quently employed in the MPC literature is that the existence
of a continuous Lyapunov function is sufficient for inherent
ISS. The first contribution of this paper is to provide a formal
statement of this conjecture along with a complete proof. To
this end we will introduce a property called [C-continuity, which
generalizes Holder continuity on compact sets, and a property
called /C-continuity, which generalizes global Holder conti-
nuity. It is proven that continuity on a compact set is equivalent

with /C-continuity and that a stronger type of global uniform
continuity is equivalent with .-continuity. These results en-
able us to establish that every discrete-time system that admits
a continuous Lyapunov function is inherently ISS on a robustly
positively invariant compact set, with respect to both inner and
outer perturbations. The inclusion of inner perturbations (e.g.,
measurement noise or estimation error) is particularly relevant
for MPC, as most of the ISS results in this framework are
limited to outer perturbations (e.g., additive disturbances). A
previous article that considered nominal robustness of MPC in
terms of both inner and outer perturbations is (Messina et al.,
2005), where it was established that existence of a continuous
Lyapunov function is equivalent with robust GAS (RGAS) and
semiglobal practical asymptotic stability (SPAS). Also, therein
it was established that RGAS and SPAS are equivalent with
attenuated ISS and integral ISS, respectively. As most robust
stability results in MPC make use of the ISS framework, see,
e.g., (Limon et al., 2006; Magni et al., 2006; Lazar et al., 2008;
Lazar and Heemels, 2009), and integral ISS does not necessar-
ily imply ISS (Angeli et al., 2000), in this work we focus on
establishing inherent ISS with respect to both inner and outer
perturbations. In this context it is worth to mention the article
(Roset et al., 2008), where a connection was established be-
tween ISS to outer perturbations and ISS to inner perturbations
for general constrained discrete-time systems.

The second contribution of the paper deals with the design
of stabilizing MPC schemes that explicitly use a pre-defined
continuous control Lyapunov function (CLF). The results estab-
lished in the first part of the paper are used to show that inherent
ISS is guaranteed for the resulting closed-loop system. More-
over, the recently introduced notion of optimized ISS (Lazar
and Heemels, 2008) is employed to improve the disturbance
rejection properties of the controller.
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2. PRELIMINARIES

Let R, R, Z and Z denote the field of real numbers, the
set of non-negative reals, the set of integer numbers and the
set of non-negative integers, respectively. For every ¢ € R
and II C R we define II>, == {k € II | k > ¢} and
similarly II<., Ry := Il and Zy; := {k € Z | k € II}. For
a sequence w = {w(l)}1ez, with w(l) € R™, 1 € Z,, let
[wl = sup{[lw(D)|| |l € Z+} and let Wy := {w(l) }iez;q -
For a set S C R™, we denote by int(S) the interior, by OS the
boundary and by cl(S) the closure of S. For two arbitrary sets
SCR'andP C R, letS®P :={x+yl|zeS,yecP}
denote their Minkowski sum and let S ~ P := {z € R" |  +
P C S} denote their Pontryagin difference. A polyhedron (or
a polyhedral set) in R™ is a set obtained as the intersection of a
finite number of open and/or closed half-spaces. A polytope is a

closed and bounded polyhedron. Let || - || denote an arbitrary p-

norm. For a matrix Z € R"™*" let || Z|| := sup, % denote

its corresponding induced matrix norm.

A real valued scalar function ¢ with p(e) > 0 for all e # 0
is called a positive function. Let ¢; € Rs. A function ¢ :
Rio,c,) — Ry belongs to class K if it is continuous, strictly
increasing and ¢(0) = 0. A function ¢ : Ry — Ry belongs
to class Ko if ¢ € K and lim,_,o, ¢(s) = oo. A function
0 Ry x Ry — Ry belongs to class KL if for each fixed
k € Ry, B(-,k) € K and for each fixed s € Ry, ((s,-) is
decreasing and limy_,~ (s, k) = 0.

Fact 1. Letc; € Rog, o1 € K, ¢1 :
2 € Ko. Then 30;1 : R[O,CQ] — R[O,q] with co = ¢y (Cl) isa
IC-function and <p2_1 : Ry — Ry is a Co-function. O

Rjo,c;; — R4 and let

3. UNIFORM CONTINUITY ON COMPACT SETS

Definition 2. A function f : R™ — R is called uniformly
continuous on X C R" (or shortly, UC(X)) if there exists a
positive function § : Ry — Ry such that for all e € Ry
and all (z,y) € X2 := X x X with ||z — y|| < () it
holds that |f(z) — f(y)] < e. If f is UC(R™), then f is
called globally uniformly continuous (GUC). If f is GUC and
moreover, lim._,, 0(¢) = oo, f is called unbounded GUC. O

Definition 3. A function f : R™ — R is called Holder contin-
uous on X C R" (or shortly, HC(X)) if there exist a € R,
a € R such that |f(z) — f(y)| < al|lz — y||* forall (z,y) €
X2.If f is HC(R™), then f is called globally Holder continuous
(GHC). If a = 1, then f is called Lipschitz continuous. O
Fact 4. A function f : X — R that is UC(X) is continuous on
X, for X C R™. O
Fact 5. Heine-Cantor Theorem. Let X C R"™ be a compact set
and let f : X — R denote a continuous function on X. Then f
is UC(X). m|
Fact6. Let A,B C R"™ be arbitrary compact sets and let
f A — R denote a continuous function on A. Also, let
f(A) :=={f(z) | x € A}. Then f(A) and A @ B are compact
sets. m|
Fact7. Let X C R” be a compact set and let f : X — R
denote a continuous function on X. Then f attains its minimum
and maximum on X. a

Let X C R”™ be a compact set and let f : X — R be a
continuous function on X. Let M, := sup,x ||| and M; :=

Sup,ex | f ()|, where the supremum is an attainable maximum
by continuity of the norm and f, respectively, and Fact 7.

Definition 8. A function f : X — R is called KC-continuous on
X C R"™ (or shortly, KC(X)) if there exists ¢ : Ry .;] — Ry,
for some ¢1 € R>op,, such that ¢ € K and |f(z) — f(y)| <
e(lle — y)) forall (z,y) € X2. D
Definition 9. A function f : R™ — R is called /C,-continuous
on R™ (or alternatively, globally /.. -continuous (GKC)) if
there exists ¢ : Ry — Ry such that ¢ € K and |f(z) —
FW) < el —yl|) forall (z,y) € R™ x R™. o

Notice that the set of HC (GHC) functions is a subset of KC
(GKC) functions.

Lemma 10. Let X C R™ be a compact set. A function f : X —
R is UC(X) if and only if it is IC-continuous on X.

The proof of Lemma 10 is given in Appendix A.

Corollary 11. Let X C R™ be a compact set. A function
f : X — Ris continuous on X if and only if it is KC-continuous
on X.

Proof. The claim follows from Lemma 10 in combination with
Fact 4 and Fact 5. O

Lemma 12. A function f : R” — R is unbounded globally
uniformly continuous if and only if it is K,-continuous.

The proof of Lemma 12 is given in Appendix B.

Corollary 13. Every K.-continuous function f : R” — R is
globally uniformly continuous.

Proof. The claim follows from Lemma 12 and the fact that
every unbounded GUC function is a GUC function. O

4. INHERENT INPUT-TO-STATE STABILITY

Consider the discrete-time nominal system
and its perturbed counterpart

z(k+1) = V(x(k),e(k),d(k)), ke, ()
where z : Z, — R" is the state trajectory, e : Z; — R”
is an unknown inner perturbation trajectory, d : Z; — R"
is an unknown outer perturbation trajectory and ® : R" —
R™ ¥ : R"™ x R" x R" — R"™ are nonlinear maps with
U(x,0,0) := ®(x) for all z € R™ and ®(0) = 0. The reason
for distinguishing between inner and outer perturbations will be
made clear later in the section. For ease of notation we will use
x, e and d, respectively, to also denote a vector in R”. Let X,
E and D denote subsets of R™ that contain the origin in their
interior.

Definition 14. A set P C R™ with 0 € int(P) is called a
positively invariant (PI) set for system (1) if for all x € P
it holds that ®(z) € P. A set P C R™ with 0 € int(P) is
called a robustly positively invariant (RPI) set for system (2)
and (E, D), or shortly, RPI(E, D), if for all € P it holds that
U(z,e,d) € Pforall (e,d) € E x D. =]
Definition 15. We call system (1) asymptotically stable in X,
or shortly AS(X), if there exists a CL-function 3 such that for
each 2(0) € X it holds that ||z(k)|| < B(||z(0)|, k), Vk € Z.
We call system (1) GAS if it is AS(R™). O
Definition 16. We call system (2) input-to-state stable in X for
inputs in E and D, or shortly ISS(X,E,D), if there exist a KL-
function /3 and K-functions 71, 2 such that, for each z(0) € X,
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all e = {e(l)}iez, with e(l) € E for all | € Z, and all
d = {d(l)}icz, with d(l) € D for all [ € Z,, it holds that
the corresponding state trajectory of (2) satisfies

(k)| < B(lz(0)I, k) + 71 (llep—1ll) + v2(lld—1])
forall k € Zj; ). The system (2) is globally ISS if it is ISS(R",
R™, R™). ]

Throughout this article we will employ the following sufficient
conditions for analyzing ISS.

Theorem 17. Let ay, i, a3 € Koo, 01,09 € K, X C R™ with
0 € int(X). Let V : X — R be a function with V' (0) = 0 and
consider the following inequalities:

ar(flzl]) < V() < ao(llz]), (3a)
V(¥(z,e,d)) = V() < —as(llz]]) + or(el)) + o=(l|d])-
(3b)

(i) If X is a RPI(E,D) set for system (2) and inequalities (3)
hold for all x € X, e € E and all d € D, then system (2) is
ISS(XE, D). If inequalities (3) hold for all (z,e,d) € R™ x
R"™ x R™, then system (2) is globally ISS.

(ii) If X is a PI set for system (1) and inequalities (3) hold for
allz € X(z € R"),e € E = {0} and d € D = {0}, then
system (1) is AS(X) (GAS).

Definition 18. A function V' : X — R, that satisfies the
hypothesis of Theorem 17-(i) for some sets E,D is called
an ISS Lyapunov function on X for system (2), or shortly, an
ISS(X,E,D) Lyapunov function. An ISS(R™,R™,R™) Lyapunov
function is called a global ISS Lyapunov function. O
Definition 19. A function V' : X — R, that satisfies the
hypothesis of Theorem 17-(iz) is called a Lyapunov function
on X for system (2). A Lyapunov function on R” is called a
global Lyapunov function. O

The interested reader is referred to (Jiang and Wang, 2001;
Lazar et al., 2008) for a proof of Theorem 17. Notice that in
contrast to the continuous-time case, in discrete-time the above
sufficient conditions for ISS (GAS) only require the continuity
of the system dynamics and the (ISS) Lyapunov function at
x = 0, as indicated in (Lazar et al., 2006, 2008). However, in
what follows we will focus on continuous Lyapunov functions.
The interested reader is referred to (Lazar et al., 2009) for ISS
subtleties for discrete-time systems regarding discontinuous
Lyapunov functions.

The next two theorems consider the case when the perturbed
system (2) satisfies ¥(z, e, d) := ®(x+e)+dforall (z,e,d) €
R™ x R™ x R™, which exposes the difference between inner
and outer perturbations. The next result relates existence of a
continuous Lyapunov function to inherent ISS for system (1).

Theorem 20. Let X, E and ID be compact subsets of R™ with
the origin in their interior. Suppose that X is an RPI(E, D) set
for system (2). Furthermore, suppose that system (1) admits a
continuous Lyapunov function on X & [E. Then, system (2) is
ISSXLE, D).

Proof. The hypothesis implies that there exists a continuous
function V : X E — R, that satisfies (3a) forallz € X P E.
Thus, it satisfies (3a) for all x € X as well. Next, we prove that
V satisfies (3b) for all (z,e,d) € X X E x D.Let & := = + e.
As V is a Lyapunov function on X & [E for system (1), by
Definition 19 it follows that

V(®(2)) = V(2) +as(||z]]) <0, VieXaE @)

Since X is a RPI(E, D) set for system (2), from Corollary 11,
Fact 6, the reverse triangle inequality and using £ = = + e we
also have that there exist @1, o € K such that

V(@) = V()| < ei(llel]), (5a)
[V (@(2) +d) = V(®(@))| < er(lldl), (5b)
las(([2]1) — es(llz)] < @2(llel), (5¢)

for all (z,e,d) € X x E x D. Then, using the fact that a —
b < |a —b| = |b— al for any a,b € R and adding (5b) and (4)
yield
V(®(&) + d) = V(&) + as([lZ]) — L1 (ld]]) <0
forall € X ® E and all d € D. Adding and subtracting V ()
and as(]|z||) in the above inequality and using (5a) and (5¢),
respectively, along with the fact that a — b < |a — b| = |b — a|
for any a,b € R, yield
2
V(®(z+e)+d) =V (z) < —as(l|z])+D_ willlel)+e1 (),
i=1

for all (z,e,d) € X x E x D. Letting oy := Z?:l p; € Kand
o9 1= g € K yields that V satisfies (3b) for all (z, e, d) € X x
E x D. Hence, the claim follows from Theorem 17-(7). O

A global correspondent of Theorem 20 is stated next.

Theorem 21. Suppose that system (1) admits a C,-continuous
global Lyapunov function that satisfies (3b) for all z € R",
e € E={0}andd € D = {0} with a K -continuous
a3 € Kso. Then, system (2) is globally ISS.

Proof. The claim follows via the reasoning used in the proof
of Theorem 20, in combination with Definition 9. O

Consider next the discrete-time nominal system with a control

input
z(k+1) = ¢(z(k), u(z(k))),

and its perturbed counterpart

z(k+1) = ¢(z(k), u(z(k) +e(k))) +d(k), keZi, (7)
where v : R” — R™ is a state-feedback control law and
¢ : R" x R™ — R" is a nonlinear map with ¢(0,0) = 0.
For ease of notation we will use u to also denote a vector in
R™. Let U be a subset of R" with 0 € int(U).

Definition 22. Let X C R™ and U C R™ be compact sets. A
map ¢ : X x U — R” is called uniformly K-continuous on
X'if there exists ¢ : Ryg ., — Ry, for some ¢c1 € Rxapy,,
such that ¢ € K and [(z,u) — ¢(y, u)l| < (|l — y]]) for
allu € Uand all (z,y) € X2 Amap ¢ : R® x R™ — R" is
called uniformly K -continuous if there exists ¢ € K such
that ||¢(z, u) — ¢(y, u)|| < (||l — yl|) for all w € R™ and all
(z,y) € R x R™, O
Definition 23. Let X C R™ and U C R™. Suppose that u :
X — U is a known map with u(0) = 0. A set P C R™ with
0 € int(P) is called a PI set for system (6) if for all z € P it
holds that ¢(z, u(z)) € P. A set P C R™ with 0 € int(P) is
called a RPI(E, D) set for system (7) if for all x € P it holds
that ¢(x, u(x +e)) +d € P forall (e,d) € E x D. O

Theorem 24. Let X, U, E and D be compact sets with the
origin in their interior and let v : X @ E — U be a known
map with «(0) = 0. Suppose that X is a RPI(E, D) set for
system (7). Furthermore, suppose that system (6) admits a
continuous Lyapunov function on X @ E and the map ¢ is
uniformly C-continuous on X ¢ [E. Then, the system (7) is
ISSCXLE,D).

keZs, (6)
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Proof. Let & := x + e. Observe that forany x € X and e € E,
Z € X @ E and thus, ¢(z,u(z)) € X @ E, since system (6)
admits a Lyapunov function on X @ E. This further implies
implies that there exists a continuous function V : X@E — R,
such that

V(6(@,u(@)) - V(#) < —as(|l7l]), VieXBE (8
From Corollary 11 and Definition 22 it follows that there exist
©1, 2 € K such that:

< er([[o(@, u(®)) — dla, u(@))])

< p1(p2(lell)
for all (x,e) € X x E. Adding and subtracting V (¢(x, u(z))
in (8) and using the above inequality along with the fact that
a—0b<|a—"bl=|b—alforanya,bcR,yield

V(d(x,u(2))) = V(&) < —as([|Z]]) + w1(p2([lel]))-

Then, the claim follows via the reasoning used in the proof
of Theorem 20, by considering a perturbed system (2) with
U(z,e,d) = ¢(x,u(zr+e))+dforall (z,e,d) € R" x R" x
R™. O
Theorem 25. Let u R™ — R™ be a known map with
u(0) = 0. Suppose that system (6) admits a K..-continuous
global Lyapunov function that satisfies (3b) for all x € R”,
e € E = {0}and d € D = {0} with a K -continuous
a3 € K. Furthermore, suppose that ¢ is a uniformly /C..-
continuous map. Then, system (7) is globally ISS.

Proof. The claim follows via the reasoning used in the proof
of Theorem 24 in combination with the reasoning employed in
the proof of Theorem 21 and Definition 22. O
Remark 26. The local inherent ISS results of Theorem 20 and
Theorem 24 are obtained using a similar reasoning as the one
employed in (Messina et al., 2005) to establish local inher-
ent robustness (RGAS and SPAS) from a global continuous
Lyapunov function. The ISS results established in the above-
mentioned theorems require the existence of a suitable RPI
set, which is an additional requirement compared to (Messina
et al., 2005). Similarly to the results in (Messina et al., 2005),
the result of Theorem 20, which applies to systems without
a control input, does not require continuity of the system dy-
namics and the result of Theorem 24, which applies to systems
with a control input, does not require continuity of the state-
feedback control law. The same holds for the ISS results of
Theorem 21 and Theorem 25, respectively, which do not a
have a correspondent in (Messina et al., 2005). Notice that if
E = {0}, then the continuity assumptions on ¢ can be removed
in Theorem 24 and Theorem 25. O

5. OPTIMIZED INPUT-TO-STATE STABILITY

This section illustrates how a continuous control Lyapunov
function (CLF) (Kellett and Teel, 2004) can be employed to
design a stabilizing MPC scheme that is inherently input-to-
state stabilizing. As such, let us formally define a CLF for
system (6).

Definition 27. Let V' : X — R, be a candidate Lyapunov
function on X C R™, i.e., a function that satisfies (3a) for all
z € X. V is called a control Lyapunov function on X for system
(6) if there exists a map u : X — U with u(0) = 0 such that X
is a PI set for system (6) and

V(o(, u(x))) = V(z) < —as(|lz]), VeeX

A control Lyapunov function on R" is called a global control
Lyapunov function. O

Moreover, as it was recently pointed out in (Lazar and Heemels,
2008), besides guaranteeing inherent ISS, it would be desirable
to optimize the ISS gain of the closed-loop system, i.e., the
gain of the functions v1,v2 € K. In what follows we briefly
recall some of the results in (Lazar and Heemels, 2008), which
consider outer perturbations only, and provide some new in-
sights and extensions. For clarity of exposition we will treat the
case of outer perturbations separately from the case of inner
perturbations, as there is a crucial difference between the two
cases.

Let us begin with the case of outer perturbations. To optimize
disturbance attenuation for the closed-loop system, at each time
instant k € Z and for a given z(k) € X, it would be desirable
to simultaneously compute a control action u(z(k)) € U that
satisfies

(1) V(g(z(k), u(z(k))) +d) = V(x(k)) + as([=(k)|)
—oy([[d]) <0, Vde D ©

for oo (s) := n2(k)s?, 6 € Rwg, n2(k) € R+ and (ii) minimize
n2(k).

Next, we recall a solution to this problem that was given in
(Lazar and Heemels, 2008). Let D be a polytope and let d°,
o€ Z[LO], be the vertices of ID. Next, consider a finite set of
simplices S1, . . ., Sys with each simplex .S; equal to the convex
hull of the origin and a subset of the vertices of D, and such that
UM.S; = D, int(S;) Nint(S;) = 0 for i # 4, int(S;) # 0
for all i. More precisely, D; = Co{0,d%*,... d°'} and
{doi=1, ceey doi*l} C {d17 . ,do} (.e., {Oi,h ceey Oi,l} -
{1,...,0}) withd®, ... d° linearly independent. For each
simplex S; we define the matrix D; := [d°1 ... d°] € R,
which is invertible. Let A\,(k), kK € Z,, be optimization vari-
ables associated with each vertex d°. In what follows, when the
time dependency is irrelevant, it will be omitted for brevity of
presentation. Consider the following set of inequalities depend-

ing on u and {)\o}oez[w]i

V(¢(z,u(z))) — V(z) +as(||z]) <0, (10a)
V(¢(z,u(z)) +d°) — V(z) + as([|=]]) — Ao <0,
Yo € Z[LO]' (10b)

Theorem 28. (Lazar and Heemels, 2008). Let V be a convex
function. Suppose that for some a3 € Ko, and z € R" there
exist u(z) € R™ and {Ao(k)}oezy, o, € (R4)© such that
(10a) and (10b) hold. Then (9) holds for the same u(x), with
02(8) := 125 and

o 1 -1
= max (D, (1

where ; :=[Ao, , ... Ao, ] ERMLi=1,... M.
Let A := [A1,...,A0]" and let J(\) : R® — R, bea

function that satisfies aa([[A]]) < J(A) < as(||A]]) for some
ay, a5 € Koo for example, J(A) = max;—1,_ m ||/\iDi_1||.
Let N € Zoy, let J : R" x R™ x ... x R™ — R,

denote an arbitrary cost function that is zero at zero and define
u = {ul}lEZ[l,N]'
Problem 29. Let a3 € Koo, J(+), J(-) and V : X — Ry

be given. At time k € Z, let the state z(k) be known and
minimize the cost .J + J over u(k), A(k), subject to
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(k) € U, X(k) € (R4)°, d(a(k), ui(k)) € X ~ D,

(12a)
V(p(z(k),ui(k))) — V(z(k)) + as(|[z(k)[]) <0, (12b)

V(p(z(k),ui(k)) +d°) — V(z(k)) + az(||=(k)||)
— )\o(k) <0, Yo e Z[I,O]- (12¢)

Set

u(z(k)) = uf*(k). (13)
O

In the above problem u** (k) denotes a control law that selects

the first element of an arbitrary feasible sequence of inputs
u(k) € UV for all k € Z,. Moreover, because .J, and (12)
likewise, is a function of x(k), u®® (k) is a function of =(k) as

well.

Theorem 30. Let o1, a9, 03 € Koo, a continuous and convex
CLFV : X — Ry, acost J(-) and a cost J(-) be given.
Suppose that Problem 29 is feasible for all x € X and the map ¢
is uniformly /C-continuous on X. Then the closed-loop system
(7)-(13) is ISS(X, {0}, D).

Proof. For any k € Z, and (k) € X it holds that (k +
1) := ¢(x(k),u(z(k))) + d(k) € Xfor all d(k) € D by (12a).
Hence, Problem 29 is recursively feasible for all x € X. Then,
the result follows from (12b) and Theorem 24 with E = {0}.0

It is important to observe that Problem 29, although it inher-
ently guarantees a constant ISS gain, it provides freedom to
optimize the 1SS gain of the closed-loop system, by minimizing
the variables \i(k), ..., \o(k) via the cost J(-). As such, in
reality the gain 75 (k) of the function o5 (-) can be much smaller
for k > kg, for some ky € Z., depending on the actual state
trajectory.

Next, consider the case of inner perturbations. The goal is now
to simultaneously compute a control action u(Z(k)) € U at time
k € Z4 that satisfies

(i) V(o(z(k),u(z(k) +e))) = V(z(k)) + as([|lz(k)]])
—o1(fle]) <0, Ve € E (14)

for o1 (s) := n1(k)s®, 5 € Rsg, m1(k) € Rsg and (ii) minimize
71 (k). As done for outer perturbations, let E be a polytope and
let e¥, w = 1,...,W, be the vertices of E. Next, consider a
finite set of simplices St, ..., Sy with each simplex S; equal
to the convex hull of a subset of the vertices of E and the
origin, and such that UM, S; = E, int(S;) N int(S;) = 0
for i # j, int(S;) # 0 for all . More pre01sely, S; =

Co{0,e"i1, ..., e"it} and
{ewin .. evit} C{el, ..., eV}
(ie., {w7;71, - ,wi,l} - {1, ceey W}) with e%il, . .., eWil

linearly independent. For each simplex S; we define the matrix
E; = [ewit ... evit] € R which is invertible. Let \,, €
R be variables associated with each vertex e*.

Next, suppose that = is known. Notice that the assumption that
x is known is only used here to show how one can transform
(14) into a finite dimensional problem. The dependence on =
will be removed later, leading to a main stability result and an
MPC algorithm that only use the perturbed state & for feedback,
see Problem 32. Consider the following set of constraints:

V(o(&,u(#))) = V(z) + as([|z])) <0, (152)
V(o(@ — e u(@))) = V(z) + az(l|z]]) = Aw <0,

Theorem 31. Let as € Koo, let V be a convex function and let
¢ be an affine map of x for all u. If forx € R” and = x +
e € R" there exist u(2) € R™ and {Ay bwez, w, e ROV
such that (15a) and (15b) hold, then (14) holds for the same
u(z), with o1 (s) := n; s and

= NET! 1
o= max [JA B, (16)

where A; = [Au,, ... Auwy,] € RY and || -
corresponding induced matrix norm.

| is the

The proof of the above theorem, which is similar, mutatis
mutandis, to the proof of Theorem 28 is omitted due to space
limitations.

Based on the result of Theorem 31 we are now able to formulate
a finite dimensional optimization problem that results in closed-
loop ISS with respect to inner perturbation e(k) and moreover,
in optimization of the closed-loop trajectory-dependent ISS
gain. This will be achieved only based on knowledge of the
perturbed state & (k) and the set E.

Let A := [A1,..., Aw] " and let .J be defined similarly as done
for outer perturbations. Define next:
Viin(Z(k)) == min Vix a7
min (& (k) 2€Co({2(k)—el,....a(k)—eW }) ()
and
ag max(£(k)) = ag([l=[).  (18)

max
z€Co({E(k)—el,...,2(k)—eW})

Problem 32. Let az € Ko, J(-), J(-) and V : X — R, be
given. At time k € Z let the perturbed state #(k) be known
and minimize the cost J + J over u(k), A(k), subject to

u(k) e UV, A(k) € (R)Y, (192)

oz, uy (k) € X, Vo € Co({@(k) —el,...,a(k) — eV},
(19b)
V(¢(56(k),u1(k)))— in(2(k)) + a3 max (2(K)) <0, (19¢)
V(e(@(k) — e, u1(k))) = Vinin(£(K)) (19d)

+ 043,max( ( )) )‘w(k) <0,Vwe Z[ w]-
Set

u(@(k)) = uf™ (k). (20)
O

In the above problem u'*® (k) denotes a control law that selects
the first element of an arbitrary feasible sequence of inputs
u(k) € UY for all k € Z,. Moreover, because J, and (19)
likewise, is a function of #(k), ul®® (k) is a function of (k) as
well.

Theorem 33. Let ay, a0, 3 € Koo, a continuous and convex
CLFV : X®E — Ry, acost J(-) and a cost J(-) be given.
Suppose that Problem 32 is feasible for all z € X ® E and ¢
is an affine map of x for all u. Then the closed-loop system
(7)-(20) is ISS(X, E, {0}).

Proof. For any k¥ € Z, and #(k) € X & E it holds that
z(k) € Co({z(k) — el,...,2(k) — e"'}). Hence, it follows
that z(k + 1) = ¢(x(k),u(E(k))) € X for all e(k) € E by
(19b). Hence, Problem 32 is recursively feasible for all z € X®
E. Then, the result follows from (19c) and Theorem 24 with

D = {0}. O

Notice that a more restrictive condition is imposed on the
system dynamics ¢ for inner perturbations, i.e., ¢ should be
an affine map in x for all u, than for outer perturbations, i.e., ¢
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should be a uniformly XC-continuous map. Under the stronger
condition, the proposed MPC schemes can be combined in one
algorithm that yields optimized ISS(X,E,D).

6. CONCLUSIONS

Input-to-state stability analysis of discrete-time systems using
continuous Lyapunov functions was considered. Firstly, the ex-
istence of a continuous Lyapunov function was related to inher-
ent input-to-state stability on compact sets with respect to both
inner and outer perturbations. For K., -continuous Lyapunov
functions it was shown that this result applies to unbounded sets
as well. Secondly, continuous control Lyapunov functions were
employed to construct input-to-state stabilizing control laws for
discrete-time systems subject to bounded perturbations.
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Appendix A. PROOF OF LEMMA 10

Let us begin with the only if part. As f is UC(X), without any
loss of generality we can take 0 : R(O,ng] — Ry to be a

positive, non-decreasing function. Let 6* := 06(2My) > 0.
Next, let
5*+€—2Mf, EER(QMf,Q(Mw+Mf)—5*]'

Notice that §* < 2M,, and, if §* = 2M,,, then 6(¢) = (<) for
alle € Rg o(ar,+11;)—s5+]- Also, 0(2(M, + My) —6*) = 2M,.
Observe that the function ¢ : Roo,2(m,+0p)-5+1 — Reo,20,)
is non-decreasing and it extends the domain of 0(¢). Next, we
prove that there exists p : Ry 2(am, 4 11,)—6+] — Ry such that
p € K and p(e) < d(¢) forall € € Rg,2(as, 4 11,)—s+)- Define

sp = inf {e]6(c) > 2M,0.5"}, Vke€Z,. (Al
e€R~o
Then, define
i 0.5%
ple) = M, (05" + ——(c —sp41) ), (A2)
Sk — Sk+1

forall e € Ry, ., s, and all k& € Zy, p(0) := 0. Observe
that limg_,o s = 0, which implies that p is continuous at
zero. As lime s, p(e) = limgys, ple) = M,0.58~! for all
k € Zs1, p(so) = 2M, and sg = 2(M, + My) — %,
it follows that p is continuous on Ry o(as, +a1;)—6+]- Next,
observing that p(sy) = M,0.5571 = 2M,0.5% = 2p(sk+1)
for all £ € Z yields that p is strictly increasing. Hence, the
constructed function p : Rjg o(ar, 4+ 11)—s+] — Ry is of class
KC and, from (A.1) and (A.2) it follows that p(c) < §(e) for all
€ € R, +my)—s7)- As p(2(My + My) — 6*) = 2M,, by
Fact 1 it holds that p_l : R[072]\/[w] — R[O,Q(Mx+Mf)f§*] isa K-
function. As ||z — y|| < 2M,, for any z,y € X2, we can define
q == ||z — y|| and w := p~1(q). Since f is UC(X) it follows
that for all (z,y) € X2,
[z —yll = ¢ = p(w) < 5(w)
= |f(@) = fW)] <w=p |z -yl

Observing that p=* : Rjganr,) — Rioa(ma+n1,)—s+] is a K-
function completes the only if part of the proof.

The if part of the proof proceeds as follows. Let ¢ > 0 and
take 6(g) := ¢~ (min{e, 2M}). Then, by Definition 8, for all
(2,y) € X2 with [l — y|| < 6(e) it holds that

1f (@) = F()| < e(llz —yll) < (6(e)) < min{e, 2My} <e,
which completes the proof.

Appendix B. PROOF OF LEMMA 12

The claim for the only if part follows mutatis mutandis by
applying the reasoning used in the proof of Lemma 10. The
difference is that lim._, ., () = oo and as such, it suffices to
construct a Ko, function p : Ry — Ry such that p(g) < §(e)
for all € > 0. It is straightforward to verify that the function

0.5%

Sk — Sk+1
and p(0) := 0, where

sp = inf {e]d(e) > 0.5},

eeR<o

satisfies the desired properties. Similarly, for the if part it
suffices to observe that o' € K.

ple) == 0.5 + (e —sk41), Ve € Ry Yk eZ

Sk41,5k))

Vk €7



