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Abstract: This paper considers input-to-state stability (ISS) analysis of discrete-time systems using
continuous Lyapunov functions. The contributions are as follows. Firstly, the existence of a continuous
Lyapunov function is related to inherent input-to-state stability on compact sets with respect to both inner
and outer perturbations. If the Lyapunov function is -continuous, this result applies to unbounded
sets as well. Secondly, continuous control Lyapunov functions are employed to construct input-to-state
stabilizing control laws for discrete-time systems subject to bounded perturbations. The goal is to design
a receding horizon control scheme that allows the optimization of the ISS gain along a closed-loop
trajectory.
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1. INTRODUCTION

This paper focuses on the design of robust stabilizing con-
trol laws in general and the design of robust model predictive
control (MPC) laws in particular. A main motivation for this
research is that nominally stabilizing (MPC) controllers might
have no robustness properties with respect to disturbances. This
aspect was for the first time shown in (Grimm et al., 2004),
where it was indicated that asymptotically stable MPC closed-
loop systems may have zero robustness in the presence of
arbitrary small perturbations. This undesired phenomenon was
revealed in (Grimm et al., 2004) by showing that an asymptot-
ically stable MPC closed-loop system is not robustly asymptot-
ically stable for arbitrary small perturbations. More recently,
in (Lazar et al., 2009) the same phenomenon was exposed
for globally asymptotically stable (GAS) discrete-time systems
in terms of a lack of input-to-state stability (ISS) (Jiang and
Wang, 2001) to arbitrarily small inputs. The conclusion drawn
in (Lazar et al., 2009) is that GAS discrete-time systems which
admit a discontinuous Lyapunov function are not necessarily
inherently ISS, not even locally. As such, this observation is-
sued a valid warning for nominally stabilizing MPC schemes,
as in the case of nonlinear or hybrid systems the MPC candidate
Lyapunov function is typically a discontinuous function.

To deal with the phenomenon of non-robustness, it would be
useful to establish sufficient conditions under which nominally
stable systems are inherently ISS. A conjecture that is fre-
quently employed in the MPC literature is that the existence
of a continuous Lyapunov function is sufficient for inherent
ISS. The first contribution of this paper is to provide a formal
statement of this conjecture along with a complete proof. To
this end we will introduce a property called -continuity, which
generalizes Hölder continuity on compact sets, and a property
called -continuity, which generalizes global Hölder conti-
nuity. It is proven that continuity on a compact set is equivalent

with -continuity and that a stronger type of global uniform
continuity is equivalent with -continuity. These results en-
able us to establish that every discrete-time system that admits
a continuous Lyapunov function is inherently ISS on a robustly
positively invariant compact set, with respect to both inner and
outer perturbations. The inclusion of inner perturbations (e.g.,
measurement noise or estimation error) is particularly relevant
for MPC, as most of the ISS results in this framework are
limited to outer perturbations (e.g., additive disturbances). A
previous article that considered nominal robustness of MPC in
terms of both inner and outer perturbations is (Messina et al.,
2005), where it was established that existence of a continuous
Lyapunov function is equivalent with robust GAS (RGAS) and
semiglobal practical asymptotic stability (SPAS). Also, therein
it was established that RGAS and SPAS are equivalent with
attenuated ISS and integral ISS, respectively. As most robust
stability results in MPC make use of the ISS framework, see,
e.g., (Limon et al., 2006; Magni et al., 2006; Lazar et al., 2008;
Lazar and Heemels, 2009), and integral ISS does not necessar-
ily imply ISS (Angeli et al., 2000), in this work we focus on
establishing inherent ISS with respect to both inner and outer
perturbations. In this context it is worth to mention the article
(Roset et al., 2008), where a connection was established be-
tween ISS to outer perturbations and ISS to inner perturbations
for general constrained discrete-time systems.

The second contribution of the paper deals with the design
of stabilizing MPC schemes that explicitly use a pre-defined
continuous control Lyapunov function (CLF). The results estab-
lished in the first part of the paper are used to show that inherent
ISS is guaranteed for the resulting closed-loop system. More-
over, the recently introduced notion of optimized ISS (Lazar
and Heemels, 2008) is employed to improve the disturbance
rejection properties of the controller.
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2. PRELIMINARIES

Let , , and denote the field of real numbers, the
set of non-negative reals, the set of integer numbers and the
set of non-negative integers, respectively. For every
and  we define   and
similarly  ,   and   . For
a sequence  with , , let

and let


.

For a set , we denote by the interior, by the
boundary and by the closure of . For two arbitrary sets

and , let
denote their Minkowski sum and let

denote their Pontryagin difference. A polyhedron (or
a polyhedral set) in is a set obtained as the intersection of a
finite number of open and/or closed half-spaces. A polytope is a
closed and bounded polyhedron. Let denote an arbitrary -

norm. For a matrix let denote

its corresponding induced matrix norm.

A real valued scalar function with for all
is called a positive function. Let . A function

belongs to class if it is continuous, strictly

increasing and . A function belongs
to class if and . A function

belongs to class if for each fixed
, and for each fixed , is

decreasing and .

Fact 1. Let , , and let

. Then  with is a

-function and  is a -function. 

3. UNIFORM CONTINUITY ON COMPACT SETS

Definition 2. A function is called uniformly
continuous on (or shortly, UC( )) if there exists a
positive function such that for all
and all with  it
holds that  . If is UC( ), then is
called globally uniformly continuous (GUC). If is GUC and
moreover, , is called unbounded GUC. 

Definition 3. A function is called Hölder contin-
uous on (or shortly, HC( )) if there exist ,
 such that    for all

. If is HC( ), then is called globally Hölder continuous
(GHC). If  , then is called Lipschitz continuous. 

Fact 4. A function that is UC( ) is continuous on
, for . 

Fact 5. Heine-Cantor Theorem. Let be a compact set
and let denote a continuous function on . Then
is UC( ). 

Fact 6. Let be arbitrary compact sets and let
denote a continuous function on . Also, let

. Then and are compact
sets. 

Fact 7. Let be a compact set and let
denote a continuous function on . Then attains its minimum
and maximum on . 

Let be a compact set and let be a
continuous function on . Let and

, where the supremum is an attainable maximum
by continuity of the norm and , respectively, and Fact 7.

Definition 8. A function is called -continuous on
(or shortly, KC( )) if there exists ,

for some , such that and 
 for all . 

Definition 9. A function is called -continuous
on (or alternatively, globally -continuous (GKC)) if
there exists such that and 

 for all . 

Notice that the set of HC (GHC) functions is a subset of KC
(GKC) functions.

Lemma 10. Let be a compact set. A function
is UC( ) if and only if it is -continuous on .

The proof of Lemma 10 is given in Appendix A.

Corollary 11. Let be a compact set. A function
is continuous on if and only if it is -continuous

on .

Proof. The claim follows from Lemma 10 in combination with
Fact 4 and Fact 5. 

Lemma 12. A function is unbounded globally
uniformly continuous if and only if it is -continuous.

The proof of Lemma 12 is given in Appendix B.

Corollary 13. Every -continuous function is
globally uniformly continuous.

Proof. The claim follows from Lemma 12 and the fact that
every unbounded GUC function is a GUC function. 

4. INHERENT INPUT-TO-STATE STABILITY

Consider the discrete-time nominal system

(1)

and its perturbed counterpart

(2)

where is the state trajectory,
is an unknown inner perturbation trajectory,
is an unknown outer perturbation trajectory and

, are nonlinear maps with
for all and . The reason

for distinguishing between inner and outer perturbations will be
made clear later in the section. For ease of notation we will use

, and , respectively, to also denote a vector in . Let ,
and  denote subsets of that contain the origin in their

interior.

Definition 14. A set with is called a
positively invariant (PI) set for system (1) if for all
it holds that . A set with is
called a robustly positively invariant (RPI) set for system (2)
and  , or shortly, RPI( ), if for all it holds that

for all . 

Definition 15. We call system (1) asymptotically stable in ,
or shortly AS( ), if there exists a -function such that for
each it holds that , .
We call system (1) GAS if it is AS( ). 

Definition 16. We call system (2) input-to-state stable in for
inputs in and , or shortly ISS( , ,), if there exist a -
function and -functions , such that, for each ,
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all  with for all and all
  with  for all , it holds that
the corresponding state trajectory of (2) satisfies

  
for all . The system (2) is globally ISS if it is ISS( ,

, ). 

Throughout this article we will employ the following sufficient
conditions for analyzing ISS.

Theorem 17. Let    , , with
. Let be a function with and

consider the following inequalities:

  (3a)

 
(3b)

(i) If is a RPI( ,) set for system (2) and inequalities (3)
hold for all , and all , then system (2) is
ISS( , ,). If inequalities (3) hold for all

, then system (2) is globally ISS.

(ii) If is a PI set for system (1) and inequalities (3) hold for
all ( ), and  , then
system (1) is AS( ) (GAS).

Definition 18. A function that satisfies the
hypothesis of Theorem 17- for some sets  is called
an ISS Lyapunov function on for system (2), or shortly, an
ISS( , ,) Lyapunov function. An ISS( , , ) Lyapunov
function is called a global ISS Lyapunov function. 

Definition 19. A function that satisfies the
hypothesis of Theorem 17- is called a Lyapunov function
on for system (2). A Lyapunov function on is called a
global Lyapunov function. 

The interested reader is referred to (Jiang and Wang, 2001;
Lazar et al., 2008) for a proof of Theorem 17. Notice that in
contrast to the continuous-time case, in discrete-time the above
sufficient conditions for ISS (GAS) only require the continuity
of the system dynamics and the (ISS) Lyapunov function at

, as indicated in (Lazar et al., 2006, 2008). However, in
what follows we will focus on continuous Lyapunov functions.
The interested reader is referred to (Lazar et al., 2009) for ISS
subtleties for discrete-time systems regarding discontinuous
Lyapunov functions.

The next two theorems consider the case when the perturbed
system (2) satisfies for all

, which exposes the difference between inner
and outer perturbations. The next result relates existence of a
continuous Lyapunov function to inherent ISS for system (1).

Theorem 20. Let , and  be compact subsets of with
the origin in their interior. Suppose that is an RPI( ) set
for system (2). Furthermore, suppose that system (1) admits a
continuous Lyapunov function on . Then, system (2) is
ISS( , ,).

Proof. The hypothesis implies that there exists a continuous
function that satisfies (3a) for all .
Thus, it satisfies (3a) for all as well. Next, we prove that

satisfies (3b) for all . Let .
As is a Lyapunov function on for system (1), by
Definition 19 it follows that

  (4)

Since is a RPI( ) set for system (2), from Corollary 11,
Fact 6, the reverse triangle inequality and using we
also have that there exist such that

 (5a)

 (5b)

   (5c)

for all . Then, using the fact that 
  for any and adding (5b) and (4)

yield

  
for all and all . Adding and subtracting
and  in the above inequality and using (5a) and (5c),
respectively, along with the fact that   
for any , yield

 

for all . Letting and
yields that satisfies (3b) for all

. Hence, the claim follows from Theorem 17- . 

A global correspondent of Theorem 20 is stated next.

Theorem 21. Suppose that system (1) admits a -continuous
global Lyapunov function that satisfies (3b) for all ,

and  with a -continuous
 . Then, system (2) is globally ISS.

Proof. The claim follows via the reasoning used in the proof
of Theorem 20, in combination with Definition 9. 

Consider next the discrete-time nominal system with a control
input

(6)

and its perturbed counterpart

(7)

where is a state-feedback control law and
is a nonlinear map with .

For ease of notation we will use to also denote a vector in
. Let be a subset of with .

Definition 22. Let and be compact sets. A
map is called uniformly -continuous on

if there exists , for some ,

such that and   for
all and all . A map is
called uniformly -continuous if there exists such
that   for all and all

. 

Definition 23. Let and . Suppose that
is a known map with . A set with

is called a PI set for system (6) if for all it
holds that . A set with is
called a RPI( ) set for system (7) if for all it holds
that for all . 

Theorem 24. Let , , and  be compact sets with the
origin in their interior and let be a known
map with . Suppose that is a RPI( ) set for
system (7). Furthermore, suppose that system (6) admits a
continuous Lyapunov function on and the map is
uniformly -continuous on . Then, the system (7) is
ISS( , ,).
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Proof. Let . Observe that for any and ,
and thus, , since system (6)

admits a Lyapunov function on . This further implies
implies that there exists a continuous function
such that

  (8)

From Corollary 11 and Definition 22 it follows that there exist
such that:




for all . Adding and subtracting
in (8) and using the above inequality along with the fact that
   for any , yield

 
Then, the claim follows via the reasoning used in the proof
of Theorem 20, by considering a perturbed system (2) with

for all
. 

Theorem 25. Let be a known map with
. Suppose that system (6) admits a -continuous

global Lyapunov function that satisfies (3b) for all ,
and  with a -continuous

 . Furthermore, suppose that is a uniformly -
continuous map. Then, system (7) is globally ISS.

Proof. The claim follows via the reasoning used in the proof
of Theorem 24 in combination with the reasoning employed in
the proof of Theorem 21 and Definition 22. 

Remark 26. The local inherent ISS results of Theorem 20 and
Theorem 24 are obtained using a similar reasoning as the one
employed in (Messina et al., 2005) to establish local inher-
ent robustness (RGAS and SPAS) from a global continuous
Lyapunov function. The ISS results established in the above-
mentioned theorems require the existence of a suitable RPI
set, which is an additional requirement compared to (Messina
et al., 2005). Similarly to the results in (Messina et al., 2005),
the result of Theorem 20, which applies to systems without
a control input, does not require continuity of the system dy-
namics and the result of Theorem 24, which applies to systems
with a control input, does not require continuity of the state-
feedback control law. The same holds for the ISS results of
Theorem 21 and Theorem 25, respectively, which do not a
have a correspondent in (Messina et al., 2005). Notice that if

, then the continuity assumptions on can be removed
in Theorem 24 and Theorem 25. 

5. OPTIMIZED INPUT-TO-STATE STABILITY

This section illustrates how a continuous control Lyapunov
function (CLF) (Kellett and Teel, 2004) can be employed to
design a stabilizing MPC scheme that is inherently input-to-
state stabilizing. As such, let us formally define a CLF for
system (6).

Definition 27. Let be a candidate Lyapunov
function on , i.e., a function that satisfies (3a) for all

. is called a control Lyapunov function on for system
(6) if there exists a map with such that
is a PI set for system (6) and

 
A control Lyapunov function on is called a global control
Lyapunov function. 

Moreover, as it was recently pointed out in (Lazar and Heemels,
2008), besides guaranteeing inherent ISS, it would be desirable
to optimize the ISS gain of the closed-loop system, i.e., the
gain of the functions . In what follows we briefly
recall some of the results in (Lazar and Heemels, 2008), which
consider outer perturbations only, and provide some new in-
sights and extensions. For clarity of exposition we will treat the
case of outer perturbations separately from the case of inner
perturbations, as there is a crucial difference between the two
cases.

Let us begin with the case of outer perturbations. To optimize
disturbance attenuation for the closed-loop system, at each time
instant and for a given , it would be desirable
to simultaneously compute a control action that
satisfies

 

  (9)

for , , and (ii) minimize
.

Next, we recall a solution to this problem that was given in
(Lazar and Heemels, 2008). Let  be a polytope and let ,

, be the vertices of . Next, consider a finite set of
simplices with each simplex equal to the convex
hull of the origin and a subset of the vertices of , and such that

, for ,
for all . More precisely,   and

  (i.e.,
) with   linearly independent. For each

simplex we define the matrix   ,
which is invertible. Let , , be optimization vari-
ables associated with each vertex . In what follows, when the
time dependency is irrelevant, it will be omitted for brevity of
presentation. Consider the following set of inequalities depend-
ing on and


:

  (10a)

  
(10b)

Theorem 28. (Lazar and Heemels, 2008). Let be a convex
function. Suppose that for some  and there
exist and


such that

(10a) and (10b) hold. Then (9) holds for the same , with
and

 (11)

where
 

, .

Let and let be a
function that satisfies   for some

  ; for example,  .
Let , let
denote an arbitrary cost function that is zero at zero and define


.

Problem 29. Let  , , and
be given. At time let the state be known and
minimize the cost over , subject to
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(12a)

  (12b)

 

 (12c)

Set
feas (13)



In the above problem feas denotes a control law that selects
the first element of an arbitrary feasible sequence of inputs

for all . Moreover, because , and (12)
likewise, is a function of , feas is a function of as
well.

Theorem 30. Let    , a continuous and convex
CLF , a cost and a cost be given.
Suppose that Problem 29 is feasible for all and the map
is uniformly -continuous on . Then the closed-loop system
(7)-(13) is ISS( , , ).

Proof. For any and it holds that
for all  by (12a).

Hence, Problem 29 is recursively feasible for all . Then,
the result follows from (12b) and Theorem 24 with .

It is important to observe that Problem 29, although it inher-
ently guarantees a constant ISS gain, it provides freedom to
optimize the ISS gain of the closed-loop system, by minimizing
the variables via the cost . As such, in
reality the gain of the function can be much smaller
for , for some , depending on the actual state
trajectory.

Next, consider the case of inner perturbations. The goal is now
to simultaneously compute a control action at time

that satisfies

 

 (14)

for , , and (ii) minimize
. As done for outer perturbations, let be a polytope and

let , , be the vertices of . Next, consider a
finite set of simplices with each simplex equal
to the convex hull of a subset of the vertices of and the
origin, and such that ,
for , for all . More precisely,

  and

 

(i.e., ) with  

linearly independent. For each simplex we define the matrix
  , which is invertible. Let

be variables associated with each vertex .

Next, suppose that is known. Notice that the assumption that
is known is only used here to show how one can transform

(14) into a finite dimensional problem. The dependence on
will be removed later, leading to a main stability result and an
MPC algorithm that only use the perturbed state for feedback,
see Problem 32. Consider the following set of constraints:

  (15a)

   
(15b)

Theorem 31. Let  , let be a convex function and let
be an affine map of for all . If for and

there exist and


such that (15a) and (15b) hold, then (14) holds for the same
, with and

 (16)

where
 

and is the
corresponding induced matrix norm.

The proof of the above theorem, which is similar, mutatis
mutandis, to the proof of Theorem 28 is omitted due to space
limitations.

Based on the result of Theorem 31 we are now able to formulate
a finite dimensional optimization problem that results in closed-
loop ISS with respect to inner perturbation and moreover,
in optimization of the closed-loop trajectory-dependent ISS
gain. This will be achieved only based on knowledge of the
perturbed state and the set .

Let and let be defined similarly as done
for outer perturbations. Define next:

min
 

(17)

and

 max
 

 (18)

Problem 32. Let  , , and be
given. At time let the perturbed state be known
and minimize the cost over , subject to

(19a)

 
(19b)

 min  max (19c)

  min

 max  (19d)

Set
feas (20)



In the above problem feas denotes a control law that selects
the first element of an arbitrary feasible sequence of inputs

for all . Moreover, because , and (19)
likewise, is a function of , feas is a function of as
well.

Theorem 33. Let    , a continuous and convex
CLF , a cost and a cost be given.
Suppose that Problem 32 is feasible for all and
is an affine map of for all . Then the closed-loop system
(7)-(20) is ISS( , , ).

Proof. For any and it holds that
  . Hence, it follows

that for all by
(19b). Hence, Problem 32 is recursively feasible for all

. Then, the result follows from (19c) and Theorem 24 with
 . 

Notice that a more restrictive condition is imposed on the
system dynamics for inner perturbations, i.e., should be
an affine map in for all , than for outer perturbations, i.e.,
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should be a uniformly -continuous map. Under the stronger
condition, the proposed MPC schemes can be combined in one
algorithm that yields optimized ISS( , ,).

6. CONCLUSIONS

Input-to-state stability analysis of discrete-time systems using
continuous Lyapunov functions was considered. Firstly, the ex-
istence of a continuous Lyapunov function was related to inher-
ent input-to-state stability on compact sets with respect to both
inner and outer perturbations. For -continuous Lyapunov
functions it was shown that this result applies to unbounded sets
as well. Secondly, continuous control Lyapunov functions were
employed to construct input-to-state stabilizing control laws for
discrete-time systems subject to bounded perturbations.
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Appendix A. PROOF OF LEMMA 10

Let us begin with the only if part. As is UC( ), without any
loss of generality we can take to be a

positive, non-decreasing function. Let .
Next, let

  

Notice that and, if , then for
all   . Also,  .

Observe that the function  

is non-decreasing and it extends the domain of . Next, we
prove that there exists   such that

and for all   . Define


(A.1)

Then, define 

  (A.2)

for all  and all , . Observe
that , which implies that is continuous at
zero. As  for all

, and  ,
it follows that is continuous on   . Next,

observing that 

for all yields that is strictly increasing. Hence, the
constructed function   is of class

and, from (A.1) and (A.2) it follows that for all

  . As  , by

Fact 1 it holds that    is a -

function. As  for any , we can define
 and  . Since is UC( ) it follows

that for all ,


  

Observing that    is a -
function completes the only if part of the proof.

The if part of the proof proceeds as follows. Let and
take  . Then, by Definition 8, for all

with  it holds that

 
which completes the proof.

Appendix B. PROOF OF LEMMA 12

The claim for the only if part follows mutatis mutandis by
applying the reasoning used in the proof of Lemma 10. The
difference is that and as such, it suffices to
construct a function such that
for all . It is straightforward to verify that the function

  

and , where


satisfies the desired properties. Similarly, for the if part it
suffices to observe that  .


