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Based on a systematic analysis of the renormalization schemes in the general R¢ gauge, the
precise formulation of the equivalence theorem for longitudinal weak boson scatterings is given both
in the SU(2), Higgs theory and in the realistic SU(2) x U(1) electroweak theory to all orders in

the perturbation for an arbitrary Higgs boson mass my.

It is shown that there is generally a

renormalization-scheme- and £ dependent modification factor Cmoa and a simple formula for Cioq is
obtained. Furthermore, a convenient particular renormalization scheme is proposed in which Cod is
exactly unity. Results of Crnoa in other currently used schemes are also discussed especially on their
¢ and my dependence through explicit one-loop calculations. It is shown that in some currently
used schemes the deviation of Cmoq from unity and the £ dependence of Cmodq are significant even
in the large-my limit. Therefore care should be taken when applying the equivalence theorem.

PACS number(s): 12.15.Ji, 11.10.Gh

I. INTRODUCTION

The mechanism of electroweak symmetry breaking is
the most unclear issue in the standard model, and it will
be one of the most investigated problems in the future
study of high energy physics. At the Superconducting Su-
per Collider (SSC) and the CERN Large Hadron Collider
(LHC), the electroweak symmetry-breaking mechanism
can be probed through longitudinal weak boson scatter-
ings. Since the longitudinal component of the weak boson
Vg (V@ stands for W* or Z°) arises from absorbing the
would-be Goldstone boson ¢° through the Higgs mecha-
nism [1], one may intuitively believe that the scattering
of V#’s is related to the scattering of ¢*’s. The quanti-
tative relation between the two scattering amplitudes at
energy E > My is described by the well-known equiva-
lence theorem (ET) which states that

T(VE,..., Vi, 8) = T(i¢™,...,i¢"", @)+ O(Mw /E) ,
(1)

where ® denotes other possible on-shell physical parti-
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cles. This simple relation was first pointed out by Corn-
wall, Levin, and Tiktopoulos, and by Vayonakis [2] at
the tree level. A sketch of the proof in the ’t Hooft—
Feynman gauge for the case of n = 1 was then given by
Lee, Quigg, and Thacker [3]. Chanowitz and Gaillard [4],
followed by Gounaris, Kogerler, and Neufeld [5], studied
the general proof in the R¢ gauge and they claimed that
the simple relation (1) holds to all orders in perturbation
for arbitrary values of the Higgs boson mass mpy. As an
important and useful tool for studying the electroweak
symmetry breaking mechanism, this naive formulation
of the ET has been widely used by various authors [6].
However, it was pointed out recently by Yao and Yuan [7]
and Bagger and Schmidt [8] from a more careful exami-
nation of loop contributions that there should, in general,
be a modification factor Cpoq associated with each ex-
ternal Goldstone boson field ¢, and Cinoa # 1 beyond
the tree level; i.e., (1) should be modified as

T(VEr, ..., VEn,®) = ClooT(i¢™,. .. i¢*, &)
+O(Mw /E) . )

In Ref. [8], a complicated expression for Cpoq in the
SU(2), theory is given and it is argued that Cpoq can be
formally defined to be exactly unity by a suitable choice
of a Goldstone-boson wave function renormalization con-
stant, but no clue was found as to which renormalization
scheme will ensure Cpoq = 1. They then performed an
approximate simplification of Cpoq in the heavy Higgs
limit under certain subtraction conditions. In the realis-
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tic SU(2)xU(1) theory, we find that the general expres-
sions of Cproq are much more complicated (cf. Sec. III).
Since the ET is so useful, it is of special importance to
make this issue clearer and to exactly simplify the ex-
pressions for Cinod -

In this paper we shall present a systematic study of
the general proof of the precise formulation of the ET.
We first give a systematic analysis of the renormalization
schemes in the general R¢ gauge for both the SU(2).
theory and SU(2)xU(1) electroweak theory with special
attention to the freedom of adjusting the renormaliza-
tion constants in the unphysical sector restricted by the
Ward-Takahashi (WT) identities. Two particular renor-
malization schemes, scheme I and scheme II, with special
and convenient determinations of the unphysical renor-
malization constants are proposed for the sake of sim-
plifying the formulation of the ET. We then give a gen-
eral proof of the precise formulation of the ET which
is generally of the form of Eq. (2) to all orders in the
perturbation and for arbitrary value of my with Cpoq
specifically given. The precise formulation is given both
in the SU(2) theory and the realistic SU(2)xU(1) the-
ory which has not been systematically studied in the lit-
eratures. In (2), T(i¢p™,...,i¢%",®) and CP 4 are in
general unphysical quantities which depend on the renor-
malization scheme and the gauge parameter £, while the
product C7, T (i¢*,...,i¢%", ) is physical with an un-
certainty of O(Mw /FE); i.e., the leading order unphysical
parts in C%,_, and T'(i¢%,...,i¢%", @) cancel each other.
We shall see that in scheme I the expression for Cpogq i8
simplified as a single quantity already determined in this
renormalization scheme itself and in scheme II Cpoq
is ezactly unity; i.e., the original simple form (1) of the
ET holds in scheme II. The realization of these schemes
is irrelevant to the explicit calculation of Cp,0q4, so that
they are convenient in practical calculations. Finally,
we present several applications with explicit calculations
up to the one-loop level. The comparison of scheme II
with other currently used schemes is shown in the ex-

plicit results, and the £ and my dependence of C%,_; and
T(i¢™,...,i¢%,®) in schemes other than scheme II are

specially examined. It is shown that in some currently
used schemes the deviation of Cp,0q4 from unity and its £
and mpy dependence are significant even in the large-mpy
limit. Therefore care should be taken when applying the
ET. A brief sketch of this study has been published in
a previous Letter [9] and in this paper we present the
complete and detailed investigations.

This paper is organized as follows. Section II presents
the systematic analysis of the renormalization schemes in
the R, gauge for the SU(2), theory and the SU(2)xU(1)
electroweak theory in which scheme I and scheme II are
defined. The general proof of the precise formulation of
the ET is given in Sec. III. The £ and my dependence
of Croa and T'(i¢*,...,i¢%, ®) in some currently used
]

Z[J,1,1,K,L| =exp(iW[J, 1,1, K, L))

4843

renormalization schemes other than scheme II are exam-
ined in Sec. IV through explicit calculations up to one
loop for large my. Section V is an explicit illustration of
the up to one-loop results in scheme I and scheme II for
arbitrary mpy in the simple U(1) Higgs theory. A sum-
mary of this study and conclusions are given in Sec. VL.
In Appendix A, we present a simple derivation of the
Slavnov-Taylor identity used in Sec. III for the proof of
ET. Some technical details in the text are given in Ap-
pendixes B and C.

II. ANALYSIS OF THE RENORMALIZATION
SCHEMES IN THE GENERAL R; GAUGE

Consider the standard model. The weak boson, Higgs
boson, Goldstones boson, ghost, and antighost fields are
denoted by V2, H, ¢%, c?, and &%, respectively. We take
the general R; gauge with the gauge-fixing term of the
form

otk LT ®
F§ = (6)10,5" - (&) e

where the subscript 0 denotes the bare quantities. Here
we put in (3) a free parameter 3 instead of taking it to
be the mass of V5* for generality. Let xj be a general
symbol denoting the fields except c¢§ and €}, go be the
bare gauge coupling constant, and 7® be the generator
of the gauge group. Following Ref. {10] we define

Df(xo0) = R + T3

(4)
Re=["% 1800, if x} is the gauge field V2,
i 0 otherwise.
The Faddeev-Popov term Lpp can be written as
LFP = fd4y Eg(x)Mab(m’ y)68(y) bl (5)
My = K§ D8 (x0) »
where
a —la
Ka = ((60 2 Il) . 6
20T @) ©

When doing renormalization we determine the multi-
plicative renormalization constants for the physical sec-
tor in the same way as in Ref. [11], i.e., taking the usual
on-shell scheme. In what follows we concentrate our at-
tention to the renormalization of the unphysical sector.
In order to examine the freedom of adjusting the renor-
malization constants for the unphysical sector, we look
at the Ward-Takahashi (WT) identities for the inverse
propagators, which put constraints on the renormaliza-
tion constants. Consider the generating functional

= /DXODCODEO exp [z (S[Xo, o, Co] + /d‘lw(.]"xf, + I + &I + K"D:»'cg + %gof"bcL“cgcﬁ)):I )

™
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where %% is the structure constant of the gauge group,
S is the action of the fields including the gauge fixing
and the Faddeev-Popov terms, and J;, I, I*, K*, L® are
external sources. Let w be an infinitesimal Grassmann
parameter. The invariance of S under the Becchi-Rouet-
Stora-Tyutin (BRST) transformations [12]

X6 = Xo + Di(x0)Cow ,

g = c§ — 390fcheiw (8)

€ — € — F§(xo)w ,

leads to the following generating equation for the WT
identities [10]:

oo ot ot ot
6K; é'xil 8L, 8cty o )
ai or _ ir‘_
=0 SK; - 552’1 ’
where x%;,c%,c% are classical fields defined by
. W )4 a 1144
Xe1 = A Ca = A Cel = — (10)

oI,

[is

r=r+ /d‘*m%(Fg)z
with
F[Xcl) Cely Cely Ka L]

=WI[J,I,I,K,L] - /d4z(J,~in + L +e41,).

J
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Taking the functional derivatives of (9) with respect to
X €4s €, we obtain the following WT indentities for
the inverse progagators:

/d4z iﬁ_1~(z,y)Xai($az) =0,

0,25 - (11)
i55.05(2,y) = K§* Xui(y, ),
where So(z,vy) is the ghost propagator, and
< 82T
iDy Lz, y) = ——,
o 53 (y)dx (2) (12)

Xai(2,2) = (0T D2 (x0) (2)c5(2) 25 () -

In the following we analyze the renormalization
schemes for the unphysical sectors in the SU(2); the-
ory and the SU(2)xU(1) electroweak theory separately
based on the above WT identities.

A. The SU(2); theory

This is the case of neglecting the Weinberg angle in the
SU(2)xU(1) electroweak theory. In this case Vi§ = Wj.
We simply take £§ = &, Kk = ko for a = 1,2,3. We
define the renormalization constants in the unphysical
sector as

8 = Z2¢° ,c3 = Zoc® € = €, Eo = Zek , Ko = Dk .
(13)

In the present case, the specific form of WT identities
(11) (in the momentum representation) which give rela-
tions between renormalization constants reads

ikH[EDGE (k) + €5 Yk, ] + Mwoéo(kz)[m(;;y(k) —ikok,] =0,

O,uv
ik#[—iDy (k) + ikoky] + MwoCo(k?)[iDy by (k) + &ok3] =0 , (14)
iSq (k) = [1+ Aa(k?)][k? — EoroMwoCo(k*)]6as ,
where
N 2 k2
and
Au(k)5% = g3 | O1Ho(—k — )eb(@)Igs (k) -
2y50b = ___ 90 bed c(—k — a\cl(a)le® 16
Ba(k)5o = — ot [ (0165(—k ~ Qe@Ief (k) (16)

ik, Ay (K2)5% = — gocted / (OWEo(—k — g)c()|ca (k) ,
q

d4
in which / is short for / (2—73—4 . After renormalization, (14) becomes
q
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l 1 1
kDL (k) + € huk] + Zany, (B * Co(k*)Mw[iD (k) — 2o 23, 22 ikyk] =0,
w Pv W<

ik“[—z’Dw(k) +Z ZWZ¢ tkyk) + Zny ( )% Co(k? )Mw[zDM,( Y+ Z22Z:Z4¢6%) =0, (17)

iSgy (k) = Zc[1 + As(kD)|[k? — ExMw Z¢ 2 ZMwCo(k )6ab

where Do . = ZwDyuv, Dogv = Z ZW'D¢,, , etc. Since all renormalized quantities are finite, the divergences in (17)
must cancel each other. This puts constra.lnts on the renormalization constants:

Zg = QgZW s e = QEZEVZ;5Z{1 s (18)
Zy = QyZw 23y, Co(sub. point) , Z. = Q[1 + Ag(sub. point)]*,

where Q¢, Q., 4, and Q. are finite constants to be determined by the subtraction conditions. With (18), Eq. (17)
can be written as

kP DL (k) + Q7 € kuk,] + Mw C (k2)[iDy) (k) Q' Quik, k] =0,
zk"[—zD‘l(k)—t-Q lﬂnzk,,n]+MWC(k2)[zD (k)+ﬂ 102¢x? =0, (19)
S k) =Q Rs(kz)[kz — ExMwQ,.C(k?)]6as

where R3(k?) = [1 + Az(k?)][1 + As(sub. point)]~! is a finite function of k%, and

G(k?) = (ZZ—:) Zag, Colk?) . (20)

We shall see in Sec. III that this C (k?) is directly related to the modification factor appearing in (2).
On the other hand, the inverse physical propagators can be expressed in terms of the proper self-energies as

_kk

k.k, . _ -
zDO,m/(k) ( uy + M‘?VO HO,WW(kz)] + %’[—EO x? + M‘?VO - HO.WW(kz)] )
z'D;;“(k) —ik [MWO — Ko +_H0,W¢(k2)] , (21)

mgw(k) = k? — gog — Tlo s (k%) ,
o (k) = k? — LokoMwo — Mo ca(k?) ,

and

D50 = (a0 = 52 ) (42 + My — Ty (B)] + 5 (67242 + My — By ()]

i’D‘l(k) ik“[MW — i+ Twe(k)], (22)
1D¢ (k) = k? — £x? — TIgg(k?) ,

iS~1(k) = k2 — éxMw — T.z(k?) .

Taking the inverse of (22) we can see that all the unphysical parts of the full propagators manifest the same tree-level
pole at

k? = ExMw . (23)
Substituting (21) and (22) into the WT identities (14) and (19), respectively, we obtain

[To,ww (k?) — M) [[o,ps(k2) — k?] = k*[[lo,w¢(k?) + Mwo)?

é (kz) ng ﬁo ww (kz) kZ[MWo + ro,W¢(k2)] (24)
Mwo[Mwo + Ylowe(k2)]  Muwolk? — Tl gg(k?)] ’
o,ce(k?) = —k2A3(k?) + okoMwo[A1(k?) + Az(k?)] ,

and

(Tww ~ Miy)(fgs — k?) = B*(Lwy + Mw)? = €71 (1 - Qg ) [(K* — éxMw)? — k*(Tgg + 26rllwy — 26> TTww]
+260 1 Qe — 1)[(K? — EMw ) Mw + k*Tlw g + Exllww]
+62Q7H (Q — 1)2[K? — €M, + Ellww] ,
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M}, - Tww + (7" — 1)~ k?
M}y + MwTlwy(k?) + Mw k(7' — 1)
Ok Mw +Ows + (29 — s
Mw k2 — T4y + (702 — 1)¢x2

C(k*) =

M.z = (k? — éxkMw) — Q.R3(k?)[k? — ¢eMwQ,.C(k?)] .

The first and third identities in (25) give constraints on
the unphysical proper self-energies, and the second iden-
tity gives constraint on C(k?). Equation (25) is of spe-
cial importance in constructing renormalization schemes
which can simplify the expression for C(éxMw).

Now we construct renormalization schemes for the un-
physical sector in the general R, gauge. We first consider
the case of £ # 0. For the four renormalization constants
we need four subtraction conditions to fix them. From
(18) we see that this means the fixing of the four finite
constants ¢, Q,., 4, and .. In order to make our
formulation and its application to explicit loop calcula-
tions as simple as possible, we choose the subtraction
conditions such that all the unphysical mass poles coin-
cide with the tree-level pole (23), i.e., our subtraction

(25)
-
conditions are chosen to be
ﬁww(ffﬂ?Mw) = ﬁwd,(EnMw) = ﬁ¢¢(£l€Mw) =0

(26)

To see how these conditions fix the constants Q, Q,, Qg,
and 2., we look at the proper self-energy counterterms
defined by

Mo,ww (k*) = Dww (k*) — §0ww ,
Mo, ww (k?) = Dww (k%) — sllww ,
Oo,we(k?) = we(k?) — 8wy , (27)
o,gp(k?) = Hpg(k?) — 8llgs ,
o cc(k?) = Ie(k?) — 611,z .
From (21) and (22) we can obtain the following exact

expressions for the counterterms which hold to all orders
in perturbation:

Sww = (1 — Zy' ) (k* — Miy) + (1 - 234, ) Miy + (1~ Z )lww (K?)
Sww =€t — )23k — ExMw) + (7 — 1) 2y  Mwr + (Zy' — Z3g, ) Miy] + (1~ ZMOww (k?)
Mwe = Zumw — (ZwZs) "3 1My — Q7' Q0 — 1(ZwZs) ik + 1 — (ZwZy) " Flwe(k?) | (28)
Mgy = (25" — 1)(k* — ExMw) + £x[(Z5" — DMw + (702 — 1) Z; 6] + (1 — Z, ) ge(K?)
6fles = (27 = (K — ExMw) + [U(Zw / Z6)* Zasy — 1] €M + (1~ 27 Lec(k?) -

We also give here a simpler expression of (28) when we keep the accuracy only up to one-loop level:

Mww = 6Zw (k* — My,) — 262, M3y

Sllww = —8QE 1 (k? — ExMw) — Mw [0k + (62w + 26 Zp1,, ) Mw]
Mwy = (262w + 82Z4) + 8 Zp, |Mw + [69% — 6]k, (29)
8l1gy = —024(k* — EcMw) — Ek[0Z4Mw + (8Q¢ — 26Q)K] ,
6Ml.e = —0Z.(k? — ExMw) + (69 — 2024 + 262w + 6 Zn1,, JécMw

where 62 =2-1,60=Q—-1. B

From (28) or (29) we see that IIww({xkMw) and
44 (£xMw) can be made vanishing by adjusting the con-
stants Q¢ and Q, (or £24), respectively: i.e.,

Oww (éxMw) =0 by adjusting Q¢ ,
(30)
ﬁ¢¢(£l‘&Mw) =0 by adjusting Q, or Q4(Z4) -
After doing this, the first identity in (25) gives

Hw(EcMw)[[lws(ExMw) + 2Mw + 25(Qeg " — 1))

= le(ﬂ,e — l)zn(Mw —-k), (31)

and the right-hand side (RHS) vanishes if we take £ =
Mw or Q. = 1: i.e.,
Mws(écMw) =0 if Kk = My or Q. =1 . (32)

Note that if we keep the accuracy only up to one-loop
level, the RHS of (31) vanishes automatically, so that the
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requirement kK = Mw or £, = 1 is needed only beyond
one loop. Having these, the second identity in (25) gives

My + (le — 1)K,

ClenMw) = Mw + ﬁw¢(£nMw) + (QEIQN —-1)x

(9Dt if k= Mw,
‘{1'c Q. =1, (33)

and the third identity in (25) implies
M(6kMw) =0 if k= My or Q. =1. (34)

From the above analysis we see that we can construct
two convenient renormalization schemes.

Scheme I. k = Mw, Q¢ and Q, are determined from
(30), 4(Z24) and Q.(Z.) are determined by the usual
normalization conditions requiring the residues of Dyy
and Sgp to be unity at k%2 = éxMyy.

Scheme II. & is arbitrary, 2, = 1, ¢ and Q4(Z,) are
determined from (30), Q.(Z.) is determined by the usual
normalization condition requiring the residue of S, to
be unity at k% = éxMw.

Note that in scheme II the residue of Dy, at k2 = ExMw
is not normalized in the conventional way, but this does
not affect the physics. Furthermore, the determination
of Qg (Zy) in scheme II concerns only the calculation
of the renormalized proper self-energy 1=I¢¢, so that it is
easy to implement. In these two schemes, the expressions
for C(€xMw) are very simple: i.e.,

A Q! in scheme I,
CexMw) = { 1 nin scheme II . (35)
Next we consider the case of £ = 0 (Landau gauge)
in which some of the formulas in (25) are not clearly
defined. In the Landau gauge we have the following well-
known relations [13,14]: (a) there is no Wg-¢® mixing
and D, (k) < guw — kuk./k?; (b) the poles of Dyy(k)
and S,5(k) are all at k* = 0; (c) the ghost fields ¢*
and ¢ do not couple to the Higgs and Goldstone boson
fields. Relation (a) means that the longitudinal compo-
nents of D,,, and D, containing My w and w4 vanish,
so that the only relevant unphysical proper self-energies
are II44 and II.z. Relation (b) implies that II;4 and Iz
automatically satisfy the tree-level mass-shell conditions
44 (0) = I1z(0) = 0. With relation (c), the expression
(20) for C(k?) reduces to

“ ZIw : YAY:
2 — oW \id
¢ = (Z«») 1+ As(k?)’

Hence C(0) or C(M$,) is not so much simplified as in
the case of £ # 0 [cf. (35)]. In (36) Zw and Zys, are
well fixed, so that the only possibility of making C(M%,)
unity is to adjust the unphysical Zg but this must rely
on the detailed explicit calculation on Aj(k?) order by
order in loop expansion. The Landau gauge has been
studied by many authors, see, for example, Refs. [13,14].
In the scheme taken by Marciano and Willenbrock (MW)
[14], Z, is determined by the usual condition normalizing
the residue of Dyg at k2 = 0; therefore, in that scheme,
neither C(0) nor C(M3,) is unity.

Our conclusions in the SU(2)z theory are summarized
in Table I.

(36)

B. The SU(2)xU(1) electroweak theory

The realistic SU(2)xU(1) electroweak theory is more
complicated than the simple SU(2); theory due to the
various mixings in the neutral sector. For convenience
we introduce the matrix notation

tp [ “
7+ _ (W w— [ Zo N = (Mo
0—(¢BI:),N—(A:)‘)’ 0—-<¢g )
(37)
cZ = _Z -A
Co={ %), Co=(c,%)
o
where A§ is the photon field, #Z is the would-be Gold-

stone boson absorbed by Z§. The matrix notations for
the propagators in the neutral sector are

T D7z.0 Dz a,0
v V.
Dy v = {OITNg Ny~ |0) = [Dﬁuz,o :':1’0] )

- - DI-“’ ,Dp
Do,ﬁ)v = <O|TN0N31|0) [ NN,0 “NgZ 0 ]

D;Z N,0 Dyz 42,0

1114 1124 M
D.g”z,o Dglga,o ngbz,o
= {Dazo Daao Dagzp | >
v 174
D.;sZz,o D¢ZA,0 D¢z¢z,0
(38)

5 S S
Suuv = (TG0 = [ G220 S240]

TABLE I. Main features of schemes I, II, and the MW scheme in SU(2). theory.

Renormalization On-shell conditions in Eq. {26) lo{(3 £Mw)
schemes Oww =0 Mwe =0 T4e =0 Mee =0
Scheme I Adjust WT Adjust WT Q'
{Qg, Q., Zgn’ Z:m}g;eo Qg -1 with x = Mw Q. —1 with « = Mw (K, = Mw)
Scheme II Adjust Adjust
Q6,00 = 1, Z4, Z e Q - 1 WT Zg—1 wT !
MW scheme Zw k& Zm
on rron WT WT = —W
{Qe =Qx = 1,Z¢ e }g:o \ \ ( Zg ) 14+ Aa(O)
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The gauge fixing term (3) is now and
— YR+t —r+y _ 1 pN\T N wWy—1 Ny-1
where pIUAE 1
(éV)—%E (562) 21(51)ZA12] , Ro= ((foz)’no) .
(&%) 2 (&)= (€8)7nd
= (@ VRO — ()R 45 = (K5)TWE (41)
Fy = ( gA = (& )-7‘9uN(lJ‘ - ’?50(150 = (E(I)V )TN, , Here we have distinguished the gauge parameters
E(‘Jvagoz’g(‘;l’ nga K"ga "5647 etc.
(40) Now the specific forms of WT identities (11) are
J
4, Pl X . =
fi_zl iDij0(z, y))im,l.{x’ 2) =0, for the charged sector , (42)
iS5 (2,y) = (K5)T(0IT Dy (z)ch(2)I25 ()
and
4 -17
fcilz iDy N O(z’%)}iN(w ,2) =0, for the neutral sector , (43)
ZSO,N(:’:’ y) (K ) XIV(yym) ’
where
Kp(o9) = o — (OIT DY ()eb()ICola) .
8Co(z)0K L (y)
8°r
T _— 44
Son(=:9) = g )oct@) “
DRl o(e9) = g = Dl o (69) + K (2K ()]
NN, 0 5No(y)6NT(:c) NN, == ==
The renormalization constants in the physical and unphysical sectors are defined as
g = Zaa (or eg = Zee,Zo = Z2),
Mwo = ZmwMw , Mzo= Zm,Mz , Mmuo = ZmzMH , Mfi0 = L, Mg, ,
Wot = ZgWHH | Ho=ZiH , 0= Zi%s , (45)
Nt = ziNe, zh = | 232254 = |22z, 30%za|
ZazZaa %‘SZAZ 1244
and
E(‘;V Zew& KO = Z WK,W 5
Z)—i 0
6 -—— £N _EZ , N ——— [(E __:|
(46)

Ro = ZxR Rz((gz)om ) , b =

VA c:t P

et . .
where o — is the electromagnetic fine structure

constant, ¥z’s 7z:,re the fermion fields, and my’s are the
fermion masses.

The analysis of the renormalization schemes in the
charged sector is completely similar to what has been

1
Zi.6%, #f =

& =¢ct, Co=2Nc, C=C, ZN_[zAZzAA

%Z¢Z
ZZZ ZZA:I
b

done in the SU(2)y theory. The factor C¥ (k?) corre-
sponding to (15) is now

1+ AV (k%) + AY (k?)

CvW k2 —
o (&%) 14+ A¥ (k?) ’

(47)
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where

AV =A% (k%) ,
AY =AY (%) + AW(k'-’) + AY (k%) , (48)
AY =AY (K?) + A% (k%) + A (k%) + AT () ,

and the lengthy expressions for the A!}”s are given in
Appendix B. Note that the formulas for A}, A¥, and
AY are more complicated than those in (16) due to the
presence of the additional U(1) gauge group. Repeating
the same steps shown in the case of the SU(2), theory
we can obtain all the formulas corresponding to (17)-
(36) with the substitutions Zy — Zg+,Z. — ZV & —
Y.k = £V, o OF,0. - OV, 0, - QY ,Q -

W C(k?) » CW (k?), etc. Table I with the above sub-
stitutions shows also the conclusions for the charged sec-

tor in the SU(2)xU(1) theory.

Xn(k) = (i’:i&’i} )= (n’}zxivf(’;(zc)) ’

ik, Xne(k?) = [ (0D, (=k — 9)cj(q) Co(k))

= ik, [I + AY (k?)] = ik, [Agzucz)

Xyze(k?)T =

72 [{01DE4 (=K — g)h(a)|Co(k))T = (

Next we show explicitly the analysis for the neutral
sector in the SU(2)xU(1) theory. The specific form of
the WT identities (11) in the momentum representation
is now

ik,iDg w (k) + MzoCY (kz)iﬁ;;z”N(k) =0,
—ik,iDy 5 (k) + MzoCY (kz)zDo woes () =0,

iSg N (k) = [k — MzoRoCY (k)T €40l nz Xne(k®)Eko »
(49)
where

~ 2\ — [W 2 —1v 2 — é()Z(kZ)
SN () = B ()T R gne k)7 = ((Galrs) )
(50)

with Xy and 5(4,25 defined by

1+ AZZ(k?) AZA(K?) (51)
1+ A$4(k?)

1+ AZZ(k?) + AZZ(k?)

AZA(K?)

+AF4(K?) ) '

The lengthy expressions for AZ%’s are given in Appendix B. After renormalization, (49) becomes

ik [iDY " (k) + k*k¥ (2

S T TENN Bl TE)] + MzCN (K)[iD2%, (k) — ik 22,77 2T R} (22 2h)] = 0

¢ZN

iku[—iD 5 (k) + zk#(zé; Z3)7ey" znnzd,] + MzCN (k)[iD7 4z (k) + RTZ 2, 21 2= Z3,R] =0 ,

ISyt (k) =

where

CN(k?)

@ 22 0800 = (Ga))

1 —1 1 1 -1 _1 1 1
(k2 — Mz 2}, ZoRCN ()T 25 27, €3)6n" 2t K (R)ZE, 42D

The finiteness of the renormalized quantities implies that the renormalization constants satisfy the relations

_l —~1
z( n zN 3 n—-gN ng £N2 ﬂ Z¢z 9

N

Z = Q¢Z Zmy [ZZZ

Z (sub. point) + z: 2 ,C4(sub. point)] , (54)

= 003, Zu, (23 ,CF (sub. point) + 23 ,Cf (sub. point)] ,

where

(1+6QF%)"% -
(ﬂ"z)‘L (Qf4)~%

1 AZ
— 200

Q= QZZo] _ [1+69%Z%0
= (0270 = [s022 " o

l(SQZA
1+ mM)“

(55)

are finite constants. In (54) we have not presented the matrix expression for ZY which is very complicated because it
ensures the finiteness of the product of several matrices on the right-hand side of the third identity in (52). Actually,



4850 HONG-JIAN HE, YU-PING KUANG, AND XIAOYUAN LI 49

the explicit expression for ZY is not really needed in the following analysis. With (54), the first two WT identities in
(52) can be written as

. re— 1T _1A-1l 2 N —1v R -1
ik [iDy " (k) + Bk Qg P 6510 2] + MzCN (k) iD 7% (k) — ik RTQTEL 0 = 0, 56)
_ A _ —1iT o — -1 _1 1T _1T
ik,‘[—iDq&;“N(k) + zk“ﬂe;TgN’ Q:R] + MZCN(kZ)[de,Zl‘ﬁZ (k) + RTQL¢,? 2, 7EvQ7 EN° Qxk| = 0.
We then introduce the matrix notation for the bare proper self-energies and masses,
22 11z4 . %7 fizA
HNN(kZ):[ 0 0 ] , TINN k)= I:~0 -0 } ,
0 [IAZ [TA4 ) o ( 147 [iA4 )
= N¢? ﬁzd’z M2,0 ~ 1 T,
M7k =| 02 )] » Mhio= [0 i 0] ’ Mivo = MzoRo (0) No » (57)
0 (k2)
CZEZ "CZ(—:A
e = | Do, , 05, |
0 HO (k2)

and in terms of which the bare inverse propagators can be expressed as

o~ —1luy R BLY 1T -1 ~
iDg (k) = [g" — M) [ k2T + M%, — TN (k%)) + K2 [M?Vo —k%no Snve — TN,

- . 1 —1T ~
iDg Nyz () = ik* [szo (0) —&xe Ro+ 100 (k7)

; (58)
~ 4 Z  Z
Dy} ya (k) = k? — R Ro — T *" (k2) ,
iS; y (k) = kI — M% — T§C(k?) .
Substituting (58) into (49) we obtain the WT identities for the bare unphysical proper self-energies:
(F7 — M2, — k2) = k*(Mgo +110%)2
(157 — Mo I = (0547,
-~ - Z A
54 = ~MzoIlg? CF (?)
2 Z2Z
é()z(kz) = Mzo H0~ ZgZy (59)
Mzo(Mzo + 15" )
. _J124
Cg'(k?) = 0 ;

) Mzo(Mzo + T12%%) . . .
TSC (k?) = k2T — M% — [k? — MzoRoCY (k)T &2 0)éna Xne (k)€ -

This form is equivalent to that given in Ref. [15]. The second identity in (59) means that only two of IIZZ, Tig4,
and I1Z4 are independent. The matrix notation for the renormalized proper self-energies and their relations to the
renormalized propagators are of the same form as (57) and (58) with the subscript “0” removed. The renormalized
mass matrix M3 is of the simple form

T
~ (1Y 3 Mz 0
M%’V:Mzn(o) gg,z[fz"g Zo] ,

Then from (56) and the third identity in (52) we can derive our general WT identities for the renormalized proper
self-energies which are
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(Mzz — MZ)(Ty24z — k) — K*(TIz45 + Mz)”

eZ (K2 - E2h2Mz)?
1)(QF?) 25z ((K®
12(QF7) kG [k?

= [1-(@f?)"
+(QZZ -

+(QZ% - — &z M2 + €21125]

- kz(ﬂ¢z¢z + Zfznzﬁz¢z) —
— Ez6zMz)Mz + kT z42 + €zK21177)

fizz — M3 + K2[1 - (9F7)~ ¢}
zZ

(¢252)*z7]

Tiza — K2(QF2)"3(QF4) 3¢, =

Maa +K[—(QFY) 67" + 1 - (QFF) e

fzs - "?2(922)_i (QZA)—ffz

Hz¢z + Mz + K:z(ﬂfz/ﬂfzz

[HA¢Z+'¢Z(Q Z)-i(Qf4)-i0Z7)

= Mgz + k2z(QF7)~5(QF4)3Q27], (60
Mz4z + Mz + kz(Q2Z /QF% — )[ ase Hra(@E)HAT AT, (60)
67 (k%) = ME —Tizz + K*[(QF%)~1 — 1)¢;"
" Mg[lizgs + Mz + 5z(QZZ/Q2% — 1))’
A Hz4 - k*(QF7) 2 (QF4) 565"
CAK?) = = ZZ ’
HZ¢7‘ + MZ + K:Z(ng/ni - 1)
FICC (12 — 12 2 2 e QRN RTQY 31T T T R (k2
O (k%) = k°T — My — [k* — Mz&R Q7 &' QRC (k%) Q£N§N]€N ﬂfNZ ~el(k )ZNﬂﬁNgNZ

in which we have chosen

-1 11 -1 1
(Q?Z) 2 =0, Q.:Z — _£zz£lzi (QEZA) 2 (QﬁAA)z sz

for simplifying the expression (60). Equation (60) is sim-
ilar to (25) but is much more complicated. The first three
and the last equations in (60) give constraints on the
unphysical proper self-energies, and the fourth and fifth
equations give constraints on CZ(k2) and C4(k?), which
are very useful in constructing renormalization schemes
simplifying the expressions for CZ(£zkzMz) and C4(0).

We first analyze the renormalization schemes in the
case of €54 # 0. For gauge fields in the physical sec-
tor, there are five independent renormalization constants,
namely, Zar,, Zzz, Zza, Zaz, and Z 4. The standard
on-shell subtraction conditions are

Mzz(M3) =0, Iyz(M3)=0,
HAA(O) =0, £4A(0) =0,
Hza(M3Z) =114z(M3z) =0,
Mz4(0) =M42(0)=0,

which contain six equations. However, from (58) we see
that the nonsingular requirement of iDg 4 (k) at k2 = 0
(15,13] implies that

'Y (0) = g™ (0) . (63)

(62)

Together with the second identity in (59), we see that
there are actually only five independent conditions in
(62) which are just sufficient to determine the five in-
dependent renormalization constants. For the unphysi-
cal neutral sector, there are altogether eleven indepen-
dent renormalization constants [cf. (46), (54), and (55)],

namely, four elements in ﬂf_; 2,

ﬂ;zl/ ? and four elements in ZY. We have already chosen

(4Z)~1/% and QA7 to satisfy (61), so that there are
nine remaining arbitrary independent constants to be de-
termined by the subtraction conditions. Similar to what
we have done in the SU(2)L theory, we may choose the
subtraction conditions to make the nine unphysical mass
poles coincide with the tree level poles to simplify the
loop calculations and also the expression for CV, but
this needs more considerations. First of all, not all such
conditions are relevant to the determination of the nine
renormalization constants. For example, the three con-
ditions

ﬁZA(O) = ﬁAz(O)

are related to the corresponding conditions in (62) in the
physical sector through the nonsingular requirement (63),
so that (64) do not give any restrictions to the above nine
constants. Moreover, we can see from the last 1dent1ty in

(60) and the choice (61) that II°* e (k?) and =" (k2)

two elements in 2z, one

=1144(0)=0 (64)



4852

are all proportional to the k2, so that

Tl a52(0) = [Moaza(0) = 0 ; (65)

i.e., they are also irrelevant to the determination of the
nine constants. Therefore we can at most write down six
relevant subtraction conditions such as (26). However,

from (60) we see that 14¢” (k2) does not appear in the
expressions for CZ(k?) and C4(k?), therefore the value
of [T4¢” (0) may not be taken to be zero for the purpose

of simplifying CZ and C4. Thus we take the following
five subtraction conditions:

ﬁzz(fzh‘/zMz) =0 ,
ﬁz¢z(£zﬂzﬂfz) =0 )
[,z52(E2k2Mz) = 0, M.zz4(0)=0.

fI¢z¢z (ngezMz) = 0,
(66)

We can further see from the first identity in (60) that if
the first two conditions (sz = 0, H¢z¢z =0at k? =
&zkzMz) in (66) are satisfied, we have

ﬁz¢z(§ZKZMZ) =0, if kz=MgzorQZ%Z=1.
(67)

Therefore the third conditions in (66) may be a relevant
J

SMyw = k([ — 23 z“%)

SMyny = k2 zN [n‘f 3 gNln;j — &2 +[z;,2 M3 z;,f - M3
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condition determining Qf Z if kz is arbitrary, but it may
not be a relevant condition if kz = Mz. Hence we still
need four more conditions (if Kz is arbitrary) or five more
conditions (if kz = M) for the determination of the nine
renormalization constants. These can be taken to be the
usual normalization conditions [11,15]

k™2Maa(k?) k2o =0, Kk 2Mza(k?)|k2=0 = 0,
(68)
dl:lczaz df[cAEA
dk? =0, dk? =0,
Kl=tzrz Mz k2=0

for the case with Kz being arbitrary and when choosing
Kz = Mz we include one more condition:

dﬁd,z 7

dk? =0

(69)

k2=(zrz Mgz

To see how these conditions determine the nine con-
stants, let us look at the propor self-energy counterterms
deﬁned by 6I1 = I — I1,. From the definitions of bare
proper self—energles (58) and similar definitions for the
renormalized ones, and the general relations Dy gy =
ZY’Dyr(ZY?)T and So,v = ZY Sy, we obtain the fol-
lowing exact expressions for the §II’s:

1T -1
+[IINN Z,? MynZy?),

~ 1T . _1
ZMz] + [HNN —ZNZ HNNZNZ] 3

~ -1 _1 1 -1 17T 1T _ 1 _1T .
M ynyz = (Zm, — Z¢Z" Z,’ )Mz (0) + Z ZN [§N2 1 §N Q:r+ [ — ZM’ZN2 Mgz , (70)
T
SI1 -1 2 2 (1 T30 3 -7 17 1 -1 1T
$Z o7 =(Z¢Z —1)k* +&zK% 0 [R¢N Q26027 En° N -1 0 Zys + 1- Z¢z)l—[¢z¢z ,
§TIce = (K21 — M3 )((ZN) —I)+&zrzMz
1T 1T 1 10 1.1 1 1 1 10 .. _
(et 0t e 50|z zhond hest - (0] ) +eets - @)
To one loop, (70) takes a simpler form
Pr— 8Zzz(k* — M) — 26Zpm, M5 2[6Zz,4(k2 M)+ 6Z4zKk%
NN 16Zza(k® — M2) + 6Zazk?] 6Zaak? ’
STiren — —£;0QF %k — (6222 + 202m,)M5  — 165 0984k + 6224 M7]
NN = _%[62169511,62 +6ZZAM;] _62169?/&’62 )
. (3(0Z2z +6Z4z) + 6ZMZ]MZ + [69 - 6QZ%% kg
0lyyz = AZ ’
JZzAMz +(5Q — 808 €Z§A’)nz
0z 42 = —0Z42k* + £26%(20Q77 - 6QF7) , (71)
N ) P 512[625.4
0lee = [JI:ICAEZ JHCAEA]

0M,z,2 = —6ZZZ(k? — £zxzM3z) +§zK,zMz[(SQZZ

I(JZzz - 524,2) -+ JZMZ] ,

51_[625,4 = ---O:SZ‘ZA(k2 —€zrzMz) + 2EZ£AK,2M2(5Q +38Zz4),

M azz = —8Z2ZK% + €267 Mz(6Q47 —

811 SZAAL? 252353598“) )
cAgA = —04L 3
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where 6Z = Z — 1, Q2 = Q — 1. From these expressions
we see that, for arbitrary xz, we can have

f[zz({znzMz) =0 by adjusting Qezz s

k™2 aa(k?) |k2=0= 0 by adjusting Q4 ,

k™M 74(k?) [ka—0=0 by adjusting Q74 ,

ﬁ¢z¢z (z5zMz) =0 by adjusting QZZ or Zyz
(72)

M z.2(€z52Mz) = 0 by adjusting ZAZ |

MM.z;4(0) =0 by adjusting ZZ4

dl 2z [dk? lka=¢z ez M= 0 by adjusting 722,

dil az4 /dk? |xa—o= 0 by adjusting zA4
For the case kz = Mz, Eq. (67) is irrelevant, we need

one more condition (69), and from (70) or (71) we see
that we have

df[¢z¢z /dk? |k2=¢zrzM,=0 by adjusting Zyz .

Thus we can have two different convenient schemes. The
first one is to take kz = Mz with Q2% determined by
(72). This is just a generalization of our scheme I to the
case of the SU(2)xU(1) theory. The second one is to take
kz arbitrary but Q2% = 1 with Z,z determined by the
fourth condition in (72). This is just a generalization of
our scheme II to the present case. It is easy to see from
the fourth and fifith identities in (60) that in these two
schemes CZ(£zkzMz) and C4(0) are simplified to

AZ _ [1/9%% in scheme I,
C"(€2KzMz) = {1 in scheme II ,

(74)
¢A(0) =0, in both scheme I and scheme II .

In these schemes

Tag2(0) = —rz(QF7) 72 (QF4) 72077 (75)

Finally we consider the case {Z = ¢4 = 0 (Landau
gauge) in which some of the formulas in (60) are not

(73)
TABLE II. Main features of scheme I, II, and MW scheme in the neutral sector.
Scheme I Scheme II MW-scheme
N
On-shell conditions Bex: 8z, 24z, z:'} By, e, Zgz, z2} gizzzg;z; }0,
2,64 #0, QZ7 #£1 £2,6a #£0, Q7 =1 774 — 7A% _ g
Mzz(€z82Mz) =0 Adjust §QZ% Adjust 6QZ% \
Mza(0)=0 Nonsingular condition Nonsingular condition \
Maa(0)=0 Nonsingular condition Nonsingular condition \
0240) |a_o=10 Adjust §QF4 Adjust Q74 \
Haal®) | 1ap=10 Adjust §Q84 Adjust Q44 \
WwWT
f[z¢z ((zrzMz) =0 When beyond one loop WT \
(we must set Kz = Mz )
M,,2(0) = 1kz(QF%)160FA0%? Lrz(QF%)"360F40%2 \
Myz4z(E282Mz) =0 Adjust §QZ% Adjust 6Z 4z WT
I,z 42(Ez62Mz) =0 Adjust 62,z \ Adjust 6Z 4z
WT WT
M.z.2(éz62Mz) =0 When beyond one loop When beyond one loop wWT
(we must adjust §ZA2 ) (we must adjust §Z22 )

M.z,4(0)=0 Adjust 6274 Adjust 6224 WT
M,a,z(0)=0 WT WT WT
M,4:4(0) =0 WT WT WT
M z,2(Ezk2Mz) =0 Adjust 6227 Adjust §Z7% Adjust §Z2Z%
Ma.a(0)=0 Adjust §224 Adjust 8244 Adjust §Z44
C%(¢zhzM3z) (QZ2%)t (if Kz =Mz ) 1 See Eq. (76)
C4(0) 0 0 See Eq. (76)
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clearly defined. Now we have the following well-known
relations in the Landau gauge [13,14]: (a) there are no
Z,-¢% and A,‘—qﬁz mixings and the longitudinal compo-
nents of D%y and DY, ( containing Hyy and My,z)
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vanish; (b) the poles of Dyz 4z and Sy are all at k2 = 0;
(c) the neutral ghost fields C and € do not couple to the
Higgs and Goldstone boson fields. With these relations
we get

1 Zum Z3,(1+ A$4) — 23 AZA
1 zz :A ZAANAZ {Z :;A éz 3ZA
z;, (1+A43 YA+ A4 — AFAALY | Z2 (1 + Af4) — 23, AZ

@)

which is not so much simplified as in (74). In (76) the renormalization constants Zzz, Z4z, Zaa, and Zps, in the
physical sector are all well fixed. The only adjustable parameter for simplifying Cy is Z4z and the choice of which
depends on the detailed explicit calculation of AZZ, AZ4 A#Z% and A44 order by order in loop expansions. In the
conventional schemes used in the Landau gauge, e.g., the MW scheme [14], Z4z is determined by the usual condition
normalizing the residue of Dyz 4z at k* = 0, thus in that scheme Cn(k?) cannot be simplifed.

For clarity we summarize our results for scheme I, scheme II, and the MW scheme (for Landau gauge ) in Table II.

Cn(k?) =

III. PRECISE FORMULATION OF THE EQUIVALENCE THEOREM

A. A physical analysis of the equivalence theorem

Intuitively, we expect that the amplitude of physical longitudinal weak boson is related to that of the unphysical
Goldstone boson due to the Higgs mechanism. However, it is unlikely that the physical amplitude can be equal to
the unphysical one up to loop-level even we neglect the O(Mw /E) terms since the wave function renormalizations for
the physical and unphysical fields are different and the latter is arbitrary. So we expect that generally there should be
multiplicative modification factors in (2) which ensure the renormalization scheme and £ independence of the RHS of
(2).

We start from considering some Slavnov-Taylor (ST) identities for the Green functions, which are useful in the
proof of the ET. Turning off the external source K* and L° in (7), the invariance of the action S under the BRST
transformation (8) leads to the generating equation

/DXO’DCODEO{J,-D:-‘(XO)cg - %gof"bcl_“cgcg — Fg(xo0)I%}

x exp i{S]xo, ca, €o] + jd4 x(Jixf) + It +&I*)}=0. (77)

Taking functional derivatives with respect to the external
sources of (77) we can obtain the ST identities

(OITF(2)F3(4)[0) = —i8°*8*(z - ),
(78)
(OITF (2)xb()10) = —(O|T D5 (v)e5 (4)& (2)]0)

which will be used later in the proof of the precise for-
mulation of the ET. One can further obtain the following
general ST identity in the momentum representation [5]:

(01Fg" (k1) - - Fg™ (kn)@[0) = 0, (79)

where F§ (k) = i(68) 7Y/ %k, Vg™ (k) — (€5)"/?x545, and @
denotes possible on-shell physical fields. In (79) external
® legs have been amputated. In Appendix A, we present
a simpler proof of (79) in the current path integral for-
malism. With (79) we can give a physical analysis of the
ET.

Conusider first a gauge theory without spontaneous

symmetry breaking (SSB). The two transverse compo-
nents of massless gauge field are physical, while the un-
physical longitudinal and scalar components are con-
strained by the gauge fixing condition. Let us take the
covariant gauge

Fg(k) = i(€8) 2k Vo™ (k) . (80)

The longitudinal and scalar polarization vectors of Vg
can be written as

er(k) = (0,k/k°), e5(k) = (1,0) . (81)
We then have

h(k) +ea(k) = o (82)
so that
Fg (k) = i(€8)™ 2 k° [V, (k) + Vs (k)] - (83)
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Substituting (83) into (79) and doing renormalization
and F®-leg amputation, we directly get the scattering
amplitude

TV (k) +Vst(k1), ... ViR (kn)+ VS (kr), @) =0,

(84)

which is just a quantitative formulation of the Vg-V¢
constraint mechanism in the physical in/out states for a
massless gauge theory.

If SSB takes place, the gauge fields become massive
and the longitudinal component V¢ is “released” to be
physical. We shall see that in the constraint (84) V2 will
now be replaced by the unphysical would-be Goldstone
boson field. Let us take the R¢ gauge (3),

Fg(k) = i(€8) ™ "ku Vo (k) — (€5)2 k305 (k) . (85)
Now the longitudinal and scalar polarization vectors for
a massive vector field with a physical mass M, can be
written as

(k) = 3 (RLKR/RD, (k) = k*/Mo . (86)

Thus
Fe(k) = i(€3) " MaViis(k) — (€3) 3 sada(k) . (87)

Repeating the above procedures with care on the Vs-¢§
mixing, we get, corresponding to (84),

0=T(V£1 _Qala '7V£" _Q—Gn’q))

4855

T(VE (k1) — iC* (k3)¢® (k1) ..., VE™ (kn)

—iC% (k2)¢°" (kn),®) =0, (88)

where the exact expression for C?(k?) will be derived in
the following subsections. Since M, is the characteristic
of the SSB we infer that (82) holds as M, — 0. Therefore
with M, # 0, € (k) + €/5(k) must be of the form

(k) + (k) = S+ O(M,/E) (89)

with A being a certain normalization factor. Therefore,
at high energy, €7 (k) and €%(k) are related up to an
O(M,/E) term. Indeed, if we take the M, # 0 expres-
sions (86) we see that A = M, and thus

€ (k) = e5(k) + O(Ma/E) . (90)
So we can define
VL (k) = Vg (k) +v*(k) ,

and

v = O(M./E),  (91)

Fe=Vg-iC¢e=Vg - Q°,

Q° = iCo¢° +v° = iC%¢* + O(M./E) . (92
Then (88) becomes

0=T(F*,...,F*,®) (n>1), (93)
ie.,

=T(V“‘, 7, ®) + (-)"T(Q™,...,Q%,®)
+ Z T(Vh,.. PP — VO R VI ) [cf. (92)]
1<j<n-1
=T(VP,..., Vi, @) + (-)"T(Q™,...,Q°,®) Z T(VE™, ..., Vo, =Vt L, =V, 8) [cf. (93)]
1<j<n—-1
- n_l . .
=T(VE,...,VE", ®) + (-)"T(@™,...,Q°,®) + > Ci(-)"7T(V{",..., Vi, @) .
j=1
Using the identity 0 = (1 —1)* =14+ (—)" + E;:ll Ci(—)"7 we have
T(VE, ..., Vg, @) =T(Q™,...,Q%*,®) . (94)
Substituting (92) into (94) we get the general formula
T(Vfl (k1)1 [RRS} VI(:" (kn)': Q) Cg;lod C;OdT("'d’al (kl)’ i¢a" (kn)7 Q) + O(Ma/E) ’ (95)

where C3 4 = C° (kz)]kz_Mz This is just the general
precise formulation of the ET. Therefore the ET is just
a direct consequence of the V§-¢* constraint mechanism
in gauge theories with SSB [cf. (88)] and the high energy
relation (90) . The only task remained for proving the
precise formulaton of the ET is to derive the quantitative
expression for C§ 4 and then try to simplify it in a rig-
orous way. We sha.ll do it for the SU(2) theory and the
realistic SU(2)xU(1) theory separately in the following
two subsections.

B. General proof of the precise formulation of the
equivalence theorem in the SU(2); theory

Now we give a general proof of the form (95) in the
SU(2)r theory with the modification factor C§ 4 pre-
cisely specified to all orders in the perturbation. In
the following proof we distingush the renormalized Mw
from the physically observed mass Mﬁ}‘y’ of the W; field
(pole of the physical propagator of W2). Such a distinc-
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tion is necessary in some currently used renormalization
schemes. For convenience we define the five-component
matrix notation

- W“'
Wy = .
(57)
In the SU(2) theory £§ = £o,k¢ = ko. With the symbol

K, defined in (6), the gauge fixing function (3) can now
be written as

Fy =K Ws. (96)
The second ST identity in (78) can then be written as
KM(OlTWoM (=)W5, (y)|0) = —(0IT Dy, (w)c5(v)e5()10)
Ko (OITWOM (z)¢o(y)|0) ”<0|TD »(¥)c5(¥)E5(2)[0) ,

(97)

where M = 0,1,2,3,5 (M = 5 denotes the Goldstone
boson field). In the momentum representation, (97) can
be further written as

K Dgyar (k) = —X55 (k) (98)

where Db/ (2, y) = (0|TWsy, ()W, (v)|0) is the W

propagator,

= (1) - (Ri2)

in which So(z,y)8%° = (0|Tcf(x)ch(y)|0) is the ghost
propagator, X and X b are defined in (12), specifically

(99)

X2b(k) = ik, [1 + As(k?)]6°®,
(100)
Xgb(k) = Mwo[l + A1 (k?) + Az (K?))6%°
with the A’s given in (16).
To derive the modification factor in (88) and (95) from

the identity (79) we only need to consider the n = 1 case
for simplicity. In this case, (79), (96), and (98) give

0 = KY G[Wey (k), 8] = X3 (k)T[Wa (k), @],
(101)

where G[--:] and T} --] denote the Green function and
S-matrix element, respectively. Thus (101) leads to

K“T(WG,(k), ] = Co(k?) MwoTlid, 8], (102)

where Co(k?) = [14A; (k2) + Az (k?)]/[1+ As(k?)] is just
the function defined in (15). After renormalization (102)
becomes

kPT[WE (k), @] = C(k*) MwTT[ig, @] , (103)

where the renormalized
C(k?) = (Zw/Z4)"* Zry Co(K?)

has been given in (20).

Let M‘l,’vhys be the physically observed mass of Wp.
The longitudinal and scalar polarization vectors are then
given by (86) with M, = ME™® . Using (86) and (90),
Eq. (103) at k% = (MEX™*)? can be written as
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T[Wg(k),®] = CrmoaT[i¢* (k), @] + O(ME™*/E) ,
(104)
where
Mw -
Cmod - M";,J‘ys [( Phys)2] . (105)

Equation (104) with (105) is just the precise formulation
of the ET when n = 1. Substituting (105) into (95) we
get the general precise form of ET. In general M{,’;‘y’ and
Myw are not equal. M,‘,’J‘y ® = Mw only in the on-shell
subtraction scheme, and then Cpoa = C(M32,) which is
just the expression for Coq in Ref. [8]. In our renormal-
ization schemes I and II, the simplified expressions for
C(éxkMyy) are given in (33). Thus we have
Cong = {Q;l, in scheme I with k = My and £ =1,
mo 1, in scheme II with k = ¢ 1My .
(106)

In the Landau gauge, if we take the MW scheme [14], the
modification factor is [cf. (36)]

Iy

AT (107)

Cmod = (ZW/Z¢)%
We shall show in following sections that (107) is not unity
at the one-loop level.

There is also another commonly used renormalization
scheme in which the gauge fixing function F¢ is un-
changed after renormalization, ie., F* = F¢ [13,16].
This scheme corresponds to Q¢ = €, = 1 in our for-
malism. From (105) and the second identity in (25) we
get in this scheme

ME, — liww (M3,)

C'mo::l = 2 = 2
Mgy, + Mwllwe(M3,)

(108)

which is simplified to include only two unphysical proper
self-energies Iy w and fIw¢. We shall present in Sec. IV
an up to the one-loop calculation of (108) which is not
unity.

We see from the above results that C,0q is scheme de-
pendent. Our scheme IT with k = £~ My is the scheme
in which the ET takes its naive simple form (1). There-
fore scheme II'is the most convenient scheme for applying
the ET. In other renormalization schemes, the ET takes
the general form (2), so that Cmoa should be calculated
when applying the ET. In our scheme I with k = My
and £ = 1, Cpoq reduces ezactly to a single quantity
Q- which has already been determined by the subtrac-
tion condtition Il44(ExMw) = 0 in this renormalization
scheme itself (cf. Table I). Therefore our scheme I is
also convenient for practical applications.

C. General proof of the precise formulation of the
equivalence theorem in the SU(2) xU(1) theory

For the charged sector in SU(2) xU(1) theory, the proof
is completely similar to what we have done in the SU(2).
theory, and we have
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Mw Mw (Zw\'?, A
w o __ w_ AW phys\27 _ w w w hys\ 2
Cloa = e O B = 8 (Z) Zag O [(ME)?)
_ Mw (Z_w) P2 LEAL () + (AT (k) + AZ (k) + AK () (109)
ME® \ Zys Y1+ [AF (k2) + AR (k?) + AY(k?) + AY (k2)] K= (MEP ’
- w
[
where C¥ (k?) is given in (47) and (48). X (ke X EVSN (k
For the neutral sector, using the notation Ny and F¥ Xp(k) = ( XN;:::(]C)) = (XN;CE k; S‘z’v gk; )
defined in (37) and (40), the second ST identity in (78) ¢ ¢$2CLEI0
can be written as - (ik,,X,AvC(kz)S{,V(kz)
= \MzoX gec(k2)SY (k)
()" Do, an(@y) = -X%(2,9) , (110) v "
with - N
by s with X ye(k?) and X4z¢(k?) are defined in (51). Thus
Xy (z,y) = (0ITDFCG(y)Co(=)(0). (111)  (112) gives

K2 and Doy are defined in (41) and (38), respectively.
In the case of n = 1, the ST identity (79) reads

0 = G[Fy', 2] = (K; )" G[No, @]

= (K )" DonnTINo, ®] . (112)

Using (110) and transforming into the momentum repre-
sentation, we get

X5 (K)T[No(k), &] =0, (113)

where

MZ A ]
Criod = WCZ[(MEhy )2]
VA

Mz Zum,

= —Mghys Z;{f

 Z2z10+88) A+AFZ+A77) - A3 (AT A+ AT A+ Z 7 [(1+A7 %) a+afA+aFY - AZA(AF 7 +AF 7))

kuT[N§ (k), 8] = MzoCy (k)T [igg (k), @], (115)

in which CY (k?) is just the function defined in (50). Af-
ter renormalization, (114) becomes

k, T[N*(k),®] = MzCN (k*)T[i¢? (k),®],  (116)

where C¥ (k?) is given in (53). We can then relate the
amplitude k,T[N*(k),®] to T[Zr(k),®] by using (86)
and (90) with M, = Mghys, and obtain, from (115),
T(Zy(k), 8] = CZoaTid” (k), 8] + O(ME™/E) ,
(117)

where

(1+AZZ)(1+ A3 %) ~AZAALT

KI=(ME")2 -

(118)

Substituting (109) and (118) into (95) we obtain the general precise formulation of the ET in the SU(2)xU(1) theory.

Equations (109) and (118) show that the modification factors (CY¥

W & CZ ) are much complicated. Thus a rigorous

simplification for these factors is certainly necessary for practical applications. From our results in Sec. II B we obtain
the exactly simplified expressions for the modification factors in our scheme I and scheme II as follows:

oV = {(Q,‘;V)_1 , in scheme I with kw = Mw and ¢w =1,

mod ~

mod ~

cZ . — (2%%)~1 |in scheme I with kz = Mz and £z =1,
1, in scheme II with xz = EEIMZ ,

C:lod =0 ’

1, in scheme II with kw = {;VIMW ;

(119)

both in scheme I and scheme II .

In the Landau gauge, if we take the MW scheme [14], the modification factors are [cf. (36) and (76)]
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1/2
c¥ (Z_W> ZMw
4T \Zx ) T+ AR (M) + AL (M) + AR (M) + MY (MF,)
(120)
oz _ Zug Zgz[1+ AJA(MB)] ~ Z,/7 AZ4 (M)
med T 712 L+ AFE(ME|[L + AZA(ME)] - AZA(ME)ALE (M)

which are rather complicated. Here we also present our
simplified expressions for the modification factors in the
F¢ = F§ scheme [13,16]:

de _ MVZV - ﬁVYW(M%’) ,
ot M3, + Mwlly 4= (M3))

(121)
oz M} —Tiz7(M7)
mod = M2 + Mzllz4z(M2Z)

In summary, we have proved that, in the SU(2)xU(1)
theory, the general formulation of ET is (95) with the
modification factors given in (109) and (118). The mod-
ification factors and the Goldstone boson scattering am-
plitude are renormalization scheme and £ dependent. In
our scheme I and scheme II, the formulas for the mod-
ification factors are greatly simplified as given in (119).
Especially in scheme II (95) reduces to the naive sim-
ple form (1), so that this scheme is the most convenient
scheme for applying the ET.

IV. ONE-LOOP CALCULATIONS
IN THE SU(2)xU(1) THEORY
IN THE HEAVY HIGGS LIMIT

A. The modification factors

‘We present here explicit one-loop calculations of modi-
fication factors C%¥ ; and CZ_, in the SU(2)x U(1) theory
for very large my. The calculations will be given in var-
ious currently used renormalization schemes other than
scheme II, from which we can compare the £ and my de-
pendence of C¥ . and CZ_, in various schemes. In the
heavy Higgs hm1t we keep only terms containing positive
powers of mpy or Inmyg, and neglect all terms which are
mpy independent or vanishing as my — co. In this ap-
proach, the quantities Ay’s and As’s in (47) and (51) are
negligible relative to the A;’s. Furthermore, the differ-
ence between M‘?‘,}-’ys (Mghys) and Mw (Mz) is of the loop
order, so that at one—loop level and for the heavy Higgs
case, CW . and CZ_, given in (109) and (118) reduce to

mod mod

CV o =1+ 162w — 624+ +6Zapz,) + AY (M) + (Mw /My™ — 1),

(122)

CZus =1+ 1(8257 — 8242 + 8Zppy) + ATZ (M3) + (Mz/ME™* — 1) .

We thus only need to calculate the one-loop contributions to the renormalization constants Z;’s, A}, A%Z
My /M{,’;'ys, and Mz /Mghy". The Lagrangian for the Higgs sector is

Lo = (Duso)t (D#s0) = V(s0)

. y G +
_on_ 190 pu _ 190 _appan — (5% w
D#_.BF'—_?BO 27'W0 ) S0 _(71'§(v0+Ho+i¢g) ’ 1

—V(So) = —A0[8080 _ —]2

16T
= “E(m%o + 'v—o)Hg

““[245:4’0 + (¢&)%] — ST Ho — Aovo[Ho (208 #g + (6%)?) + Hy)

~20((2g3 95 + (85)°) + 2Ho (265 65 + (65)) + Ha]
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where m%, = 2Aov3, 6T = (Aov3 — p2)vo. The loop-
order quantity 07 is prescribed to cancel the complete
H-tadpole contributions to ensure (H) = 0 as it should
be. To one loop, this requires

2 MH

—i0T jv = 4 M2

[T (EwME)+ 11, (EzM3)

+30(my)] (124)

where the function I; is defined in Appendix C. The
renormalization constants in (122) are related to the
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proper self-energy counterterms by (29) and (71). The
Higgs renormalization constants §Zy and 6Z,,3 are re-
lated to the proper self-energy counterterm by

My = —6Zy(k? — m¥) + 6Z,,,§Im§, . (125)

What we should calculate is the one-loop contributions
to the bare proper self-energies in the heavy Higgs limit.
The results are

2 2
g2 mi 1 m Ewéz
HHo(kz) == 1672 MIZJ {12(IO(MW) + 2) szlv - COZ‘; Ow 9120(k2;m§[7m%[)
—2Ip0(K?; Ew M3, , Ew MY,) — Izo(kz;EzM.%,ﬁzMé)] )
211 1 m2
Twol®?) =555 [+ (367 + vt ) m 2]
3 2 g® 11 2 %-I
HWW,O(k )= _167I'2 Z Emﬂ + 3MW In MT )
2 2
g 1 1 m
i 2 g 1 1 2 2 F
Tzz,0(k) =~ 1672 4 cos? fw 3™MH +3Mz I M_g ’
2 2
T g 1 m 3 &w m
2
=~ 2 g 1 1my 3 &z myg| .2
Hoz42.0(k) =~ 1627 cos? by [gm + (‘ 2 )Rz
- 1m 3 tw m2
fwes k) = + 030w [ e+ (-5 ) m ]
2 2
3 2y_, 90 Mz [1m} (3 £z, mik
z7,0(k") = 1672 cos? O [8 M2 + (_ T4 F% ’
g2 m
Hc*c* O(kz)— 167 24£W Wl M2 ’
2 2
i 2y 9° 1 &Mz |\ my
Mezgz o (k%) = 1672 4 cos? Oy M2 ’

where the functions Iy and I3 are defined in Appendix C.
With these and Egs. (125), (29), and (71), we can deter-
mine the relevant renormalization constants by imposing
certain subtraction conditions constraining the renormal-
ized proper self-energies.

In the present approximation, the calculated AY and
A%Z are

2
w2y 9 ¢w mH
AL (k )_161r2 4 "ME
ZZ (1.2 £z my (127)
ATk = 167r24c0529w lnM2 )

Now we present the calculated C¥ , and CZ_, in var-
jous renormalization schemes as follows

1. Scheme I

The subtraction conditions in our scheme I have de-
scribed in details in Sec. II. In this scheme Mﬁ}' ¥e = My,
Mg“y‘ = Mz. The determined renormalization constants
are
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2 02
g my |3 3n
6Zy = - -
H = 16n2 M2, [2 g |

2 2 2
_g fmy | 31 omE o) % i, £z |\, mH
0Zmy = lﬁwz{Msz[ 4(6 v n47rp.2+ +16\/?—> £W+coszf)w nMw ’

__9g mu
%w = fmi1z ® Mvzg '
2 2
___9 1 my My wo_
JZMW‘—mT[leMz +_lnM3V] 0 =0,
g 1 mH (128)
0Zzz = In—2-,
1672 12cos2 by M,
g 1 1 my m¥
= - — 1 , 60 ,
52m: 1672 cos? 0W [16 M2 M2,
2
g 1 mH §W My W _
024+ =R_7—T_2— §W+ —'—+—— lan] ) 0, =
2 2
g 1 1 my &z ), ™u 5QZ%
= , 2z -9,
0242 = 16m2 cos? Oy [ 8 M2, +( ato |

6Z% =62%%2 =0.

<

From (126) and (128) we find that [y 4+ (k?) and 1742z (k?) all vanish in the heavy Higgs limit. This and the last
equation in (128) are all consistent with the consequences of WT identities listed in Tables I and II, so that these
results may be regarded as an explicit check of the general WT identities (25) and (59). Note that in the present
approximation 59?’, 5962 Z,8Q%, 6922 are negligibly small, and also from (122) explicit calculations give
cw.~1, CEZa~1, (129)

which coincide with the exact result (119). Thus, scheme I behaves approximately like scheme II in the heavy Higgs
case.

2. The on-shell scheme by Bohm et al.
and Hollik [11]

In this scheme kw = Mw, Kz = Mgz, M, phys = Mw, M Phys _ Af,. The Goldstone wave function renormalization
constants are taken to be Zyx = Zyz = Z g. This is dlﬁ'erent from our scheme I and the calculated 62 and Q2%

are
2 2
w_ 9 |(18_V3 \miy §_€£ 0
b 167r2[(16 g ")z T \3 Mz |

) : ) (130)
sozz = 91 18_V3, my (3 _tz) ), mal
1672 cos26y [\ 16 8 M 8 4 MZ
Using (128) ( for §Z;’s ) and (127) we evaluate the modification factors in (122) as
2
wo_1. 9 _13 ‘/?_’ my 3 W 1 M| Wy~
Omoa =1 {473 [ 1678 ") M3 o 3h M2 = (@) s
2 1 13 3 3 mi -
CcZ . = 9 ___+[_ .nLHz____ —_f+£z I; Z(sz)l
1672 cos? Ow 16 Mz M M
f
This also coincides with the exact results in (119) since SC¥ = CW . — 1= —0.060+ 0.003w ,
in scheme I our simplified forms for (C¥ ,, CZ _,) are mo me 132
generally valid for any choice of (Zy=, Zdaz ). We see from 2 . (132)
(131) that in this scheme C¥ , and CZ_; all acqmre non- 0C0da = Choa — 1 = —0.062 + 0.004£7 .
negligible loop corrections “Which contain both m2 4 and
Inmpy terms and depend on {w,£z. Numerically, g In Wi-Wy, or Zp-Z} scatterings, the tota.l modification

0.422 [14]. Taking my = 1 TeV to estimate the size of factor in (95) is (C¥ )% ~ 14 46CW , or (CZ )% ~
C¥.q—1and CZ , — 1, we obtain [17] 1+ 46CZ_, which deviates from unity by about 23% in



the ’t Hooft—Feynman gauge. Therefore the precise form
of ET in this scheme is significantly different from the
naive form (1).

3. The MW scheme in the Landau gauge [14]

In this scheme Z,: and Z,z are determined by
Al gt g [dR? g0 = dllgz4z /dk?|jaz0 = 0, ME* =
My, ME™® = My, and &y = €7 = €4 = 0. Thus
(122) reduces to

C¥ =14 102w — 6Z4+ +8Zpp3,)

(133)
CZa=1+ 10222 — 6242 +62y3) .

2 1 2 3 2
c¥y=1+-7 [ mﬂ+(—g+£—w)n]\"}—§fv

1672 | 16 M2, 4

1672 cos?0w | 16 MZ |\ 8 4

Therefore the modification factors also contain large myg
and £ dependence in this scheme. Numerically, for myg =
1 TeV,

sC% . = —0.031 + 0.003¢w
(136)
6CZ 4 = —0.032 + 0.004¢z .

5. The complete minimal subtraction scheme

The result is the same as that in the on-shell scheme
by Aoki et al. [15] since C¥ , and CZ_; are related only
to the unphysical sector.

|
ﬁww(k2) =0, ﬁzz(kz) =0,
2 2
i 2y _9 B V3 \mk (3
H¢:t¢:t(k )— 167!’2 l:( 8 + 1 Yy M‘?V + 4+
V3

- 2 1 13
II k) = 7 -+ —
p797 (k%) 1672 cos20w [( 8 + 4 T

" 16m2

flyy g (k?) = ~2- [(E—ﬁ«)ﬁ+<§—%

T4z (k2) = -2

|

2 1 2
cZ =142 1 | 1mm (3 &2,
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From (128) we obtain

cWa~1, CZ  ~1 ; (134)

i.e., up to one-loop there is neither an m% term nor a
Inmpg term in C¥ , and CZ_,, so that this scheme is

convenient for applying the ET in the heavy Higgs limit.

4. The on-shell scheme by Aoki et al. [15]

In this scheme, the subtraction condition, for the phys-
ical sector is the on-shell condition so that M“,’J' ¥E = Mw

and Mghys = Mz, while that for the unphysical sector is
the minimal subtraction which, in the heavy Higgs limit,

corresponds to 6 Z4+ = 6Zyz = 0. We then obtain, from
(122) and (128),

(135)

6. The intermediate scheme [18]

This is a widely used scheme with the Fermi con-
stant G, taken as input instead of Mw. In this scheme
MPPYs £ My, The renormalization scheme for the un-
physical sector is not specified. If we take the scheme
in Ref. lel] or Ref. [15] for the unphysical sector we get
large C¥ . — 1 and CZ_; — 1 shown in (131) or (135).
If we take our scheme I for the unphysical sector we get
CW.~1and CZ , ~ 1 [cf (129)] in the heavy Higgs

mod —
case.

7. The F°® = F§ scheme [13,16]

In this scheme QY = 60, = 6% = 0. The Gold-
stone boson wave function renormalization constants are
normalized by Zy+ = Z4z = Zg. In Refs. [13] and [16],
the ’t Hooft-Feynman gauge is taken, i.e., fw = £z =
€4 = 1. Explict one-loop calculation in the heavy Higgs
limit gives

; (137)

8
2 2 2
N 13 ﬁ —n}% + _&z In T_{If Mz .
1672 cos20yw |\ 16 8 M2 4 M3
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From these and (122) we obtain the results of C¥ ; and
2% which are Just the same as (131) but here 5QW

= 0. Thus in the F® = F¢ scheme 6CY , “and

6C od | cannot be ignored. We can also calculate CY¥_,

and CZ_, by using (121), and we get the same results.

This can be regarded as a check of the WT identities (25)

and (59) up to one loop in the heavy Higgs limit.

B. An example of the equivalence theorem:
Heavy Higgs decay H — W, W,

We take the heavy Higgs decay H —» W/ W, as an
example to illustrate the precise formulation (95) of the
ET up to one loop in the heavy Higgs limit. The specific
form of (95) is now

TH - W}W[]=(GCY )*T[H — ¢ ¢

+O(M3, /m%) . (138)

The left-hand side of (138) is physical, independent of the
renormalization scheme and the gauge parameter. In the
heavy Higgs limit, up to one loop, the calculated result
is

gz

1672

m¥ [ 45 5v/3
— - n
Mz \16 " 8

In (141) we have kept a éw In M"i:g- term as well for exam-

ining the total £ dependence of the RHS of (138). We
see that this {w-dependent term is ezactly canceled by
that in (CY ;)2 = 1+ 26CY , given in (131), so that the
product ( mod)ZT(H — ¢t¢7) is éw-independent as it
should be in (138). Numerically, for mg = 1 TeV, we

T[H — ¢T¢™] = - {1 +

have
(C¥ ) =1-0.111 + 0.007¢w ,
T[H — ¢t¢~] = —[1 + 0.184 — 0.007¢w T, , (142)

(ICY )?T[H — ¢+¢~] = [1 +0.0731|Tp ,

which, together with (140), realizes the ET (138). We see
that there are significant cancellations between (CY )2

2 2
g my

16m2 ME, M3,

3v3
—_—T
8

21

TIH — ¢t¢7|=— {1 +

E

= (14 0.125 — 0.007¢éw )To (for myg =1 TeV) .
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)

T(H - W} Wy)

2 2
g® my (19 3\/§ 5m2
=1 iid &y s Ty,
tlenz M3, ( STt ||t
(139)
q 2
_ g mg
TO - EM{’J.WS )

where Tp is the tree-level amplitude. In (139) we have
kept only the terms with positive power of my. Numer-
ically for myg = 1 TeV,

T(H » W{W;) = (1+0.0731)T, . (140)

Next we calculate the right-hand side of (138) in vari-
ous renormalization schemes other than scheme II to the
same accuracy.

1. Scheme I

The calculated T(H — ¢*¢ ) is the same as the right-
hand side of (139). Together with (129) and (139) we get
the ET (138).

2. The on-shell scheme by Bohm et al.
and Hollik [11]

The calculated T(H — ¢+ ¢™) is

}To.

and T(H — ¢t ¢~ ) in (142), so that it is important to
notice that we should use the precise formulation (138)
of the ET rather than the naive simple formulation (1)
in this renormalization scheme.

2 Ewl

5 (141)

M2

48

3. The MW scheme in the Landau gauge [14]

The situation is the same as that in scheme I in the
present approximation.

4. The on-shell scheme by Aoki et al. [15]

Explicit calculation gives

g’ Ew
1672 2

My

| &eit)e

(143)
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We see again from (135) and (143) that the &w-
dependent terms in (CY )2 and T(H — ¢1¢~) just
cancel each other. There are also large cancellations of
the £éw-independent terms between (CY )2 and T(H —
¢ ¢7). Hence, distinguishing the precise and the naive
formulations of the ET is also important in this scheme.

5. The complete minimal subtraction scheme

The result is the same as that in the on-shell scheme
by Aoki et al.

6. The F* = F¢ scheme [13,16]

The result is the same as that in the on-shell scheme
by Bohm et al. and Hollik.

We have seen from the above explicit calculations that
the form of the ET depends significantly on the renormal-
ization scheme. In some schemes, the £ dependence of the
Goldstone boson scattering amplitude and the modifica-
tion factors exists even to leading order in My /E. Also,

1, &T.., 14T
= — -—H,. -
2(mH0+v0) 0'1'2,00

A
93 + 8T Ho + Movo(Hot§ + HY) + [ (¢6 + H + 245H7) ,
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to leading order in Mw /E, the difference between the ¢-
independent parts in the Vj, amplitude and the ¢* ampli-
tude can be quite significant in some schemes. Therefore
be sure to use the precise formulation is important in the
applications of the ET.

V. EQUIVALENCE THEOREM IN THE
U(1) HIGGS THEORY AND THE
COMPLETE ONE-LOOP CALCULATIONS

As an illustration of our general formulation we first
give the precise formulation of the ET in the simple U(1)
Higgs model and then present the complete one-loop cal-
culations. Consider a scalar field s = % (vo + Ho + i)
interacting with U(1) gauge field Af, in which v is the
vacuum expectation value (VEV), Hp is the Higgs field,
and ¢ is the Goldstone boson field. The Lagrangian is

L= —1Fo F' + (Duso) (D#s0) — Vi(so) , (144)

where F§¥ = 9*Ay — 0¥Ay , D* = 8" + igoA}, and
V(so) is

(145)

in which m%, = 2Avd, 6T = vo(Aovd — p3). We take the R gauge. The gauge fixing and Faddeev-Popov terms are

1 _1 1
LgF = —EFQZ ,  Fo=4§,20,AF — £} Koo ,

Lrp = &(—8% — €oroMo — goboroHo)co ,

(146)

where cp (o) is the ghost (antighost) field and My = gov is the bare mass of gauge field. Now the WT identities in

(11) read

ik*[iDg 1, (k) + &5 ' kuky] + MoCo(k?)[iDg 5, (k) — ikoky,] =0,

ik*[—iDy (k) + irok,] + MoCo(k?)[iDy 5, (k) + €okg] =0 ,

iS5 (k) = k? — EokoMoCo(k?) ,

where

éo(kz) = 1 + Al(kz) 3
(148)

Aa(k?) = 22 / (0| Ho(~k — a)ea(a) | 2o(k)) -
q

The renormalization constants for the unphysical sec-
tor are defined as

(147)

After renormalization the finiteness of the renormalized
WT identities gives the constraints

Z¢ =074 Z.=0.252,%2;"
Zy= Q¢ZAZ§léo(sub. point) , Z.=%,,
(150)

where the Q; — 1 = 6Q; is arbitrary finite loop-order
constant. The renormalized C(k?) is

1/2
O(k?) = (%) ZaColk?) . (151)
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We can derive the WT identities similar to (24) and (25)
in which C(k?) is expressed in terms of the proper self-
energies as

—Taa(k?) + (71 — 1)K
M2+ MHA¢,(k2) + MKZ(Q IQ - 1)

Ck?) =

(152)

Similar to the derivation in Sec. IIIB we get, in the
present theory,

Cl(MP™#)?] (153)

Cvmod -
phys

Also in our scheme I and scheme II we have

Co = Q7' ,in scheme I with{ =land s =M,
mod = 1, in scheme II with k = £~ 1M .

(154)

In the MW scheme (£ = 0) [14] we have

Cemod = (Za/Z4)% Zut (155)
and in the F = F, scheme [13,16] we have
M? — M 44(M?
Crnod = aa(M) (156)

M? + MIIz4(M?)

To one-loop level, the original expression for Cpyoa given
in (153) and (151) reduces to

Chroda =1+ 3 (5ZA - (524, + 5ZM2) + Ay (Mz)
(M/Mphys ~1). (157)

In scheme I and scheme II, we can calculate Cyoq both
from (154) and from (157), and this serves as an explicit
one-loop level check on the general WT identities which
lead to (154).

Now we present the complete one-loop calculations for
arbitrary value of mpg. The renormalization constants
are related to the proper self-energies by

J

IIAA(kz) Moaa(k?) +6Za(k? — M?) — 6Zp2M?

Maa(k?) =Toaa(k?) — €100k — (624 + 8202 ) M*
g (k?) = Mons(K2) + [5(52,; 4624+ 8Z) + (6% — 6)IM (158)
Mg (k%) = Mogs(k?) — 6Z4(k* — EM?) — (824 + 8¢ — 20Q)EM?

flee(K?) = Tloee (%) — Zc(K* — EM?) + [5 024 — 825+ 6Za12) + 8R.)EM?

where we have chosen & = M for convenience. We give separately the calculated results in the £ = 1 gauge (which is
related to scheme I, scheme II, and the F' = F, scheme) and the £ = 0 gauge (which is related to the MW-scheme).

A. The 't Hooft—Feynman gauge ( £ = 1)

We first determine the bare quantity 67 in (145). By definition, the VEV of the H field should vanish. This requires
that 67 should cancel the total H-tadpole contributions completely. This requirement fixes 7. Up to one loop we
have

—idT /v = =3M;(m}) — [A+ (D — )¢’ |h(M?*)foré =1land k=M (159)
where I; and D are given in Appendix C. The one-loop results of the bare proper self-energies are

Moaa(k?) = —ig?[L(m¥%) + [I(M?) + 4AM*I; — 414] ,

Moaa(k?) = —ig?[Iy(m%) + [(M?) 4+ 4M2I, — k2T, — 4k*I5 — 4(I1s1 + K*Ls3)]

Moy (k) = —i[(2A + %) L1 (m¥) — (21 + g [1(M?) — (4X\%0? — 4g°k? — ¢ M?)I; + 4¢°K*I3] , (160)

Moag(k?) = —ig? M~ 2[(2m} — 2M?) I3 + (m}y — 4M?)I]
Moce(k?) = ig? M?1, ,

where I; = I;(k?; M?,m%) for i > 2 are given in Appendix C. With these results we can determine the renormalization
constants in various renormalization scheme.
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1. Scheme I

The on-shell conditions are

2 ~
Rellg4(M?) =0, M =0 ,Rellga(M?*) =0,
dk k2=M2
(161)
. dRell44(k?) dRell z(k?)
2y _ L — =
ReH¢¢(M)—0,——W—— —0, dk2 =0.
K2=M?2 k2=M3
Hence MP"¢ = M. Equation (161) determines
02
674 = 4ig [M2I, — Ity), 86Zps = ——%[Il (m%) + I (M?) + 4M2I, — 4l4] ,
(SQ& = Zgz[Iz - 4M2I; + 4I3 + 4142 + 4I‘,ll] ,
. 2 my 2 ) 2 11
8Zy=1g uz 5M? | I, — 4l — 413 —4M° I | , (162)

ig? | [ m2 _ mi mi
80 = _g_ [(1\_4% + 1)M 2 (mYy) — L(M?)] + (2 - ﬁ)[z + (F’j -9 | M?I,

—4AM?I + 43 + 414 + 4121] ,

8Z.=ig’M*I;
where I; = I;(M? M? m%) and I} = dI;(k* M?,m%)/dk?|xa=p for i > 2. The calculated result of A;(M?) is

A (M?) =ig’I, . (163)
With all these we explicitly calculate (157) and get

. 2 2 m}
Crna=1- [(% + 1)M—2[rl(m%f) - L)+ ( - F’i)lz

4
+(% - )MZI; —4AM2I; 4+ A3 + 4142 + 4I¢’ujl
=1-6Q.,~Q", (164

which coincides with the exact result (154) from the WT identities.

2. Scheme II

In this scheme we take 2, = 1 instead of imposing the condition d Rell44/dk?|x2—p2 = 0. This changes the value
of 6Z4. We have now

2 4
6Z4 = ig? [(%’g + 1) M2 (M?) — I(m%)] + (% - )Iz +4M?I, — 813 — Al — 4l4,| . (165)

Our explicit one-loop calculation of (157) gives
Cimoa = 1 + O(2 loop) (166)
which is consistent with the rigorous result (154) from WT identities.
8. The F = F, scheme [13,16]

In this scheme ¢ = 1 and Kk = M, so that the tree-level Goldstone boson mass is M [cf. (23)]. Now this scheme
corresponds to ¢ = 2, = 1 and Zy = Zg; therefore, there is no freedom of adjustment to make II;4(M?) = 0 (cf.



4866 HONG-JIAN HE, YU-PING KUANG, AND XIAOYUAN LI 49

Table I). Indeed the one-loop calculation gives

. .
Hge(M") = 7 =

1— 1422 + 11z — 22° z+\/x2—4)
2

2
z 2M2<4:z:2—2:1:‘*-*—(1-*—4:::2—7::':"‘+2:z:6)1na:+ zln
s

for z > 2, (167)

where z = my /M. Thus, in this scheme, the total Goldstone boson mass mi = M? 4+ [44(M?) is not equal to the

tree-level value M2. This coincides with the analysis in Ref. [13]. Considering this fact, the precise formula for Cpoq
is complicated. The one-loop result calculated from (157) is

g2 13 5 7 12z2-5 T+ vVz2—4
Crmod =1 =2 12 4 — 22 (22— crve T 7
‘mod + 16 [( 5 4 ) + 2 2:1: +z*|lnz 3 z(z® — 3)In 3

\/m
#1 (forc=myg/M>2). (168)

B. The Landau gauge (¢ = 0)

In this gauge, the requirement that 6T should completely cancel the total H-tadpole contributions leads to, at the
one-loop level,

570 = ¢ |33 iy + (0 - 1) (169)
where I, and D are given in Appendix C. This fixes T completely. The calculated one-loop results of the bare proper
self-energies are

Moaa(k?) = —ig? [ (M%) + AM L (k?*; M?,m%) — 44 (k% M?,m%)] ,
(170)

Iz(kz 0 mH) +4k212(k2 M2 mH)

2
- i m
Moy (k%) = —ig? [m_fzle(M}, )

K4
Iy (K%;0,m%) — In (K% M2 mY)]| + 4=

Mz [I42(k2 0 mH) — I42(k2 M2 mH)]

k
Svel
where I, I, I,;, and I, are given in Appendix C. It is easy to prove from (170) that 1:14,4,(0) = 1=I0¢¢(0) = 0 which

is well-known in the Landau gauge. We then take the MW scheme [14] to determine the renormalization constants.
The on-shell conditions are

d
2 ReHAA(kZ)

2y _
Rel'IAA(M )—0, dk

=0,
k?=M?

(171)

d _ -
—5 Rellyg (k%)

Rell4(0) =0, a5

=0.
k2=0

These lead to
6Z 4 = ig* [AM>I(M?*; M?, mY%) — 41, (M* M?*, m¥%)] ,
0Zpa = igzM_z[ Ii(m¥) — 4AMPI(M? M? mYy) + 41a (M?; M2, mY)] (172)
624 = ig? { T 13(050, miy) — A1(0; M2, my) + 375 a0 M2, ) — L (030, mi,)]] .
With (172) we can calculate Cppoq from (155). The result is
Crmod =1+ 3(624 — 624+ 6Zp2)

2 5 1+ z? 2z
=1+_g__.[(15 7a:2+ )+(%§—12m2+7$4—§z6—4 tT +ime3)ln:t

s2nz |\ 2 " 2 122
7. 2. 16) 1 e+VaT—1
T

+(—12—16m+8m2+—2—:§z3——m — -z’ 4+ -z 2—411 >

forz>2, (173)
3 3 3
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where z = my/M. We see that in this scheme with
€ = 0, Ciod is not unity. In non-Abelian theories, the
interactions are much more complicated. It is quite un-
likely that Cnoq = 1 for arbitrary my in the MW scheme.

However, in the Landau gauge, A; = 0 since the
Higgs boson decouples from the ghost fields [cf. (148)],
and thus in the U(1) case é’(kz) in (151) reduces to
C’(kz) = (ZA/Z,;,)%ZM = Cmod- Therefore we can al-
ways choose Zy = Z4Z%; to make Cppoq = 1 [19]. In the
non-Abelian case Cpoq is still complicated in the Landau
gauge due to the non-Abelian coupling between the gauge
fields and ghost fields [cf. (107),(120)]. So the above
choice of Zy to make Croq = 1 concerns the detailed
explicit calculations of Aj3’s and is thus inconvenient in
practical applications of the ET.

VI. CONCLUSIONS

In this paper we have given a general proof of the pre-
cise formulation of the ET both in the SU(2); theory
and the SU(2)xU(1) theory to all orders in the pertur-
bation for arbitrary value of mpy based on the general
Slavnov-Taylor identity (79). The precise form of the
ET is (95) with the modification factors C2 4 given by
(105) for the SU(2)z theory and (109),(118) for the re-
alistic SU(2)xU(1) theory which has not been given in
the literature. The modification factor is proportional
to a function C(k?) related to the matrix elements of
. certain products of field between the vacuum and the
antighost states [cf. (15),(20) for the SU(2)z, theory, and
(47),(50),(53) for the SU(2)xU(1) theory]. At tree level,
the matrix elements vanish and the renormalization con-
stants are unity which lead to C(k?) = 1. With loop con-
tributions, the nonfactorized parts of the matrix elements
and nontrivial renormalization constants emerge which
cause C(k?) # 1 and this generally makes C2_; different
from unity. Therefore (95) is in general different from the
naive simple form (1). Both C2_, and the Goldstone bo-
son amplitude T(i¢%,...,i¢%",P) in (95) are related to
unphysical fields, so that they both depend on the gauge
and the renormalization scheme. Our explicit calculation
in Sec. IV shows that these dependence are in general not
Mw /E suppressed. Our calculation shows that the lead-
ing gauge- and renormalization-scheme-dependent parts
in Ct,---Cor, and T(i¢p™,...,i¢°,®) just cancel
each other, so that the RHS of (95) can be equal to
the LHS T'(V/*,..., V", ®) which is physical, indepen-
dent of the gauge and the renormalization scheme. In
the naive formalism (1), the leading part on the RHS
is generally not gauge and renormalization scheme inde-
pendent; therefore, (1) cannot be generally valid.

In Sec. IT we have given a systematic analysis of the
renormalization schemes in the general R; gauge defined
in (3). We have considered the Ward-Takahashi iden-
tities for the inverse propagators which give constraints
on the renormalization constants. Special attention has
been paid to the examination of the freedom of adjust-
ing the renormalization constants in the unphysical sector
for simplifying the expression for C(k?). Based on this
analysis we have proposed two convenient renormaliza-
tion schemes, namely, scheme I and scheme II defined
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in Sec. II, in which C'({nMw) takes the simple form
(35) for the SU(2)r theory and the charged sector in
the SU(2)xU(1) theory, and CZ(¢zkzMz) and C4(0)
take the simple forms in (74) for the neutral sector in the
SU(2)xU(1) theory. The details of these two schemes are
summarized in Tables I and II. Of special importance
is scheme II in which the naive simple form (1) of the
ET holds exactly. The subtraction conditions chosen in
scheme II are irrelevant to the explicit calculation of the
complicated expressions for C%_,’s. Therefore scheme II
is the most convenient scheme for applying the ET. Ex-
amples of exactly realizing these two schemes are given
in the U(1) Higgs theory in Sec. V.

‘We have also examined the modification factors in var-
ious currently used renormalization schemes other than
scheme II in the SU(2) and SU(2)xU(1) theories up
to one loop in the heavy Higgs limit. Our calculation
shows that in some currently used schemes such as the
on-shell scheme by Bohm et al. and Hollik [11], the on-
shell scheme by Aoki et al. [15], the minimal subtraction
scheme and the F'* = F§ scheme [13,16], the modification
factors are significantly different from unity even in the
heavy Higgs limit. In these schemes, calculation of Wr-
Wi or Z1-Z[ scattering amplitudes by using the naive
form (1) of the ET may cause an error as large as 20% .
In the MW scheme [14] and the intermediate scheme [18]
with scheme I for the unphysical sector, the modification
factors are approximately unity in the heavy Higgs limit,
so that the application of the naive form (1) of the ET
are safe in this limit.

We conclude that care should be taken in the appli-
cation of the ET if the renormalization is not taken to
be scheme II. In general, be sure to use the precise form
(95) instead of using the naive form (1). Only in scheme
I the use of the form (1) is always correct.

In our forthcoming paper [20] the above precise formu-
lation of the ET will be generalized to the effective chiral
Lagrangian formalism where the electroweak symmetry
breaking sector is nonlinearly realized in the derivative
expansion.
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APPENDIX A

We give here an alternative proof of the general
Slavnov Taylor identity (79) in the text in the path-
integral formalism, which is simpler and more direct than
the proof in Ref. [5].

Consider the generating functional (7) in the text with
the external sources I,,I,, K*,L® = 0. The gauge fix-
ing term and the Faddeev-Popov term in the Lagrangian
are given in (3) and (5) in the text, but we need not
specify the function F§ here. It is well known that the |
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renormalized S-matrix element for physical particles is
gauge-independent, i.e., independent of the change of the
gauge fixing function F§ — F§ = F§ + AF§ [10]. The
only effect of F¢ — Fg is the change of the wave func-
tion renormalization constants which do not affect the
physics. Let us take AF§ to be an arbitrary local func-
tion I*(z), independent of the fields x§, 3, and &2, i.e.,

Fg(z) = F§ () — I5 (). (A1)
In the theory with the gauge fixing function F¢(z), the
renormalized fields x%,c2,c8 depend on I® through the
I® dependence of the wave function renormalization con-
stants since x§, ¢, &3 are independent of I¢. Let the gen-
erating functional in the theory with the gauge fixing
function F§(x) be

Z|J] = exp(iW[J]) = /DXODCODEO exp [l (g[XO,Co,Eo] +/d4$JiXB)] ) (A2)

where in Sx}, c3, ¢3] the gauge fixing function is Fg(z). According to the above reason, the two generating functionals
Z[J] and Z[J] must lead to the same renormalized S-matrix element for physical fields. Symbolically, we write this

relation as

SmWIJ]

"W J]

m>0. (A3)

X(Lsz) 57

i (y1) - 65, (Ym)

= X
yeo USDET () - 0i, (ym)

)
J=0

The symbol X(1sz) means the application of the Lehmann-Symanzik-Zimmermann (LSZ) reduction projector to the
connected m-point Green function. We further write (A3) as

Olx, (p1)---x,

where X, (m) (I=1,...,m) denotes the LSZ amputated
asymptotic on-shell physical field which are gauge inde-
pendent and thus I, independent. Now we take the func-
tional derivative 0" /81,, (x1) - - - 01, (x,) on both sides of
(A4) and then turn off the I*’s. Since there is no I*(z)
on the LHS of (A4) we get

0= (O|TF* (21) -+~ Fe" (2n)®10) oy pg—prs » 721,

(A5)

(Pm)|0)with Fg(2) = (Olx; (P1) - X; (Pm)0)witn Fo(a) > (A4)

tm [ L

or, in the momentum representation,

0 = (0|Fg" (k1) - - - Fg" (kn)®(0) gien, prg=pgr m 21,

(A6)

where ® = H;’;lp_(i', for m >1and ® =1 for m = 0.
On the RHS of (A6) {(A5)] we have ignored a term of
the form 8*(k1 — k2)0a,0,0n20m0(0%(21 — 22)0a, 0y 0n20mo)
which does not contribute to the connected S-matrix el-
ement. (A6) is just the identity (79) in the text.

APPENDIX B

We give here the quanitities A’s in the SU(2)xU(1) theory.

In the charged sector

AY () = g [0 Hol—k = a)ei (@) | &5 ()
wo Jgq
— % -1 g — .
= %2450 g [0 1 H (=0 (@) 157 (BY)
h — [ 9 1nd in the dimensional regularizati h Sope [ 22
where L— (2—7[')‘4‘ , and 1n € dlmensional regu arization we nave /] H (27[')D )

AF(K?) = AZT(K?) + AR (K?) + AT (K?)

A% = 2 [0] 68 (k- 95 0) | 5 ()

(B2)

= 2,252 e [019% (k-0 @ 120 (83)
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AR(K2) = 7290 (1~ tan? buo) [ (0|65 (~k = )ef (@) | &5 ()

=2,2}, 77} 9 _ (1~ Zyans 60, tan® )

$+ "Mz a3M5
<[ L5 [016h-0@ 1260 + T [0l k-0t 18] | (B4)
ARG = 370 (0163 (k- e (@) 58
AA
~ 22375, g | S [0197 k=0 @) 1)+ T [0167k—act@ 2@, @9
AY (K) = A (K) + AZ(K) + AF (K) + A (K) , (B6)

ik AW (k2) = —ieo / (4% (=k — g)c5 (@)Id (k))

=~z Z}ie [Q12(~k — )™ (@)le" (B) - 2.2} yie / (0] 4% (—k — q)c= ()0l (k) (B7)

q

ik A (k?) = ieo /<0|W H(—k — g)c ()] (k)

=225 %

e [0k = ) @I 0) + 224 T pie [k Qct@l (), (B)

ik AYE (K2) = igo cos Buwo / (01Z8(=k — g)c5 (@)[cF (k)
= —ZchongZEZig cos By /(O]Z"(—k - q)c”(q)‘E“L(k))

1
"ZchosﬂwzéAigCOSHW/(OIA“(_k —q)c—(q)‘é+(k)) ’ (BQ)
q

ik# AY, (K?) = igocos fwo / W (—k — q)cZ (@)l (k)
q

1 ZZZ . _
= ZoZeonon Zhy G 19 0n00 / (OW+(—k — q)c? (q)|e* (k)
1 ZZA .
2y Zeoron Zhy Gariacost [(OW (k- cA(@)le* () (B10)
c q
In the neutral sector,
ik, AF2(%) = [ (1D}, (—k - )ch(@)Ie (%) — ik,
q
= igocos o | | OWi(—k ~ e IGO0, (&~ ) @lef 40
q

1
= ZgZcosow Zyytg cosbw

W 7AA
<[ [om k- e @i Zgay - [0 (k- e @A) Do
zZWzAA

= oW (k= a)et @) T + [0 (k- e @l k) dtzN] . (1)
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kAR = [OIDG, (~k — a)ch(@)led (k) — ik,
o | [(01We, (k= )i @I (k) — [ (O, (& - ) aet )
=zczavzcwie[ 101w (ke @it ) sz — [0 (k= e (@I ) g
- [0 k= e @It e + [0 (k- 0 @ () e } . e

det ZN

ik, AZA(K?) = / (01DY, (—k — g)ch(g)lcd (k))

= igo cos Owo [/q(ﬂl ov(—k = g)cg (a)l2g' (k) /<0|W0u( k—q)eg (Q)léa‘(k))}

1w
=ZgZcosowo Ly Ze 19 cosbw

ZZA

b — - =A ZZZ — +(_L — - & (k
x| [0 (k= ) @IeAR) g — (O (&~ ) @I ) 7w

ZA
=[O (k- e @A) g + [0 (k- et @I ) e | (B1Y
ik, A32(0%) = [ (01D, (—k - )eb(@lef (k)
=ico | [ (01WG,(~k ~ )i @)l (0) ~ [ (OWi (= ) @)leF ()
AA AZ
= 273, 2i| [(OW (k= e @I (80 i — [0 (%~ 0" @I 0 g
ZAZ
- [0 (k= et @ 0 g + [0 (= e @l (k) tzN] , (B14)
AT = e [ O1Ho(—k — a)ef @)1 (1)
ZZ 7AA ZA7AA
Jjﬂf—jﬂ‘j—w{ ok - et @ie () T e + [0k - gt () g
ZZyAZ ZA7AZ
- [k - e @ity e [OIH (k- et ) A(k»ZdtiN}, (B15)
AT = gy [(OVHo(—k —a)ef (@)l (1)
ZA zZZ
ZZZH g [/<0|H( k- 0 @A) L+ [tk - et @it k) Ze

ZZZ ZA

ZA
— [0k - e @)ie? () Lo — [0l (= - A @Ie? () e )], (B16)
q c q

det ZN
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agz(e) = it | (ol (k- ez @IeF ) ~ [ 015 (k- e @IeF )]

2 Z Zc ZAA
SR . . [/ ©lo* (—k - 9)c™ (9)le? (k) 35w

B P
016" (~k ~ 9™ @I B g i

Zny

q

AA AZ
- 067 (k- 9 @I (k) ooz + [ 01 (k- a)e* (q)IcA(k))dtzN] , (B17)

854 = | [ 016 (k- 0 @l (k) - [ 01 (& - e @i k)

1
 7,2..2Y

Iy,

; [‘/‘1<0|¢+(_k_q)c_(q)!EA(k))dthN - [0k - e @l ) s

“(—k +(a)|EA (K zz*% - +(\[RZ zZ4
= [0k e @Ik g + [ 019k = )" @1 00 s (B18)
APPENDIX C
We give here the definitions of momentum integrations appearing in the one-loop calculations in the text:
2y — 2 1 ¢ o2 2
(C1)
1 dPp
I(e)=--v-In / / jor D=4-2e
1
I k2;a2,b2 = 2:/ ,
2( )=p > (P2 — a?)[(p + k)% — b?]
ot 1 o ab _ 2. 2 32
- 1671'2 [E Y ]' 47‘_”‘2 (k ia 1b )] ] (Cz)
2, 242y @b b o 5 o
Io(k*;a%,b%) = — P 111; + Iz0(k%; 0%, b%), (C3)
4
e “;‘”““Z (< (a=b?),
- v—AB
Lo(k%a%,0%) = { 2—— cz arctan (( -b)?<k?<(a+b)?), (C4)
+YAB 1n‘/_+‘/_—m (K > (a+b)?)
TR M VE- VA
where A =k% — (a +b)%,B=k? — (a — b)?,
(K502, 5%) = 2 / > = kP I (k% %, b?) (C5)
P » P —a)(p+ k)7 -2 Y
I (k% a2, B?) 5”25/ pHp¥
L » (P —a@®)[(p + k)% — b7]

=gty (kz; az, bz) + k“kuI.u(kz; a2, bz) . (Cﬁ)
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