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Based on a systematic analysis of the renormalization schemes in the general Rg gauge, the

precise formulation of the equivalence theorem for longitudinal weak boson scatterings is given both

in the SU(2)i, Higgs theory and in the realistic SU(2) x U(1) electroweak theory to all orders in

the perturbation for an arbitrary Higgs boson mass mH. It is shown that there is generally a

renormalization-scheme- and ( dependent modification factor C,q and a simple formula for C,s is

obtained. Furthermore, a convenient particular renormalization scheme is proposed in which C g is

exactly unity. Results of C p in other currently used schemes are also discussed especially on their

( and rnH dependence through explicit one-loop calculations. It is shown that in some currently

used schemes the deviation of C s from unity and the g dependence of C s are significant even

in the large-mH limit. Therefore care should be taken when applying the equivalence theorem.

PACS number(s): 12.15.Ji, 11.10.Gh

I. INTRODUCTION

The mechanism of electroweak syxnmetry breaking is

the most unclear issue in the standard model, and it will

be one of the most investigated problems in the future

study of high energy physics. At the Superconducting Su-

per Collider (SSC) and the CERN Large Hadron Collider

(LHC), the electroweak symmetry-breaking mechanism

can be probed through longitudinal weak boson scatter-

ings. Since the longitudinal component of the weak boson

Vg (V stands for W+ or Z ) arises from absorbing the

would-be Goldstone boson gP through the Higgs mecha-

nism [1], one may intuitively believe that the scattering

of VL
's is related to the scattering of P 's. The quanti-

tative relation between the two scattering axnplitudes at

energy E )) Mw is described by the well-known equiva-

lence theorem (ET) which states that

T(VI ', . . . , VL ",4) = T(i/ ', . . . , iQ ",4) + O(MW/E),

cles. This simple relation was first pointed out by Corn-

wall, Levin, and Tiktopoulos, and by Vayonakis [2] at

the tree level. A sketch of the proof in the 't Hooft-

Feynman gauge for the case of n = 1 was then given by

Lee, Quigg, and Thacker [3]. Chanowitz and Gaillard [4],
followed by Gounaris, Kogerler, and Neufeld [5], studied

the general proof in the Bg gauge and they claimed that
the simple relation (1) holds to all orders in perturbation

for arbitrary values of the Higgs boson mass mH. As an

important and useful tool for studying the electroweak

symxnetry breaking mechanism, this naive formulation

of the ET has been widely used by various authors [6].
However, it was pointed out recently by Yao and Yuan [7]
and Bagger and Schmidt [S] from a more careful exami-

nation of loop contributions that there should, in general,

be a modification factor C s associated with each ex-

ternal Goldstone boson field P ', and C s g 1 beyond

the tree level; i.e., (1) should be modified as

where 4 denotes other possible on-shell physical parti-

T(V~', . . . , Vg", 4) = C" dT(iyP', . . . ,igP", 4)
+O(M~/E) . (2)
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In Ref. [S], a coinplicated expression for C s in the

SU(2)L, theory is given and it is argued that C q can be

formally defined to be exactly unity by a suitable choice

of a Goldstone-boson wave function renormahzation con-

stant, but no clue was found as to which renormalization

scheme will ensure C p ——1. They then performed an

approximate simplification of C g in the heavy Higgs

limit under certain subtraction conditions. In the realis-
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tic SU(2) xU(1) theory, we find that the general expres-

sions of C ~ are much more complicated (cf. Sec. III).
Since the ET is so useful, it is of special importance to
make this issue clearer and to exactly simplify the ex-

pressions for C
In this paper we shall present a systematic study of

the general proof of the precise formulation of the ET.
We first give a systematic analysis of the renormalization

schemes in the general Bt gauge for both the SU(2)L,
theory and SU(2) xU(1) electroweak theory with special

attention to the &eedom of adjusting the renormaliza-

tion constants in the unphysical sector restricted by the

Ward-Takahashi (WT) identities. Two particular renor-

malization schemes, scheme Iand scheme II, with special
and convenient determinations of the unphysical renor-

malization constants are proposed for the sake of sim-

plifying the formulation of the ET. We then give a gen-

eral proof of the precise formulation of the ET which

is generally of the form of Eq. (2) to all orders in the
perturbation and for arbitrary value of m~ with C
specifically given. The precise formulation is given both
in the SU(2)r, theory and the realistic SU(2) xU(l) the-

ory which has not been systematically studied in the lit-

eratures. In (2), T(igP', . . . , iP ",4) and C"
&

are in

general unphysical quantities which depend on the reaor-
malization scheme and the gauge parameter f, while the
product C" &T(ig ', . . . , igP", 4) is physical with an un-

certainty of O(Mvr jE); i.e., the leading order unphysical

parts in C"
&

and T(if ', . . . , igP", 4) cancel each other.
We shall see that in scheme I the expression for C ~ is

simplified as a single quantity already determined in this

mriormalizotion scheme itself and in scheme II C
is exactly uruty; i.e., the originol simple form (I) of the

ET holds in scheme II. The realization of these schemes

is irrelevant to the explicit calculation of C q, so that
they are convenient in practical calculations. Finally,
we present several applications with explicit calculations

up to the one-loop level. The comparison of scheme II
with other currently used schemes is shown in the ex-

plicit results, and the ( and m~ dependence of C" s and

T(ig ', . . . , iP ",4) ia schemes other than scheme II are

specially examined. It is shown that in some currently
used schemes the deviation of Cm ~ from unity and its (
and m~ dependence are significant even in the large-m~
limit. Therefore care should be taken when applying the
ET. A brief sketch of this study has been published in

a previous Letter [9] and in this paper we present the
complete and detailed investigations.

This paper is organized as follows. Section II presents
the systematic analysis of the renormalization schemes in
the Bt gauge for the SU(2) L, theory and the SU(2) x U(1)
electroweak theory in which scheme I and scheme II are
defined. The general proof of the precise formulation of
the ET is given in Sec. III. The $ and m~ dependence
of C s and T(ig ', . . . , i'",4) in some currently used

reaormalization schemes other than scheme II are exam-

ined in Sec. IV through explicit calculations up to one

loop for large mH. Section V is an explicit illustration of
the up to one-loop results in scA,erne Iand scheme II for
arbitrary m~ in the simple U(1) Higgs theory. A snm-

mary of this study and conclusions are given in Sec. VI.
In Appendix A, we present a simple derivation of the
Slavnov-Taylor identity used in Sec. III for the proof of
ET. Some technical details in the text are given in Ap-

pendixes B and C.

II. ANALYSIS OP THE RENORMALIZATION
SCHEMES IN THE GENERAL R4 GAUGE

Consider the standard model. The weak boson, Higgs

boson, Goldstones boson, ghost, and antighost fields are
denoted by V„,H, P, c, and c, respectively. We take
the general Rg gauge with the gauge-fixing term of the
form

&GF = —z(+o )'
~a ((a)

—
~ g V&A (go) ~ +aye

where the subscript 0 denotes the bare quantities. Here

we put in (3) a free parameter ~o instead of taking it to
be the mass of Vo" for generality. Let po be a general

symbol denoting the fields except co and co, go be the

bare gauge coupling constant, and T be the generator

of the gauge group. Following Ref. [10] we define

D;(Xo) —= &;+&;;Xo,

—
go 6; 8„if yo is the gauge field V„,

0 otherwise.

The Faddeev-Popov term ZFp can be written as

r.Fp = f d4y co(z)m. s(2:,y)c,'(y),
Moo —= Ko Ds(yo)

where

When doing renormalization we determine the multi-

plicative renormalization constants for the physical sec-

tor in the same way as in Ref. [11],i.e., taking the usual

on-shell scheme. In what follows we concentrate our at-
tention to the renormalization of the unphysical sector.
In order to examine the freedom of adjusting the renor-

malization constants for the unphysical sector, we look
at the Ward-Takahashi (WT) identities for the inverse

propagators, which put constraints on the renormaliza-

tion constants. Consider the generating functional

Z[J, I, I, K, I] = exp(iW[J, I, I,K, L])

Bpo&co&coexp i 8/o, co~co + d z Ji&o+I co+ coI +E D&co+ 2&o L coco l )
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where f ~ is the structure constant of the gauge group,
8 is the action of the fields including the gauge fixing

and the Faddeev-Popov terms, and J;,I,I,E', I are

external sources. Let cu be an infinitesimal Grassmann

parameter. The invariance of 8 under the Becchi-Rouet-
Stora- Tyutin (BRST) transformations [12]

Taking the functional derivatives of (9) with respect to
y', &, c,&, c,&, we obtain the following WT indentities for

the inverse progagators:

f d z i17o,
'

(z, y)X;(x, z) = 0,

i So 'b(x, y) = Ko*Xb;(y, x),
X'p ~ Xo + Do'(Xp)Co~

a ~ a 1
y fabcCbCc~ (8) where So(x, y) is the ghost propagator, and

leads to the following generating equation for the WT
identities [10]:

b2I'
i17o,',.(z, y)

=-

bX'.((y) bX'.) (z)
X '(» z) =—(0IT'D,'(Xo)(z)co(z) ]co(x)) .

(12)

bf bf bf' bf'

bK; bX'„bL bc„., bf br

=0,
(9)

In the following we analyze the renormaliz ation
schemes for the unphysical sectors in the SU(2)L, the-

ory and the SU(2) xU(l) electroweak theory separately
based on the above WT identities.

where y', &, c,&, c,
&

are classical fields defined by A. The SU(2)z theory

r is

bW
Xcl

bW
cc&

—
bI

r—= r+ d'x-,' F, '

bW

bI This is the case of neglecting the Weinberg angle in the

SU(2) xU(1) electroweak theory. In this case V„=W„.
We simPly take Q = (rp, )co = zp for a = 1, 2, 3. We

define the renormalization constants in the unphysical

sector as

with
(Pp = Z~ P q cp = Zcc

& Cp = c
q (p = Z)q( q Kp = ZqqK

I'[X, , c, , c, , K, L]

= )q[Z I I KL) —f d'x(J(y , + I f:„+c'..,I )

In the present case, the specific form of WT identities

(11) (in the momentum representation) which give rela-

tions between renormalization constants reads

i k [i17o „„(k)+ (o k„k„]+ MbvpCp(k ) [i17o ~„(k)—irok„]= 0,
ik [

—i17o ~„(k)+ i~ok„]+M~pCp(k )[i'Do ~~(k) + (p~o] = 0,

iSo b(k) = [1+b,s(k )][k —(p~pM~pCp(k )]8 b,

(14)

where

1+D, (k') + b,,(k')

1+Es(k2)
(15)

+&(k')~' —= '
(0l~o( —k —~)co(I) lcp(k))

2M~0 q

z~(k*)q'= — '
e"'f(oldC( —k —q)c,'(q)lC(k)),

ik„a,(k')q" = —q,a"'f (ola'„0( k —q)co(q)l 0(k)), —

(16)

d4~
in which is short for . After renormalization, (14) becomes

27r4
'
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1

ik"[i17„„~(k)+ z ( ~k„k„]+ZM
~ z ~

C()(k )Mw[i17~„(k)—Z„ZwZ~ik„~]= 0,
1

ik"[ i—17~„(k)+Z Z ~Ziik„rc[+ZM
[ g ) Co(k ) Mg [iDii(k)+ZZ(Zi(m [=0,

iS s (k) = Z, [1+bs(k )][k —(~Mw ZtZ„ZM~Cp(k )]b s,

where 1'„„——Zw27„„,17p,y„=Z& Zw'17y„, etc. Since all renormalized quantities are finite, the divergences in (17)
must cancel each other. This puts constraints on the renormalization constants:

1 1

Z( = O(Zgr, z„=n„z~z~z, ',
Z~ ——O~ZwZM Cp(sub. point), Z, = 0 [1+6s(sub. point)]

where Q~, 0„,0~, and 0, are finite constants to be determined by the subtraction conditions. With (18), Eq. (17)
can be vrritten as

ik [i17„„~(k)+ Q~ ( ~k„k„]+ MwC(k2) [i17~„(k)—Ot O„ik„~]= 0,
ik" [

—i17~„(k)+ 0~ O„ik„z]+ MwC(k ) [i'D~~ (k) + 0~ 0„(~] = 0,
iS s (k) = Q,Rs(ks)[kz —(~MwO„C(k )]b s,

where R3 (k2) = [1 + &s(k )][1 + 6s (sub. point)] ~ is a finite function of k, and

1

C(k2) =
~

ZM C()(k ) .
v)

We shall see in Sec. III that this C(kz) is directly related to the modification factor appearing in (g).
pn the other hand, the inverse physical propagators can be expressed in terms of the proper self-energies as

(20)

ancl

i17p „'„(k)
i17p ~„(k)
i17p ~~(k)
iSo '(k)

~
g„„—","

~ [
—kz+M' —II, w(k')]+

k
"[—( 'k'+M' —no, ww(k')]

ia„[Mwp
—~p—+ IIp, wy(k')],

k2 —[.,~', —n, »(a'),
k' —(o~oMwo —IIo,--(k'),

17„„'(k)= '~ g„.— "„,"
~ [

—k'+M' —n (k')]+ "„,"[—( 'k'+M' —n (k')]

iZ-„'(k)= -'a„[M —~+ nw, (k')],
;~-"~(k) = k2 —[.~' —n»(k'),
iS-'(k) =k'-[,~Mw-n. .-(k') .

(22)

ing the inverse of (22) we can see that ail the unphysical parts of the full propagators manifest the same tree-level

pole at

k2 = (~Mw .

ubstituting (21.) and (22) into the WT identities (14) and (19), respectively, we obtain

(23)

[n,, w(a') —M', ][f1,»(k2) —a'] = a' [n, w~(k') + Mw. ]',
Mw~o —II() ww(k2) k2[Mw() + IIp,wy(k )]

Cp(k ) =
Mw()[Mwp+ IIp w4, (k )] Mw [kz —II »(kz)]

IIp „-(k) = —k As(kz) + (p~pMwp[b, g(k2) + 42(k2)],

ance

(IIww —M )(II» —k )
—k (IIwp+ M ) =( (1 —0( )[(k —(eMw) —k (n»+ 2(eIIwp —f e IIww]

+2 Ot'(0„—1)[(k —f Mw)Mw+k'n y+( n ]

++20( (0 —1) [k —$Mw+(nww],

(24)
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Mw —Ilww + (0~ —1)$ ik2
C(k )=

Mw + Mwllwp(k2) + Mw~(0( '0„—1)

M + II p+ (0( '0„—1)r

Mw k' —IIqq+ (0 '0'„—1)(r.' (25)

lice = (k —(&Mw) —O,Rs (k') [k —(~Mw0„C(k2)] .

The first and third identities in (25) give constraints on

the unphysical proper self-energies, and the second iden-

tity gives constraint on C(k ). Equation (M) is of spe

cial importance in constructing renormalization schemes

ishich can simplify the expression for C((eMW).
Now we construct renormalization schemes for the un-

physical sector in the general R~ gauge. We first consider

the case of ( P 0. For the four renormalization constants
we need four subtraction conditions to fix them. From

(18) we see that this means the fixing of the four finite

constants Og, 0„,Oy, and 0,. In order to make our

formulation and its application to explicit loop calcula-

tions as simple as possible, we choose the subtraction
conditions such that all the unphysical mass poles coin-

cide with the tree-level pole (23), i.e., our subtraction

conditions are chosen to be

IIww((~MW) = Ilwp((~Mw) = IIgg((~Mw) = 0

lip, ww(k') = llww(k') —6llww,
IIp, ww(k ) = Ilww(k )

—611ww,
IIp wy(k ) = Ilwy(k )

—6liwy,
11»(k2) = 11&&(k2) —6I14,&,
ll, ',-(k') = II..-(k') —611..- .

(27)

From (21) and (22) we can obtain the following exact
expressions for the counterterms which hold to all orders

in perturbation:

To see how these conditions fix the constants Og, 0„,0@,
and O„we look at the proper self-energy counterterms
defined by

6llww

61lww

6IIW4

6IIpp

bII„-

= (1 —Zw )(k —Mw) + (1 —ZM )Mw + (1 —Zw )ilww(k ) 1

(Ot —1)Zw (k —(~MW) + [(Ot —1)Zw Mw~+ (Zw —ZM )Mw] + (1 —Zw )Ilww(k ),
= [ZM~ —(ZWZ~) ']Mw —[0~ 0 —1](ZWZ4) 'K+ [1 —(ZWZ4, ) ']Ilwy(k ),
= (Z~ —1)(k —(+Mw) +(e[(Z~ —1)Mw + (0~ 0„—1)Z~ e] + (1 —Z~ )Iiyy(k ),
= (Z,

' —1)(k —(~M ) + 0~(Z /Zp) Z —1 (~MW+ (1 —Z, )II„-(k) .

(28)

We also give here a simpler expression of (28) when we keep the accuracy only up to one-loop level:

611ww = bZw(k —Mw) —26ZM~Mw

611ww = —60'( (k —(~Mw) —Mw [60'~ + (6Zw + 26ZM~) Mw],

6IIW@ = [2i (6ZW + 6') + 6ZM ]Mw + [60' —60„]~,
6II4,y = 6'(k —

f~MW
—

)
—(~[6ZpMw + (60' —260„)~],

6ll„-=—6Z, (k (~MW)+ [60„——i6Z&+ i6Z +6ZM ](~M

(29)

Ilww($+Mw) = 0 by adjusting Og,

Ils~(gtcMW) = 0 by adjusting O„or0~(Z~) .

After doing this, the first identity in (25) gives

(30)

where bZ:—Z —1, bO = 0 —1.
From (28) or (29) we see that IIww(f+Mw) and

1144,((~MW) can be made vanishing by adjusting the con-

stants Og and 0„(or04,), respectively: i.e.,

Hwy((~MW) [IIwy((~Mw) + 2Mw + 2~(0„0~ —1)]

= Ot '(0„—1) ~(MW —~), (31)

and the right-hand side (RHS) vanishes if we take ~ =
M~ or 0„=1: i.e.,

IIwy((KMW) = 0 if ~ = Mw or 0„=1 . (32)

Note that if we keep the accuracy only up to one-loop

level, the RHS of (31) vanishes automatically, so that the
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requirement e = Mw or 0„=1 is needed only beyond

one loop. Having these, the second identity in (25) gives

1

C(k2) l(
Zw i Mw

i Z4, ) 1+A, (k')' (36)

Mw+ (n~
' —I)~

C((~Mw) =
Mw + IIw&(g~Mw) + (n& 'n„—1)~

0 i if&=Mw&
1 if 0„=1, (33)

and the third identity in (25) implies

II -((&Mw) = 0 if ~ = Mw or 0 (34)

0„ in scheme I,
1 in scheme II .

From the above analysis we see that we can construct
two convenient renormalization schemes.

Scheme I. z = M~, Qg and O„aredetermined &om

(30), 04,(Z~) and O, (Z, ) are determined by the usual

normalization conditions requiring the residues of B4,4,

and S s to be unity at kz = (~Mw.
Scheme II. lc is arbitrary, 0„=1, Qg and 04, (Z4, ) are

determined from (30), A, (Z, ) is determined by the usual

normalization condition requiring the residue of 8 p to
be nnity at k2 = (mMw

Note that in scheme II the residue of 17yy at kz = (lcMw
is not normalized in the conventional way, but this does
not affect the physics. Furthermore, the determination

of O~ (Z4, ) in scheme II concerns only the calculation

of the renormalized proper self-energy IIyy, so that it is

easy to implement. In these two schemes, the expressions

for C(gicMw) are very simple: i.e.,

Hence C(0) or C(Mwz) is not so much simplified as in

the case of ( g 0 [cf. (35)]. In (36) Zw and ZMw are

well fixed, so that the only possibility of making C(Mw)
»nity is to adjust the unphysical Zy but this must rely

on the detailed explicit calculation on 6s(kz) order by

order in loop expansion. The Landau gauge has been

studied by many authors, see, for example, Ref's. [13,14].
In the scheme taken by Marciano and Willenbrock (MW)

[14], Zy is determined by the usual condition normalizing

the residue of 17~4, at kz = 0; therefore, in that scheme,

neither C(0) nor C(Mwz) is unity.

Our conclusions in the SU(2)L, theory are summarized

in Table I.

B. The SU(2) xU(l) electroweak theory

The realistic SU(2) xU(l) electroweak theory is more

complicated than the simple SU(2)L, theory due to the

various mixings in the neutral sector. For convenience

we introduce the matrix notation

(W,+&
& „(Z,"iWo:l + I, +o=

o ) i o) Ev'o )
(37)

—= (co co )
(c'i — z ~
&co )

where Ao" is the photon field, 4' is the would-be Gold-

stone boson absorbed by Zo. The matrix notations for

the propagators in the neutral sector are

Next we consider the case of ( = 0 (Landau gauge)

in which some of the formulas in (25) are not clearly

defined. In the Landau gauge we have the following well-

known relations [13,14]: (a) there is no W„-P mixing

and 17„„(k)oc g„„—k„k„/kz;(b) the poles of Dyy(k)
and S s(k) are all at k = 0; (c) the ghost fields c
and c do not couple to the Higgs and Goldstone boson

fields. Relation (a) means that the longitudinal compo-

nents of B„„andB„~containing II'~ and II'~ vanish,

so that the only relevant unphysical proper self-energies
are II~4, and II„-.Relation (b) implies that II~~ and II„-
automatically satisfy the tree-level mass-shell conditions

II4,y(0) = II,s(0) = 0. With relation (c), the expression

(20) for C(kz) reduces to

Do,RF = (0IT No+o lp) = ~v
4zmo 4Z4

ZZ, O
PV

+Az, o

yz Zio

PV
+ZA, o +zpz, p

PV gk

+AA, O +gyz p

Byzg p Bfzpz o

s (plTg g lp)
zz, o zA, O

~~z,o ~~~,o

Do,xnr = (0IT'No No IP) =
z)~

'
p~

Az, o AA, o

(38)

TABLE I. Main features of schemes I, II, and the MW scheme in SU(2)z, theory.

Renormalization

schemes

Scheme I
(Qt, A~, Z~, Z~ )tgp

Scheme II
(Og, 0 = 1, Zy, Z, )gyp

MW scheme

(At =0 =1,ZP, Z, )t—p

IIww = o

Adjust

Og —1

Adjust

Og —1

On-shell conditions in Eq. (26)

IIwy = o IIy4, ——0

WT Adjust

with ~ = Mw 0„—1

Adjust

Zy —1

WT

IIcc = 0

WT
with z = Mw

WT

WT

C(gsMw)

n„-'
(s = Mw)

Zw il
ZM'

( Zp ) 1+Es(0)
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The gauge fixing term (3) is now

&GF = —2(&o++o + +o +o+) —'(-I"") +"
where

r((~) '-a-„&

((, )

((Z)
—

2 ((ZA)
—

~

E
—"o )

&(( )~K

(((o)'&o J

(41)

(4O)

Here we have distinguished the gauge parameters
(W (Z (A ~W ~Z ~A

Now the specific forms of WT identities (ll) are

f d z i17, 'p(z, y)X;(x, z) = 0,
for the charged sector,

~~0 (* ~) = (Ko )'(ol»g. (*)co(*)lco(~))

and

d4ziD zy Xg xz = 0,'
for the neutral sector,

'So,x(* &) = (Ko ) XN(»*)

where

b'F
X~(* ~)

—= ~ = (ol»g(~)co(~) lc.(*))

s'r
' ") =

bc, (y)sc, (~)
'

' ~~,o(* » =
qg, („)qg-r(,)

= 'D~~,.(*,.)+K."(*)lK."(.)l
The renormalization constants in the physical and unphysical sectors are de6ned as

ap=Z a (orep ——

M~p = ZMw Mgr
1

w,'"=z w+~,

Z e, Z =Z, ),
Mzo ——ZM Mz, mHO

——Z mH, mf ~ 0 —Z
y mf, ,

1 1

Hp
——Z~H, Qy,. p ——Zy Qy, , (45)

No = ZNN", ZN —— ZZ ZA
1 1

AZ AA

1

Zzz —,'bZZA
1

g~ZA» ZAA

and

(~ = Z ~(~ r~ = Z w~~
1

((.")-:=((")--:~;, ((")-:-=,"' '.
((A

(((Z) & &Z )
rp ——Z„r) r =

l

-l, Po = Z~~P+ )

r
'

c,+ = Z~c+, c,+ =c+, Co ——Z, C, Co ——C,

PZ Z2 Pz

= z~N — c~c = ZAZ
C

zZA
C

ZAA
C

e
where n = —is the electromagnetic Ene structure4'
constant, @y's are the fermion fields, and my's are the

fermion masses.

The analysis of the renormalization schemes in the

charged sector is completely similar to what has been

1+a~(a') + ~~(k2)
1+ b,~(k2) (47)

done in the SU(2)r, theory. The factor Co~(k2) corre-

sponding to (15) is now
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where

~W ~W(k2)

(4S)

Next we show explicitly the analysis for the neutral

sector in the SU(2)xU(1) theory. The specific form of
the WT identities (11) in the momentum representation

1s now

and the lengthy expressions for the 4; 's are given in

Appendix B. Note that the formulas for L~, Az, and

b, sw are more complicated than those in (16) due to the

presence of the additional U(1) gauge group. Repeating
the same steps shown in the case of the SU(2)L, theory

we can obtain all the formulas corresponding to (17)—
(36) with the substitutions Z4, ~ Z4, +, Z, ~ Z,
LW~~~WO ~OWO ~OWO ~OWO ~
0,C(k2) ~ CW(k2), etc. Table I with the above sub-

stitutions shows also the conclusions for the charged sec-

tor in the SU(2) xU(1) theory.

ik„iDo~~(k) + MzoCP)(k2)iDo~z~(k) = 0,

1

aS() ~(k) —[k —Mzo+oCo (k ) g~o](~oXNp(k )$&o,

(49)

where

C"(k') = [X e(k') ] 'Xy ~(k')

(50)

with XNt and Xd,zp defined by

(k)—
EXS.~(k) ) EMzoXy. e(k') )

'

ak XNe(k') = f (oIDm (
—k —&)co(&)I&o(k))

1 + ~zz(k2) ~ZA(k2)
v[ + 3 ( )] = akv ~Az(k2) 1 + ~AA(k2)

Xaazc(k')™zof (0IDy (
—k —e)co(q) I&o(k))—:

I ~zA(k2) ~zA(k2)e

The lengthy expressions for b,;s's are given in Appendix B. After renormalization, (49) becomes

(51)

ik~[iDN'N" (k) + k"k"(Z(„'ZN) g~ (Z~„'ZN)]+MzC (k )[iD~z~(k) —ik"Z~za Z fN*(Z(„'Z-~)]= 0

ik„[—iD& "(k) +ik"(Z& 'Z'
) ( ' Z„-RZ&]+MzC (k )[iD&

&
(k) + I Z& Z„-Z„-Z&I] = 0,

iSN (k) = [k —MZZ~azZ rcC (k ) Z-~* Zj„g][(~'Zg„'XNc(k)Zj„(NZ,]

where

(52)

(53)

The finiteness of the renormalized quantities implies that the renormalization constants satisfy the relations

4N

~fZ

where

1 1 1T 1T 1T 1

0( *Z~ ) Zs = (N 0( (~ AsZ4, z
1 1 1

0&z ZMz [ZzzCo (sub. point) + ZAzCo (sub. point)],
1 1

0&z ZMz [ZzaACoz(sub. point) + ZAACoA(sub. point)],

(54)

(0 ) ~ (0 ") ~ (1+bO ) ~ —-'bO "
/pe (OAZ)

—
~~ (OAA)

—
a2 1 bOAZ (1 + gOAA) —

~

W

gzz 0 1+~Ozz 0
QAz 0

—
QQAz 0

(55)

are finite constants. In (54) we have not presented the matrix expression for Zf which is very complicated because it
ensures the finiteness of the product of several matrices on the right-hand side of the third identity in (52). Actually,
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the explicit expression for Z, is not really needed in the following analysis. With (54), the first two WT identities in
(52) can be written as

1T 1

ik„[iDN'N""(k) + k~k"O~ ' (N'A~ '] + MZC (k )[iD~zN(k) —ik"R A„(N*A~ '] = 0,

ikp[ —
iD AN(k) +ik"Ag (N' Asrc]+ MZC (k )[iD~z~z(k) + rc O„(N-'O( '(NO( ' (N' ARrc] = 0.

We then introduce the matrix notation for the bare proper self-energies and masses,

(56)

ZZ ZA

(k ) IIAz IIAA
rr. n.

0 0

Il'4 &

) (~~l
S-S S-A

IIcc (k2) 0 0
IIc+cS IIc+c+

0 0

NN
IIZZ ELIZAIINN (k)

0 0

0 0

MZ'0 O

NO 0
M2N0 ——Mzprcp

~ 0) (57)

and in terms of which the bare inverse propagators can be expressed as

iD '""(k)=[g""— "][—k IqM —II (k )]+"" M —k ( ' f ' —ll (k )

1 T
'D

~~ (k) = 'k" MN0
~ ~

—(N' gp+ 110 ~
(k )

iS0 N(k) = k I —MN —IIpcc(k2) .

(58)

Substituting (58) into (49) we obtain the WT identities for the bare unphysical proper self-energies:

(II —M )(II —k ) =k (M 0+iI )
(IIZZ M2 )IIAA (IIZA) 2

fI Mzpll 0 Cz(k )

2 — ZZ
gz(k2) Zp 0

Mzp(Mzp+ II ~
)

IIzA
gA(k2)

Mzp(Mzp + II0 )

II@(k2) = k2I - M'„,—[k2 -M,~,CN(k2)T(„',]g„X„~(k2)gl,.

(59)

This form is equivalent to that given in Ref. [15]. The second identity in (59) means that only two of IIpzz, II0AA,

and II0 are independent. The matrix notation for the renorxaalized proper self-energies and their relations to the
renormalized propagators are of the same form as (57) and (58) with the subscript "0" removed. The renormalized

mass matrix MN2 is of the simple form

T

M =MR~
)

N Z 0 N
=

0 0

Then from (56) and the third identity in (52) we can derive our general WT identities for the renormalized proper

self-energies which are
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(frzz Mz)(11,., -k') -k'(fr». +M )'

= [1 —(n( ) ]( [(k —(z zMz) —k (Ily y +2(z ZIIzd, )
—((z z) IIzz]

+(n. —1)(n~ ) '2~Z[(k' —(Z~ZMZ)MZ+ k'lizgig + (z~zrlzz]

+(n„—1) (n& ) ez[k —(zM + fzIIZZ],

+ k2[ (nzA) —lg —i + (1 (nzz) —
1)g

—i]

11,„—k' n" --' n'" --'4
[II y + (ng ) ~ (ntz") ~ nzz], (60)

Irzgz + Mz + &z(n /nzz —1)

Cz(k ) =
Mz —Ilzz + k'[(ntzz)-i —1]g

Mz[n„.+ M z+ ~ z(n„ /n ~zz—1)]
'

11, —k'(nzz)--'(nz")--:(-'

II». + Mz+ ~z(n„ /n,' —1)
'

II (k ) = k I —MN —[k —Mzg At
' fN' A„rcC (k -) At* g]$N*At 'ZN'XNp(k )ZN'At'„gZ,

for simplifying the expression (60). Equation (60) is sim-

ilar to (25) but is much more complicated. The first three

and the last equations in (60) give constraints on the

unphysical proper self-energies, and the fourth and fifth

equations give constraints on C (k ) and C+(k2), which

are very useful in constructing renormalization schemes

simplifying the expressions for C ((Z~ZMZ) and C (0).
We first analyze the renormalization schemes in the

case of (N g 0. For gauge fields in the physical sec-

tor, there are five independent renormalization constants,

namely, ZMz, Zzz, Zz~, Z~z, and Z~~. The standard
on-shell subtraction conditions are

IIzz(Mz): 0 IIzz(Mz): 0

II~~(0) = 0, II' (0) = 0 ,
Ilz~(M ) = II~Z(M ) = 0,
IIZA(0) = IIAZ(0) = o,

(62)

which contain six equations. However, from (58) we see

that the nonsingular requirement of iD&N~N" (k) at kz = 0

[15,13] implies that

IINN (0) INN (0) (63)

in which we have chosen

(nAz) k 0 nAz ( i ( g (nzA) k (nAA) k nzz

(61)

Together with the second identity in (59), we see that
there are actually only five independent conditions in

(62) which are just sufficient to determine the five in-

dependent renormalization constants. For the unphysi-
cal neutral sector, there are altogether eleven in, depen-
dent renormatization constants [cf. (46), (54), and (55)],
namely, four elements in 0&, two elements in 0„-,one

A&z and four elements in Z, . We have already chosen
—1/2 N

(A& )
~ and A„ to satisfy (61), so that there are

nine remaining arbitrary independent constants to be de

termined by the subtm, ction conditions. Similar to what
we have done in the SU(2)L, theory, we may choose the
subtraction conditions to make the nine unphysical mass
poles coincide with the tree level poles to simplify the
loop calculations and also the expression for CN, but
this needs more considerations. First of all, not all such
conditions are relevant to the determination of the nine
renormalization constants. For example, the three con-
ditions

ilz~(0) = il~z(0) = il~~(0) = o (64)

are related to the corresponding conditions in (62) in the

physical sector through the nonsingular requirement (63),
so that (64) do not give any restrictions to the above nine

constants. Moreover, we can see from the last identity in

(60) and the choice (61) that II' (k2) and II' ' (kz)
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are all proportional to the k2, so that

11....(o) = fl....(o) = o;

i.e., they are also irrelevant to the determination of the
nine constants. Therefore we can at most write down six
relevant subtraction conditions such as (26). However,

from (60) we see that IIA~ (k2) does not appear in the

expressions for Cz(k ) and CA(k2), therefore the value

of IIA4' (0) may not be taken to be zero for the purpose

of simplifying C and C . Thus we take the following

6ve subtraction conditions:

k IIAA(k )[g. p
——0, k '&zA(k')[s2=p = o,

(68)

de, ;
dk2

a'=(z ~z Mz

=0, dII,A;A

dk2
=0,

condition determining 0„if Kz is arbitrary, but it may
not be a relevant condition if fez ——Mz. Hence we still
need four more conditions (if rz is arbitrary) or five more

conditions (if rz = Mz) for the determination of the nine

renormalization constants. These can be taken to be the
usual normalization conditions [11,15]

nzz(gzwzMz) =O, fl~., gz~zMz) =O,

fl„.(gz~zZ z) =O,

II g-g ((zKzMz) = 0, II z-A(0) = 0 .

(66)

dGpzpz

dk2
k~=(z~zMz

=0. (69)

for the case with vg being arbitrary and when choosing

rz = Mz we include one more condition:

We can further see from the first identity in (60) that if

the first two conditions (IIzz = 0, II~g~z = 0 at k

(z~zMz) in (66) are satisfied, we have

flzy (fzrzMz) = 0, if zz = Mz or 0„=1 .

(67)

Therefore the third conditions in (66) may be a relevant

I

To see how these conditions determine the nine con-

stants, let us look at the propor self-energy counterterms
defined by bII—:II —flp. From the definitions of bare

proper self-energies (58) and similar definitions for the
renormalized ones, and the general relations Do g~
ZN DNN(ZN ) and Sp N = Z SN, we obtain the fol-

lowing exact expressions for the bII's:

T

6IIy y: (Z& l)k +(Z Z ~ 0 [ [A (N A—
g (NAt (N As I] [ 0 ~ Z& + (1 Z& )IIy

&or '
bIIcc = (k I —MN)((Z, )

' —I) +(zrzMz

I &N A(„(N As 00 (ZMgz~g ZN)A(~(N(z 00 i+IIce(1 (Z ) ) '

W

1T 1 1 T 1 1T 1

bIINN=k (I —Z ' Z ') —Z MN+Z ' MNZ '+[IINN —Z ' II Z '],
1T 1T 1 1 1T 1 1T 1

bIINN = k ZN' [A(
'

(N A(
' —fN']ZN' + [ZN' MNZN' —MNZM ] + [IINN —ZN' IINNZN'],

1 1T 1 1T 1T 7 1T 1 1 T

bIINy —(ZM —
Z& ZN )Mz

~ 0 ~
+ Z& ZN [(N

—
A& (N A-] + [I —

Z& ZN ]IINy (7o)

To one loop, (70) takes a simpler form

bZgg(k —Mz) —2bzMgMg 2 [bZgA(k —Mg) + bzAzk ]

-'[bZgA(k —Mz) + bzAgk2] bZAAk2

—(z'bn& k —(bZzz + 2bZMz)Mz —
2 [(z'bn& k + bZzAMz]

1
[(

—lbnzAk2 + bZ M2] (—lbnAAk2

t [2(bZzz + biz�)+ bZ~g]Mz + [bn( —bn ]Kz )
bn„~z

)( —,'bZzAMz + (bn( —bn (g'g„')~g

b11,...= -bZ, k'+(z~z(2bn„' —bng ),

bDec = bII,z,-z
bII A-z

bII,z -A

bII A,-A

bII,z,-z

bII z,-A

bII A,-z

bIIcA cA

—bZ.'z(k' —(z zMz)+(z zMz[bn„+ —,'(bZzz —bZ, )+bZ ],
1 1

—bZ (k —gzKzMz) + —( ( KzMz(bng + bZzA),

-bZ k +( ~ M (bn —-'g '('bn )
bZAAI 2
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where bZ—:Z —1, bQ—:Q —1. From these expressions

we see that, for arbitrary ~z, we can have

llzz((z&zMz) = 0 by adjusting Qt

k II~~(k ) ~s~ o
——0 by adjusting Q&

llz~(k ) ~s.—o
——0 by adjusting Q&

ll~z~z((zzzMz) = 0 by adjusting Q„orZd, z,
(72)

ll,z;z((z~zMz) = 0 by adjusting Z,

II,z-~(0) = 0 by adjusting Z,

dll, z;z/&k' ~s.-(z„zMz=0 by adjusting Z,

dII,~;~/dk ~sz —o——0 by adjusting Z,

For the case ~z ——Mz, Eq. (67) is irrelevant, we need

one more condition (69), and &om (70) or (71) we see

that we have

dII~ 4,z/zdk ~si —gz„zMz= 0 by adjusting Z~z .

(73)

C (0) = 0,
In these schemes

in both scheme I and scheme II .

II p (0) = — (Q~zz) ~ (Qf ) ~ Q (75)

Finally we consider the case (z = (+ = 0 (Landau

gauge) in which some of the formulas in (60) are not

Thus we can have two diH'erent convenient schemes. The
first one is to take ~z ——Mz with 0+ determined by

(72). This is just a generalization of our scheme I to the
case of the SU(2) xU(1) theory. The second one is to take

rz arbitrary but 0„=1 with Z~z determined by the
fourth condition in (72). This is just a generalization of
our Scheme II to the present case. It is easy to see from

the fourth and fifith identities in (60) that in these two

schemes C ((z~zMz) and C (0) are simplified to

&z(~ M )
1/Q„ in scheme I,
1 in scheme II,

(74)

TABLE II. Main features of scheme I, II, and MW scheme in the neutral sector.

On-shell conditions

iizz(gz~zMz) = 0

Iiz~(0) = 0

II~~(0) = 0

~i~(~')
la =0= o

&~~(& ) la~=a= 0

II s ((zzzMz) = 0

fi„d,z(0) =

Iiszsz(gz+zMz) = 0

IIszsz ((zzzMz) = 0

II z-z ((z&zMz) = 0

fI,z, (0) =0

Il.~,z(0) = 0

II,~,-~(0) = 0

11'...(I.z~zMz) = 0

11'.~,-~(0) = o

C (gzzzMz)

C (0)

Scheme I

{A(~,A„,Zsz, Z, }
$z, $~ $0, 0„$1

Adjust b0&

Nonsingular condition

Nonsingular condition

Adjust b0&

Adjust b0&

WT

(When beyond one loop )
(we must set zz = Mz )

(Qzz)
—s' gQ zx Qzz

Adjust b0„
Adjust biz

WT

( When beyond one loop)

(we must adjust 6Z,

Adjust bZ,

WT

WT

Adjust bZ

Ad' t bZ.""
(0„)' ( if zz = Mz )

Scheme II

{A(„,As, Zsz, Z. }
(z, (~&0, &

Adjust b0&

Nonsingular condition

Nonsingular condition

Adjust b0&

Adjust b0~

WT

—,'zz(Q( ) ~60("0„
Adjust bzd, z

WT

(When beyond one loop l

(we must adjust 6Z )
Adjust bZ

WT

Adjust bZ

Adjust bZ

MW-scheme

{Z ZN}

gz=(~=o,
ZZA ZA2 p

Adjust biz

WT

WT

WT

WT

Adjust bZ

Adjust bZ

See Eq. (76)

See Eq. (76)
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clearly de6ned. Now we have the following well-known

relations in the Landau gauge [13,14]: (a) there are no

Z„-Pzand A„-Pzmixings and the longitudinal compo-

nents of D~~ and D~&s ( containing II~{v and II{v4,s)

vanish; (b) the poles of 17~zd, z and S~ are all at k2 = 0;

(c) the neutral ghost fields C and C do not couple to the

Higgs and Goldstone boson 6elds. Vhth these relations

we get

Zl (1+&szz)(1+&,"")—&s "&s' Z,„(1+a"")—Z„„S"

which is not so much simplified as in (74). In (76) the renormalization constants Zzz, Zzzo Zz&7 and ZM, in the

physical sector are all well fixed. The only adjustable parameter for simplifying C~ is Zd, s and the choi««w»ch
depends on the detailed explicit calculation of 63, 4& +, 6&, and 6 order by order in loop expansions. In the
conventional schemes used in the Landau gauge, e.g. , the MW scheme [14], Z~s is determined by the usual condition

normalizing the residue of 174,z~s at k2 = 0, thus in that scheme C~(k ) cannot be simplifed.

For clarity we summarize our results for scheme I, scheme II, and the MW scheme (for Landau gauge ) in Table II.

III. PRECISE FORMULATION OF THE EQUIVALENCE THEOREM

A. A physical analysis of the equivalence theorem

Intuitively, we expect that the amplitude of physical longitudinal weak boson is related to that of the unphysical

Goldstone boson due to the Higgs mechanism. However, it is unlikely that the physical amplitude can be equal to
the unphysical one up to loop-level even we neglect the O(Mv{I/E) terms since the wave function renormalizations for

the physical and unphysical fields are different and the latter is arbitrary. So we expect that generally there should be

multiplicatii)e modification factors in (8) u)hich ensure the r)enormalization scheme and ( independence of the RES of
(~)

We start from considering some Slavnov-Taylor (ST) identities for the Green functions, which are useful in the

proof of the ET. T{irning off the external source K' and L in (7), the invariance of the action S under the BRST
transformation (8) leads to the generating equation

17g 17c 17c (J;D,. (y )c —'g f 'I -c c' —F (yo)I )

xexPi{SIXo co co]+ f d X(IiXo+I'co+ coI')) = 0. (77)

Taking functional derivatives with respect to the external
sources of (77) we can obtain the ST identities

(olrzo (x)&o'(y) lo) = -ib'"~'(z —y)

(OITS';(*)&o(y)10) = —(OITD;(y)co(y) co(x) lo)

(78)

which will be used later in the proof of the precise for-

mulation of the ET. One can further obtain the following

general ST identity in the momentum representation [5]:

symmetry breaking (SSB). The two transverse compo-

nents of massless gauge 6eld are physical, while the un-

physical longitudinal and scalar components are con-

strained by the gauge fixing condition. I et us take the

covariant gauge

&o(k) =&(Q) 'k~&o "(k) .

The longitudinal and scalar polarization vectors of Vo"
can be written as

(OiF '(ki) . .E "(k„)bio)= 0,

where E (k) = i(( )
I' k„V"(k) —(Q)

7' ~ {t),and 4
denotes possible on-shell physical fields. In (79) external
C legs have been amputated. In Appendix A, we present
a simpler proof of (79) in the current path integral for-

malism. With (79) we can give a physical analysis of the
ET.

Consider 6rst a gauge theory without spontaneous

e~(k) = (0, k/k'), e~s(k) = (1,0) .

We then have

k~
e~(k) + e~z(k) = —,

so that

&o (k) = &({!o) ' k'[&sL, (k) + &os(k) 1
.

(81)

(82)

(83)
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Fo (k) = i(Q) ~ k„VO"(k) —(Q) ~ ~0/0(k) . (85)

Substituting (83) into (79) and doing renormalization

and F -leg amputation, we directly get the scattering

amplitude

T(Vr '(kg)+Vs'(kg), . . . , Vr "(k„)+V/"(k„),4) = 0,

(84)

which is just a quantitative formulation of the Vl -V&

constraint mechanism in the physical in/out states for a
massless gauge theory.

If SSB takes place, the gauge fields become massive

and the longitudinal component VL is "released" to be
physical. We shall see that in the constraint (84) VL will

now be replaced by the unphysical would-be Goldstone

boson field. Let us take the Rt gauge (3),

T(Vg '(kg) —iC '(k, )gP'(kg), . . . , Vg" (k„)

(90)

So we can define

—iC "(k„)P"(k„),4) =0, (88)

where the exact expression for C (k2) will be derived in
the following subsections. Since M is the characteristic
of the SSB we infer that (82) holds as M ~ 0. Therefore
with M g 0, e&(k) + eg(k) must be of the form

k~
er" (k) + e~s(k) = —+ O(M /E), (89)

with A being a certain normalization factor. Therefore,
at high energy, eL(k) and e&(k) are related up to an

O(M /E) term. Indeed, if we take the M g 0 expres-
sions (86) we see that A = 2M, and thus

e~(k) = eg(k)+O(M /E) .

Now the longitudinal and scalar polarization vectors for

a massive vector field with a physical mass M can be
written as

Vg(k) = Vg(k)+v (k),
and

v = O(M /E),

e~(k) = (Jkf, k k/fkJ), e~s(k) = k"/Mo .

Thus

(86)
Fo —Vo Cog'o —Vc QR

Q
—= iC P +v =iC Q +O(M /E)

Then (88) becomes

(92)

( ) = '(Q) ~ (k) —(Q) ~ 4' (k) . (87)

Repeating the above procedures with care on the Vo&-qPO

mixing, we get, corresponding to (84), 1.e.)

0=T(F", , F -,.e. .) (n&1), (93)

=T(Vi', . . . , Vg", C)+ (
—)"T(Q ', . . . , Q ",C)

P~

) T(Vq", . . . , V~",F '~+~ —
VL

"+'

1&j(n—1

, . . . , F ' —V~'", 4) [cf. (92)]

P~

=T(Vg ', . . . , VL", 4) + (
—)"T(Q ', . . . , Q ",4)+ ) T(V~", . . . , Vr ', —V~

'+', . . . ,
—Vl'", 4) [cf. (93)]

1&j&n—1

n —1

=T(VZ' " VZ" c')+(—)"T(Q" " Q" @)+).C'(—)" 'T(VZ' ". VL,
" c').

Using the identity 0 = (1 —1)"= 1+ (
—) + P".

z
C~ (

—)" i we have

T(VI', . . . , VL", O) = T(Q ', . . . , Q ",4') .

Substituting (92) into (94) we get the general formula

T(Vg'(kg), . . . , Vg" (k„),4) = C 's . .C "dT(ig '(kg), . . . ,iP "(k„),4) +O(M~/E),

(94)

(95)

where C
&

= C (k )~s~ M~. This is just the general

precise formulation of the ET. Therefore the ET is just
a direct consequence of the Vg Pconstnxint mech-anism

in gauge theories with SSB jcf. (88)J and the high energy
elation (g0) . The only task remained for proving the
precise formulaton of the ET is to derive the quantitative
expression for C

&
and then try to simplify it in a rig-

orous way. We shall do it for the SU(2)L, theory and the
realistic SU(2) xU(1) theory separately in the following

two subsections.

B. General proof of the precise formulation of the
equivalence theorem in the SU(2)r, theory

Now we give a general proof of the form (95) in the

SU(2)L, theory with the modification factor C
&

pre-

cisely specified to all orders in the perturbation. In
the following proof we distingush the renormalized M~
from the physically observed mass M~~""' of the R

„

field

(pole of the physical propagator of W„).Such a distinc-
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In the SU(2)l, theory Q = (p,eo ——ep. With the symbol

Ko defined in (6), the gauge fixing function (3) can now

be written as

I'0 = KOWO, (96)

The second ST identity in (78) can then be written as

Ko (0[TWo (*)Wo (y)10) = (0[TD s(y)co(y)cp(~)10)
KoM &0[TW; (*)y'o(y) [0) = —(0ITD~~s(y) c~o(y) cp(&) I»

(97)

where M = 0, 1,2, 3, 5 (M = 5 denotes the Goldstone

boson field). In the momentum representation, (97) can
be further written as

~K DoMM (k) = —XM, (k), (98)

where DpMM, (z, y) = (0]TW,~(z)W, M, (y)[0) is the Wp

propagator,

-'()-=i -"""i=i' -"(""""i
( )

(Xg (k)p (Xg (k)Sp(k))

in which Sp(z, y)P—:(O~Tcp(z)cp(y)~0) is the ghost

propagator, X„sand Xfs are defined in (12), specifically

X„(k)= ik„[1+b,s(k )]Ps,

(100)

X4, (k) = Mgrp[l + b, i (k') + 62(k')]P

with the b. 's given in (16).
To derive the modification factor in (88) and (95) from

the identity (79) we only need to consider the n = 1 case
for simplicity. In this case, (79), (96), and (98) give

0 = Kp G[WpM(k), 4] = —XM (k)T[Wg (k), 4],
(101)

where G[ ] and T[. ] denote the Green function and
S-matrix element, respectively. Thus (101) leads to

k"T[Wo„(k),4] = Cp(k )MivpT[igP~, 4], (102)

where Cp(k ) = [1+6,i(k )+b,2(k )]/[1+As(k )] is just
the function defined in (15). After renormalization (102)
becomes

k"T[W„(k),4] = C(k )MivT[igo, O], (103)

where the renormalized

C(k ) = (Zw/Zp)'~ ZM~Cp(k )

has been given in (20).
Let M~

' be the physically observed mass of W„.
The longitudinal and scalar polarization vectors are then

given by (86) with M = M~~""' . Using (86) and (90),
Eq. (103) at k2 = (M~~"')2 can be written as

tion is necessary in some currently used renormalization
schemes. For convenience we define the 6ve-component

matrix notation

W
W;=/

T[WI (k), 4] = C sT[ig (k), 4] + O(Mfy"'/E),

(104)

where

C = „„C[(M"') ].
W

(105)

Cmoa = (Zip/Zy) '
1+b.s Mi22, )

(107)

We shall show in following sections that (107) is not uriity

at the one-loop level.

There is also another commonly used renormalization

scheme in which the gauge Gxing function F is un-

changed after renormalization, i.e., F = I'o [13,16].
This scheme corresponds to Ot = 0„=1 in our for-

malism. From (105) and the second identity in (25) we

get in this scheme

Miv IIiviv (Miv)

Mi22, + Mivll~y(Mi2v)
(108)

which is simplified to include only two unphysical proper
self-energies II~~ and IIgr4, . We shall present in Sec. IV
an up to the one-loop calculation of (108) which is not

unity.

We see &om the above results that C d is scheme de-

pendent. Our scheme II ipith e = f iMgr is the scheme

in iphich the ET takes its naiue simple form (I). There-

fore scheme II is the most convenient scheme for applying

the ET. In other renormalization schemes, the ET takes

the general form (2), so that C g should be calculated.

when applying the ET. In our scheme I arith K = M~
and $ = 1, C d reduces exactly to a sirigle quaritity

O„which has already been determined by the subtrac-

tion condtition IIyy((tcMiv) = 0 in this renorrnalization

scheme itself (cf. Table I). Therefore our scheme I is

also convenient for practical applications.

C. Genend proof of the precise formulation of the
equivalence theorem in the SU(2) XU(1) theory

For the charged sector in SU(2) xU(l) theory, the proof
is completely similar to what we have done in the SU(2) I,

theory, and we have

Equation (104) with (105) is just the precise formulation

of the ET when n = 1. Substituting (105) into (95) we

get the general precise form of ET. In general Miv"' and

Miv are not equal. M~~"' ——M~ only in the on-shell

subtraction scheme, and then C g = C(Mizz, ) which is

just the expression for C a in Ref. [8]. In our renormal-

ization schemea I and II, the simplified expressions for

C((rcMiv) are given in (33). Thus we have

A„i,in scheme I with e = Miv and ( = 1,1, in scheme II with ~ = ( Miv .
(106)

In the Landau gauge, if we take the MW scheme [14], the

modification factor is [cf. (36)]
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z

g + &ll(k') + [&21(k') + &22(k') + &2s(k')]

(Zy+ ) 1 + [Qw (k2) + ~w(k2) + gw(k2) + gw(k2)]
(109)

(Ko ) &o,~~(»y) = —X~(»y)

with

(110)

where Cp (k ) is given in (47) and (48).
For the neutral sector, using the notation No and Fo

defined in (37) and (40), the second ST identity in (78)
can be written as

(k)
—

~

„e()
~

—
~

„c) o ( )=
(X4zp(k) p (X~zp(k)SpN(k) )

(ik„X„,(k') Sg(k')
(MzpXd, zc(k )Sp (k ) y

(114)

0 = G[Ep, 4] =(~K ) G[Np, O]

=(K ) D.mT[N. , @]. (112)

(x, y) —= (0ITD'„C,'(y)C, (x)10).

Kp and 17o~~ are defined in (41) and (38), respectively.
In the case of n = 1, the ST identity (79) reads

with X&~(k2) and X~zp(k2) are defined in (51). Thus

(112) gives

kpT[No (k), 4] = MzoCp (k )T[igo (k), 4], (115)

in which C~+(k2) is just the function defined in (50). Af-

ter renormalization, (114) becomes

k„T[N"(k), 4] = MzC (k )T[ig (k), 4], (116)

Using (110) and transforming into the momentum repre-

sentation, we get

where C+(k2) is given in (53). We can then relate the

amplitude k„T[N"(k),4] to T[ZL, (k), O] by using (86)

and (90) with M = MzP""', and obtain, from (115),

X~g(k)T[Np(k), 4] = 0,

where

(113)
T[Zr, (k), 4] = C,qT[igP(k) 4']+ 0(Mz /E)

(117)

where

C = „„C[(M "')]
Z

z ZM

M.""Z'~'
g @Z

Z~/~ ~~]++AA)(p++ZZ++ZZ) +AZ(+ZA++ZA)]++&/& Np++ZZ)(p++ZA++ZA) +ZA(+ZZ++ZZ)]
(] +ZZZ ) (Z+ZAA ) ZZA ZAZ gZ (Mphys) g

(118)
Substituting (109) and (118) into (95) we obtain the general precise formulation of the ET in the SU(2) xU(1) theory.
Equations (109) and (118) show that the modification factors (C~&, Cz

&) are much complicated. Thus a rigorous
simpMcation for these factors is certainly necessary for practical applications. From our results in Sec. IIB we obtain
the exactly simplified expressions for the modification factors in our scheme I and scheme II as follows:

WC

Z
+moa

A& oa

(0„),in scheme I with )cd = Mw and (w = 1,
1, in scheme II with e~ = Q, Mw,

~

~

(Ozz) ~, in scheme I with ~z = Mz and (z = 1
~

1, in scheme II with fez = (z Mz,

0, both in scheme I and scheme II .

(119)

In the Landau gauge, if we take the MW scheme [14], the modification factors are [cf. (36) and (76)]
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E 4+) ++31(MW)+ 32(MW)+ 33( W)+ 34( W)

gZ ~Mz Zz~z[1+ b.s (Mz)] —ZAzb, 3 "(Mz)
Zl/2 [1 + ~ZZ(M2 )][1+~AA(M2)] ~ZA(M2)~AZ(M2)

(120)

which are rather complicated. Here we also present our

simplified expressions for the modification factors in the

F = Fo scheme [13,16]:

Mw —IIww(Mw)

Mwz+ MwlIwp+ (Mw2)

M,' —IIzz(M,')
Mz + Mzllz~s (Mz)

(121)

In snmmary, we have proved that, in the SU(2) xU(1)
theory, the general formulation of ET is (95) with the

modification factors given in (109) and (118). The mod-

ification factors aad the Goldstoae boson scattering am-

plitude are renormalization scheme and ( dependent. In
our scheme I and 8cheme II, the formulas for the mod-

ification factors are greatly simplified as given in (119).
Especially in scheme II (95) reduces to the naive sim-

ple form (1), so that this scheme is the most convenient

scheme for applying the ET.

IV. ONE-LOOP CALCULATIONS
IN THE SU(2}xU(1}THEORY

IN THE HEAVV HICGS LIMIT

A. The modi8cation factors

We present here explicit one-loop calculations of modi-
fication factors Cw ' and Cz ' in the SU(2) x U(1) theory
for very large m~. The calculations will be given in var-

ious currently used renormalization schemes other than
scheme II, &om which we can compare the ( and m~ de-

pendence of C
& and t

&
in various schemes. In the

heavy Higgs limit we keep only terms containing positive
powers of m~ or lnmH, and neglect all terms which are

mH independent or vanishing as m~ w oo. Ia this ap-
proach, the quantities A2'3 and b,3's in (47) and (51) are

negligible relative to the 61's. Furthermore, the difFer-

ence between Mw~""' (Mg "') and Mw (Mz) is of the loop
order, so that at one-loop level and for the heavy Higgs
case, Cw' and Cz ' given in (109) and (118) reduce to

C .s ——1+ —,'(~ZW —~Z~, + ~ZM. ) + &i (Mw) + (Mw/Mw"' —
)

Cz s = 1+ 1(bZzz —h Zps + 6ZM~ ) + b, 1 (Mz) + (Mz/Mz'
"' —1) .

(122'j

We thus oaly need to calculate the oae-loop contributions to the renormalization constants g s,

Mw/MwP"', and Mz/Mg "'. The Lagrangian for the Higgs sector is

= (D.")t(D"")—~("),

I

D" = g~ — B~ — v Wp"0 2
0

iso+

( ~(Vp+ Hp+ i4'pz))
(123)

—V(sp) = —Ap[s so ——
]

Vp 2

(eo + )I—Io-—— [2&o &o + (4'o )'] —&&&p —&ovo[IIo(24o+4'o + (4'o )') + &o]
2 2 Qp

Ap——[(2&o+&o + (&o )')'+ 2~o'(2&o+&o + (4'o )') + II'1
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where m&p ——2Apup, 6T = (Apvp —pp)up. The loop-
order quantity bT is prescribed to cancel the complete
H-tadpole contributions to ensure (H) = 0 as it should

be. To one loop, this requires

proper self-energy counterterms by (29) and (71). The
Higgs renormalization constants 6Z~ and bZ i are re-

H
lated to the proper self-energy counterterm by

2 M2
ibT—/v = ——

2 [ I &((WMW) + 2I&((ZMz)
4 M~2

bIIH = hZ—H(k —m~) +bZ m mH . (125)

+ —,Ig(mH)], (124)

where the function Iq is defined in Appendix C. The
renormalization constants in (122) are related to the

What we should calculate is the one-loop contributions
to the bare proper self-energies in the heavy Higgs limit.
The results are

' m41 m2 2

Il~p(k ) = —
2 2

— 12(Ip(MW) + 2) —91n s
—ln

2
—9I2o(k; m&, m&)

—2I2p (k ' (w Mw fw Mw ) I2p (k
' (zMz (zMz)

Ilww, o(k ) =—,— -mH+
l

-k +3Mw I»
g'1 1 2 &12 2& m~

16m'2 4 2 (3 Mw.
'

2 2

IIww, o(k ) = — — —mzz+ 3MW ln
g 1 1 2 2 m~

16+2 4 2

llzz, o(k ) = —
16 2 2

—m~+
l

k + 3Mz
l
ln

16&2 4cos2 gw
2 1 1 m2

16+2 4 cos2 Hw 2

g 1 1m& (3 fz&» mar

16+2 coss 8W 8 M2 (4 2 ) M2

Ilwp+ p(k ) =+,Mw —,+
l

——

g' Mz 1m~ (3 (z&
l

m~
16ms cos2 8W 8 M2

& 4 4

II +-+,o(k2) = gwsMw ln

2M2 m2g 1 (ZMZ m~
4 cos2 g M2

(126)

where the functions Io and I20 are defined in Appendix C.
With these and Eqs. (125), (29), and (71), we can deter-

mine the relevant renormalization constants by imposing
certain subtraction conditions constraining the renormal-

ized proper self-energies.
In the present approximation, the calculated 4& and

are

Now we present the calculated C~
& and C &

in var-

ious renormalization schemes as follows.

f. Scheme I

2 m2
~w(k2) g (w

l
4 M2

2

gzz(k2) g (z
l H

16~2 4 cos2 8~ M2

(127)

The subtraction conditions in our scheme I have de-

scribed in details in Sec. II. In this scheme M~"' ——M~,
M&" ' ——Mz. The determined renormalization constants

are
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(z
2(w +, ln

cos' gw ) Mw

bzM~ =—

bO =0

bO„=0,

bO„=0,

g m~ 3 +3&
16w2 M2

m' ) 9~
bz = — —— ——p —ln 2+2 +

16vr2 Mw 4 (e 4~@' ) 16v 3

g 1 m
bZw

16+2 12 Mi22,

16 2 16M' 12 M'

g 1 m~
bZzz =

16+2 12 cos2 8~ M2
H

g i -i& 5
bZM =

2 +
16m cos 8~ 16 M~ 12 M~

biz
H + y [

l H

16xs cos2 ew 8 Mwi
E

4 2 ) Mzs

bZw = bZzz

(128)

From (126) and (128) we find that IIw4, ~(k2) and IIz~z(k2) all vanish in the heavy Higgs limit. This and the last

equation in (128) are all consistent with the consequences of WT identities listed in Tables I and II, so that these

results may be regarded as an explicit check of the general WT identities (25) and (59). Note that in the present

approximation bO&~, bO&~z, b'Ow, bOzz are negligibly small, and also from (122) explicit calculations give

W
Cmobs —1~

ZC ~ 1, (129)

which coincide with the exact result (119). Thus, scheme I behaves approximately like scheme II in the heavy Higgs

case.

S. The on-shell scheme by Bohm et al.
and HOlliI4 (11J

In this scheme ew = Mw, ~z = Mz, M~~" ——Mw, Mg" = Mz. The Goldstone wave function renormalizationphys phys

constants are taken to be Z4, + = Z~z = Z~. This is different from our scheme I and the calculated bOw and bO„
are

g' (13 ~3 ~ mw I'3

16m 2 (16 8 M~~ (8
g' i (13 ~S 'i m'

16xs coss Hw 16 8 ) Mzs

(wl
4 ) Mwi

t'3
H

(8 4 ) Mz2

(i30)

Using (128) ( for bZ s ) and (127) we evaluate the modification factors in (122) as

g' & i3
16+2 ( 16

C g 1

16%2 cos2 8~

m2 3 m2 m2

( 13 E~ & m~2 3 m2~ Lz m2~ zz
i6' 8 M2 8 M2' 4'M2 —"-

(131)

This also coincides with the exact results in (119) since

in scheme I our simplified forms for (Cw&, C d) are

generally valid for any choice of (Z4,+, Z~z). We see froxn

(131) that in this scheme C &
and C &

all acquire non-

negligible loop corrections vrhich contain both mH and

lnm~ terms and depend on fw, (z. N»merically, g
0.422 [14]. Taking m~ = 1 TeV to estimate the size of
C &

—1 and Cz
&

—1, we obtain [17]

hC g = C q
—1 = —0.060+ 0.003$w,

hC g
—C g

—1 = —0.062+0.0044z .
(132)

In WL,-S'I, or ZL, -ZL, scatterings, the total modification
factor in (95) is (Cw&)4 1+ 4bC &

or (Cz &)4 =
1+4bC z which deviates from unity by about 23% in
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the 't Hooft —Feynman gauge. Therefore the precise form

of ET in this scheme is significantly diHerent &om the
naive form (1).

C'
a C a 1

From (128) we obtain

(134)

8. The MW scheme in the Landan gange (f/)

Cw~ = 1+ 2(bZw —bZ4, ~ +bZMz ),
C ~ =1+ 2(bZzz —bZpz+bZM. ) .

(133)

In this scheme Z@~ and Z4,z are determined by

dIIp p /dk ~I,
——dIIp p /dk ~s

= 0, Mw"'

Mw Mz" = Mz~ and(w = (z = (x = 0. Thus

(122) reduces to

i.e., up to one-loop there is neither an mH term nor a
lnmH term in C a and C a, so that this scheme is

convenient for applying the ET in the heavy Higgs limit.

The on sh-ell scheme by Aohi et al. (15]

In this scheme, the subtraction condition, for the phys-

ical sector is the on-shell condition so that M~"' ——M~
and Mz""' ——Mz, while that for the unphysical sector is

the minimal subtraction which, in the heavy Higgs limit,

corresponds to bZ~+ ——biz = 0. We then obtain, from

(122) and (128),

2

16+2

C' oa=1z g 1

16vr2 cos2 8~
( 3H + + 1

H

1 z2

~ ) z2

i m' & 3 ( & m'
+ + ln

16Mw2 ( 8 4 ) Mw2

(135)

Therefore the modification factors also contain large mH

and ( dependence in this scheme. Numerically, for m~ =
1 TeV,

6Cw, s = —0.031+0.003(w,

bCz, g
= —0 032 + 0 004(z .

(136)

$. The complete minimal subtnaction echeme

The result is the same as that in the on-shell scheme

by Aoki et al. [15] since Cw& and Cz
&

are related only

to the unphysical sector.

8. The intermediate scheme (18J

This is a widely used scheme with the Fermi con-

stant G„taken as input instead of Mgr. In this scheme
M~""' g Mw. The renormalization scheme for the un-

physical sector is not specified. If we take the scheme
in Ref. 11] or Ref. [15I for the unphysical sector we get
large C'+& —1 and Cz

&
—1 shown in (131) or (135).

If we take our 8cheme I for the unphysical sector we get
Cw& 1 and Cz

& 1 [cf. (129)] in the heavy Higgs
case.

7. The Jl = J'e scheme (13,18J

In this scheme bO„=bDt~ = bA„- = 0. The Gold-

stone boson wave function renormalization constants are
normalized by Z4, ~

——Z4, z = Zlt. In Refs. [13] and [16],
the 't Hooft-Feynman gauge is taken, i.e., (w = (z =
(~ = 1. Explict one-loop calculation in the heavy Higgs
limit gives

IIww(k2) = 0 i IIzz(k2) = o,

g' & i3 ~3& ' 3——+ &
2 + ——+ H

16vr2
~

8 4 ) Mw2
~

4 2 ) Mw

t' i3 ~3 &m' ( 3 (zl
II,., (k') =, , ——+ ~ ~+ --+-

16m. cos8w ( 8 4 )Mz ( 4 2) Mz

II +(k2) = —— + — ln M
(

8 4 M2
) w

g' i &13 ~3 l '„3( l,
16m2 cos2ew ~16 8 ) Mz ~8 4 ) Mz

(137)
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From these and (122) we obtain the results of C~
&

and
Cz

~
which are just the same as (131) but here bA~ =

bO„:—0. Thus in the F = Fp scheme b'C~& and
hCz

&
cannot be ignored. We can also calculate C

and Cz
& by using (121), and we get the same results.

This can be regarded as a check of the WT identities (25)
and (59) up to one loop in the heavy Higgs limit.

T(H -+ W~+W~ )

g2 m2H (19 3~3 5~ l
16z2 M2 16 8 48

(139)

B. An example of the equivalence theorem:
Heavy Higgs decay H m Ws+

We take the heavy Higgs decay H m R'i+~L as a
example to illustrate the precise formulation (95) of the

ET up to one loop in the heavy Higgs limit. The specific

form of (95) is now

'Cg m JI

2 MPhys

where Tp is the tree-level amplitude. In (139) we have

kept only the terms with positive power of m~. Numer-

ically for m~ ——1 TeV,

T(H -+ Wi Wi ) = (1+0.0731)Tp . (140)

Next we calculate the right-hand side of (138) in vari-

ous renormalization schemes other than scheme II to the

same accuracy.

X. Scheme I
T[H -+ W+W

]
= (iC~ )2T[H ~ P+P ]

+O(M~/m~) . (138)
The calculated T(H + P+P ) is the same as the right-

hand side of (139). Together with (129) and (139) we get

the ET (138).

The left-hand side of (138) is physical, independent of the

renormalization scheme and the gauge parameter. In the

heavy Higgs limit, up to one loop, the calculated result

1s

The on-shell scheme by Bohm et al.
and Hollik (111

The calculated T(H ~ P+P ) is

m2e
2 M

(141)

In (141) we have kept a (~ ln M~ term as well for exam-

ining the total (~ dependence of the RHS of (138). We

see that this (gr-dependent term is exactly canceled by

that in (C &)
z 1+2bC~

& given in (131), so that the

product (C,&)zT(H ~ P+P ) is (~-independent as it
should be in (138). Nnmerically, for m~ = 1 TeV, we

have

(C s) = 1 —O. 111 + 0 007(vr, .

T[H -+ Q+Q ] = —[1+0.184 —0.007(gr]Tp, (142)

(iC ~) T[H m P+P ]
= [1+0.0731]Tp,

which, together with (140), realizes the ET (138). We see

that there are sign+cant cancellations between (C~&)2

and T(H ~ P+P ) in (142), so that it is important to

notice that me should use the precise formulation (198)
of the ET rather than the naive simple formulation (1)
in this renormalization scheme.

8. The MW scheme in the Landau gauge (1$J

The situation is the same as that in scheme I in the

present approximation.

The on shell schem-e by Aoki et al. (1$j

Explicit calculation gives

T[H m P+Q ] = — 1+( g' m'

16m2 M~2 16

3~3 5~'

8 48

2 m2(w
l

16m'2 2

= (1+0.125 —0.007/~)Tp (for m~ = 1 TeV) . (143)
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We see again from (135) and (143) that the (gr-
dependent terms in (C~&)2 and T(H -+ P+P ) just
cancel each other. There are also large cancellations of

the ggr-independent terms between (C~ &)2 and T(H +

P+P ). Hence, distinguishing the precise and the naive

formulations of the ET is also important in this scheme

$. The complete minimal subtrection scheme

The result is the same as that in the on-shell scheme

by Aoki et al.

6. The E = Jlp scheme (18,16J

The result is the same as that in the on-shell scheme

by Bohm et al. and Hollik.

We have seen from the above explicit calculations that
the form of the ET depends significantly on the renormal-

ization scheme. In some schemes, the ( dependence of the

Goldstone boson scattering amplitude and the modifica-

tion factors exists even to leading order in M~/E. Also,

to leading order in M~/E, the difference between the (-
independent parts in the VL, amplitude and the yP ampli-
tude can be quite significant in some schemes. Therefore
be sum to use the precise formulation is important in the

applications of the ET.

V. EQUIVALENCE THEOREM IN THE
U(1) HIGGS THEORY AND THE

COMPLETE ONE-LOOP CALCULATIONS

As an illustration of our general formulation we first
give the precise formulation of the ET in the simple U(l)
Higgs model and then present the complete one-loop cal-
culations. Consider a scalar Beld sp ——~ (vp+ Hp + &Pp)~2
interacting with U(1) gauge field Ap, in which vp is the
vacuum expectation value (VEV), Hp is the Higgs Beld,
and Pp is the Goldstone boson field. The Lagrangian is

F„„F—"-"+ (D„)t (D" )
—V( ), (144)

where Fp"" = 8"Ap —8"Ap, D" = 8" +igpAg, and

V(sp) is

Q

V(sp) = Ap spsp-
IJp

p

= —(m~p + )Hp + —
Pp + bTHp + Apvp(Hpgp + Hp) + —

(Pp + Hp + 2$pHp),
1 2 bT 2 1bT 2 3 ~P 4 4 2 2

Vp 2 vp
(145)

in which m~p ——2Apvp, 6T = vp(Apvp —p2p). We take the Rt gauge. The gauge fixing and Faddeev-Popov terms are

ZGF = Fp ) FP = (p 8~Ay (p KPPP

(146)

~Fp = cp( 8 (p+pMp gp(p+pHp)cp

where cp (cp) is the ghost (antighost) field and MP ——gPvP is the bare mass of gauge field. Now the WT identities in

(11) read

ik" [j1)p„„(k)+ (p k„k„]+ MpCp(k ) [i'Dp ~„(k)—i~pk„]= 0,
ik" [

—i1)p ~„(k)+ i~pk„]+ MpCp(k ) [i'Dp ~~(k) + (p~p] = 0,
iSp (k) = k —(p~pMpCp(k ),

(147)

where

Cp(k ) = 1+b, i(k ),

&.(k') = '
(0 I Ho( k —g) .(g) I

o(k)—) .
Mp

(14S)

After renormalization the finiteness of the renormalized

WT identities gives the constraints

1 1

Zg = 0$ZQ ) Zpp Q~ ZQ Zp Zg

Z~ = O~Z~ZM2Cp(sub. point), Z, = 0, ,

(150)

The renormalization constants for the unphysical sec-

tor are defined as
where the 0; —1 = bO, is arbitrary finite loop-order

constant. The renormalized C(k2) is

$p — y4' q p = Z~, cp =, (p = Ztg, Kp —Z~K.

(149)
C(k )=

t'Z I
ZMCp(k ) .

&Z~)
(151)
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We can derive the WT identities similar to (24) and (25)

in which C(k2) is expressed in terms of the proper self-

energies as

In the MW scheme (( = 0) [14] we have

C~~s = (Z~/Zy) ~ ZM, (155)

M2 —II~~(kz) + (0 ' —1)( ik2

C(k)=
M2 + Milky(k2) + M~(O~ 0„—1)

(152)

C,s = C[(M~""') ] .
Mph',

Also in our Scheme I and scheme II we have

(153)

0 i, in scheme I with(= 1 and tc = M,
1, in scheme II with z = ( M .

(154)

Similar to the derivation in Sec. IIIB we get, in the

present theory,

and in the F = Fp scheme [13,16] we have

M —II~~ (M2)
156

M2 + MII~y(M2)

To one-loop level, the original expression for C d given

in (153) and (151) reduces to

C~~d = 1+ z(6Z& —6Z~+ 6ZM~) + Ai(M )

+(M/M""' —1) . (157)

In scheme I and scheme II, we can calculate C g both

from (154) and from (157), and this serves as an explicit

one-loop level check on the general %T identities which

lead to (154).
Now we present the complete one-loop calculations for

arbitrary value of mH. The renormalization constants

are related to the proper self-energies by

IIAA(k ) = IIpAA(k ) + 6Z&(k' —M )
—bZM M

II~~(k ) = IIp~~(k )
—( 60gk —(bZ + 6Z )M

IIgp(k ) = IIp~p(k') + [
—(6Z~ + 6Z4, + bZM. ) + (6Ag —60„)]M,
2

fI«(k') = fI.«(k') 6Z~(k' ——gM') —(6Z, + 6n, —26n„)(M',

II„-(k) =IIp,s(k )
—6Z, (k —(M ) + [

—(6Z~ —6Zp+6ZMi) +60„)](M
2

(156)

where we have chosen tc = M for convenience. We give separately the calculated results in the ( = 1 gauge (which is

related to scheme I, scheme II, and the F = Fp scheme) and the ( = 0 gauge (which is related to the MW-scheme).

A. The 't Hooft —Feynman gauge ( g = 1 )

We first determine the bare quantity 6T in (145). By definition, the VEV of the H field should vanish. This requires

that 6T should cancel the total H-tadpole contributions completely. This requirement fixes 6T. Up to one loop we

have

j6T/v = —3—AIi(m&) —[A + (D —1)g ]Ii(M ) for ( = 1 and e = M, (159)

where Iq and D are given in Appendix C. The one-loop results of the bare proper self-energies are

Ilp~~(k ) = ig [Ii(mH) + Ii(M ) +—4M I2 —4I4i]

IIp~~(k ) = —ig [Ii(mH) + Ii(M ) + 4M I2 —k I2 —4k Is —4(I4i + k I4z)],

Ilp«(k ) = —a[(2A + g )Ii(m~) —(2k+ g )Ii(M )
—(4A v —4g k —g M )Iz + 4g k Is]

lip&4, (k ) = —ig M [(2m' —2M )Is+ (m~ —4M )I2],

IIp„-(k ) =ig M I2,

(160)

where I; = I;(k; M2, m~~) for i & 2 are given in Appendix C. With these results we can determine the renormalization

constants in various renormalization scheme.
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i. Scheme I

The on-shell conditions are

Rell~~(M ) = 0, 2
= O, Reli&z(M ) = 0,d Rell»(k')

k~=M~

(161)

d ReIIyp(k2)
Rei14,4, M = 0,

d ReII„-(k2)
dk2

=0.

Hence M&""' = M. Equation (161) determines

2

bZ~ = 4ig [M I2 —I4~], bZM~ ———
2 [Iq (m&) + Iq (M ) + 4M I2 —4I4q],

60' = ag [I2 —4M2I2 + 4Is + 4I42 + 4I4, ] )

bZ4, = ag —5M Is —4I2 —4Is —4M Is (162)

—4M I3+ 4I3+ 4I42+ 4I4y

bZ, =ig M I2,

where I; = I;(M; M2, m&) and I = dI;(k; M, m&~)/dk2~s~ M~ for i & 2. The calculated result of 6q(M ) is

Eg(M ) =ig I2 .

With all these we explicitly calculate (157) and get

C~~e =1—
2

+1 M [Ig(m~) —Ig(M )]+ 2 —
4 I2

~g' &m'„&. . . & m~

2 (M ) ( M)
4

+ 4
- 9 M'I2 4M'I3+ 4I3-+ 4I42+ 4I41

(M4

= 1 —bO„O„
which coincides with the exact result (154) &om the WT identities.

(163)

(164)

K Scheme II

In this scheme we take 0„=1 instead of imposing the condition d Rellyd, /dk2~si Mi ——0. This changes the value

of 6Z~. We have now

m2 4

bZ~ = ig + 1 M [Iq(M )
—Iq(mJr)] + —6 I2+ 4M I2 —8Is —4I4& —4I42

(M2 (M4 )
Our explicit one-loop calculation of (157) gives

C e = 1+0(2 loop)

which is consistent with the rigorous result (154) &om WT identities.

(165)

(166)

8. The E = Ep scheme (f$,16J

In this scheme ( = 1 and ~ = M, so that the tree-level Goldstone boson mass is M [cf. (23)]. Now this scheme

corresponds to Qg = 0„=1 and Z4, = Z~, therefore, there is no &eedom of adjustment to make II~~(M ) = 0 (cf.
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Table I). Indeed the one-loop calculation gives

(
II&&(M') =,M' 4x' —2x' + (1+4x' —7x' + 2x') ln x +

1 —14x2+ llx4 —2x x+ Qz2 —4l
xla

gz2 —4 2 )

for x ) 2, (167)

(168)

where x—:m~/M. Thus, in this scheme, the total Goldstone boson mass m42, = M2+ Ilyy(M2) is not equal to the

tree-level value M . This coincides with the analysis in Ref. [13]. Considering this fact, the precise formula for C
is complicated. The one-loop result calculated from (157) is

g (13 2 l ~5 7 2 4l 1 2z —5 2 z+ Qz2 —4C,s=1+ ——z + ———z +x lnz —— x(z2 —3)ln
16z2

I
6 ) (2 2 ) 2/x& —4 2

g 1 (for z = m~/M ) 2 ) .

B. The Landau gauge (( = 0)

In this gauge, the requirement that bT should completely cancel the total H-tadpole contributions leads to, at the

one-loop level,

3M2
ibT/v = g — Iq(m&) + (D —1)Iq(M )

2 M2 (16S)

where Iq and D are given in Appendix C. This fixes bT completely. The calculated one-loop results of the bare proper
self-energies are

IIpxx(k ) = —ig [Iz(MH) +4M I2(k; M, m&) —4I4z(k; M, mH)],

(i7o)

lip~~(k ) = ig 2Iq(MI—r) — 2I2(k;O, m&)+4k I2(k;M, m~)
m

2 4

+4
2 [I4i(k; 0, m&) —I4x(k; M, m~)] + 4

2 [I42(k;0, m~) —I42(k; M, m&)]

where Iq, I2, I4q, and I42 are given in Appendix C. It is easy to prove from (170) that lied, (0) = Ilpd, y(0) = 0 which

is well-known in the Landau gauge. We then take the MW scheme [14] to determine the renormalization constants.

The on-shell conditions are

Reli~~(M ) = 0,
dk

Rell~~(k )
k~ —M~

(171)

Relly'(0) = 0, Relly'(k ) = 0 .
k~=0

These lead to

bZ~ =ig [4M I2(M;M, m~) —4I4~(M;M, mH)],

bZM~
——ig M [

—Iq(mH) —4M I2(M;M, mrs) +4I4q(M;M, m~)],

h Z4, = ig 2 I2(0; 0,

mrs�

)
—

4I2 (0;M, ma) + M2 [I4q (0;M, m~) —I4~ (0; 0, mH )]

With (172) we can calculate C q from (155). The result is

C g =1+ 2(bZ~ —bZp+ bZM~)

g (15 7 2 4) ~26 2 4 5 s 1+x2 2x4
=1+ ———x +x ~+ ——12x +jx ——x —4 + lnx

32vr2 ~2 2 ) I
3 3 1 —z2 1 —xz)

2O s 74 2 s 1 sl 1 x+gz2 —4—y2 —]6~+ 8~ ln fore&2,
3 3 3 3 ) gx& —4

(172)

(173)
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where 2: = mH/M. We see that in this scheme with

( = 0, C s is not unity. In non-Abelian theories, the

interactions are much more complicated. It is quite un-

likely that C g
——1 for arbitrary m~ in the MW scheme.

However, in the Landau gauge, A~ —— 0 since the

Higgs boson decouples from the ghost fields [cf. (148)],
and thus in the U(l) case C(k2) in (151) reduces to

C(k ) = (Z~/Z~)~ ZM = C~~d. Therefore we can al-

ways choose Z4, = Z~ZM to make C,g = 1 [19]. In the

non-Abelian case C g is still complicated in the Landau

gauge due to the non-Abelian coupling between the gauge

fields and ghost fields [cf. (107),(120)]. So the above

choice of Zy to make C g
——1 concerns the detailed

explicit calculations of L3 s and is thus inconvenient in

practical applications of the ET.

VI. CONCLUSIONS

In this paper we have given a general proof of the pre-

cise formulation of the ET both in the SU(2)i, theory

and the SU(2) xU(1) theory to all orders in the pertur-

bation for arbitrary value of mH based on the general

Slavnov-Taylor identity (79). The precise form of the

ET is (95) with the modification factors C,& given by

(105) for the SU(2)L, theory and (109),(118) for the re-

alistic SU(2) xU(1) theory which has not been given in

the literature. The modification factor is proportional
to a function C(k2) related to the matrix elements of
certain products of field between the vacuuxn and the

antighost states [cf. (15),(20) for the SU(2)L, theory, and

(47),(50),(53) for the SU(2) xU(1) theory]. At tree level,

the matrix elements vanish and the renormalization con-

stants are unity which lead to C(k2) = 1. With loop con-

tributions, the nonfactorized parts of the xnatrix elements

and nontrivial renormalization constants emerge which

cause C(k2) g 1 and this generally makes C
&

different

from unity. Therefore (95) is in general different from the

naive simple form (1). Both C &
and the Goldstone bo-

son amplitude T(igP', . . . , iP ",4) in (95) are related to
unphysical fields, so that they both depend on the gauge

and the renormalization scheme. Our explicit calculation

in Sec. IV shows that these dependence are in general not

Mgr/E suppressed. Our calculation shows that the lead-

ing gauge- and renormalization-schexne-dependent parts
in C '

& C "& and T(ig ', . . . , iP ",4) just cancel

each other, so that the RHS of (95) can be equal to
the LHS T(VI ', . . . , VL ",O) which is physical, indepen-

dent of the gauge and the renormalization schexne. In
the naive formalism (1), the leading part on the RHS
is generally not gauge and renormalization scheme inde-

pendent; therefore, (1) cannot be generally valid.

In Sec. II we have given a systematic analysis of the

renorxnalization schemes in the general Rg gauge defined

in (3). We have considered the Ward-Takahashi iden-

tities for the inverse propagators which give constraints
on the renormalization constants. Special attention has

been paid to the examination of the &eedom of adjust-

ing the renormalization constants in the unphysical sector
for simplifying the expression for C(k2). Based on this

analysis we have proposed two convenient renormaliza-

tion schexnes, namely, scheme I and scheme II defined

in Sec. II, in which C((tcM~) takes the simple form

(35) for the SU(2)g theory and the charged sector in

the SU(2)xU(1) theory, and C (fzezMz) and C (0)
take the simple forms in (74) for the neutral sector in the

SU(2) x U(1) theory. The details of these two schemes are
s»mmarized in Tables I and II. Of special importance
is scheme II in which the naive simple forin (1) of the

ET holds exactly. The subtraction conditions chosen in

scheme II are irrelevant to the explicit calculation of the
complicated expressions for C d's. Therefore scheme II
is the most coneenierit scheme for applying the ET. Ex-
amples of exactly realizing these two schemes are giv'en

in the U(1) Higgs theory in Sec. V.
We have also examined the modification factors in var-

ious currently used renorxnalization schemes other than
scheme II in the SU(2)g and SU(2)xU(1) theories up
to one loop in the heavy Higgs limit. Our calculation
shows that in some currently used schemes such as the
on-shell scheme by Bohm et at. and Hollik [11],the on-

shell scheme by Aoki et al. [15], the minimal subtraction
scheme and the F = Fe scheme [13,16], the modification
factors are significantly difFerent kom unity even in the
heavy Higgs limit. In these schemes, calculation of WL, -

WL, or ZI, -ZL, scattering amplitudes by using the naive

form (1) of the ET may cause an error as large as 20%%uo .
In the MW scheme [14] and the intermediate scheme [18]
with scheme I for the unphysical sector, the modification
factors are approximately unity in the heavy Higgs limit,
so that the application of the naive form (1) of the ET
are safe in this limit.

We conclude that care should be taken in the appli-
cation of the ET if the renormalization is not taken to
be scheme II. In general, be sure to use the precise form

(95) instead of using the naive form (1). Only in scheme
II the use of the form (1) is always correct.

In our forthcoming paper [20] the above precise formu-

lation of the ET will be generalized to the effective chiral

Lagrangian formalism where the electroweak symmetry

breaking sector is nonlinearly realized in the derivative

expansion.
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APPENDIX A

We give here an alternative proof of the general
Slavnov Taylor identity (79) in the text in the path-
integral formalism, which is simpler and more direct than
the proof in Ref. [5].

Consider the generating functional (7) in the text with

the external sources I,I,K', L = 0. The gauge fix-

ing term and the Faddeev-Popov terxn in the Lagrangian
are given in (3) and (5) in the text, but we need not

specify the function Fe here. It is well known that the
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renormalized S-matrix element for physical particles is

gauge-independent, i.e., independent of the change of the
gauge fixing function Fo ~ Fo = Fo + AFQ [10]. The

only effect of I"o ~ I"p is the change of the wave func-

tion renormalization constants which do not afFect the
physics. Let us take AI"p to be an arbitrary local func-
tion I (x), indePendent of the fields Xo, co, and co, i.e. ,

Fo (~) = Fo(&) —Io(~). (Al)

In the theory with the gauge fixing function Fo (x), the
renormalized fields yp, cp, cp depend on I through the
I dependence of the wave function renormalization con-

stants since yp, cp, co are indePendent of Ip. Let the gen-

erating functional in the theory with the gauge fixing
function Fo (x) be

Z[d] = exp[iW[d]) = f 'PxoDcoDco exp o
I S[xo,co, co] + J d ed'xo (A2)

b W[J] b W[J]
('")bJ,, (») "sJ, (& ), , (""~J;,(y, )

" J, (~ )

The symbol X(Lsz) means the application of the Lehmann-Symanzik-Zimmermann (LSZ) reduction projector to the
connected m-point Green function. We further write (A3) as

m&O.

where in S[XQ, co, co] the gauge fixing function is Fo (z). According to the above reason, the two generating functionals

Z[J] and Z[J] must lead to the same renormalized S-matrix element for physical fields. Symbolically, we write this
relation as

(oIx, (pi)" x, (p )I0);i] z;(.)
= (oIx,, (pi)" x, (p )I0)„;,i, p;(.) (A4)

where X. (pi) (l = 1, . . . , m) denotes the LSZ amputated

asymptotic on-shell physical field which are gauge inde-

pendent and thus I independent. Now we take the func-

tional derivative 0"/bI, (xi) bI „(x„)on both sides of

(A4) and then turn off the I 's Since t.here is no I (x)
on the LHS of (A4) we get

0 = (0ITFQ'(»)" Fo"(*~)C'I0)„;,& p; +;,
(A5)

or, in the momentum representation,

o = (0IFo'(Ii)" Fo" (I )4'I0) gh p-=~- n&1,

(A6)

where 4—:g& ix. , for m & 1 and C = 1 for m = 0.

On the RHS of (A6) [(A5)] we have ignored a term of
(ki k2)'4 ag~n2~~Q(~ (2 i &2)bc~a~'42~ Q)

which does not contribute to the connected 8-matrix el-

ement. (A6) is just the identity (79) in the text.

APPENDIX B

We give here the quanitities 6's in the SU(2) xU(1) theory.

In the charged sector

(k') = '
(0 I

&o(-k —q)co
—

(~) I co (I ))2M' p

= ZgZHZM 0 0 —k —
q c q c+ I('

d q
where =,and in the dimensional regularization we have + p'

(2z.)4
'

2z D

/w(k2) /w(I 2) + /w($2) + /w($2)

(I')= I (oI&o(-I —~) o(~) I
'(A:))

WO q

= ~g~y &M'
2M

(0
I
&'( I —~)c (~) I

c'(k))—
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&22(k') = ' (1-t»'8wo) (014o (-k - q)co (q) I co (k))
2~zo

Zg=Z Z'~ZM' (1 —Z, .s tan'8w)M

zz ZZA

(o I & (-k —q)c'(q)
I
c'(k)) + (o

I & (-k —q)c"(q)
I
c+(k))

c q c q

(B4)

&2s(k') = (o I &o (-k —q)co (q) I
co (k))

Mwo

ZAA
= Z, Z'~ZM '

(0 I P (
—k —q)c (q) I

c+(k)) + '
(0 I P (

—k —q)c (q) I
c+(k))

Mw I Zw c q

(B5)

&. (k') = &.i(k')+ &s2(k')+ &»(k')+ &s4(k') (B6)

ik"&si(k') = -ieo (IAo(-k —q)co (q) Ico (k))

Z, Z&&i e —(OIZ" (
—k —

q) c (q) Ic+ (k)) —Z, Z&&i e (OIA" (—k —q) c (q) OIc~ (k)},
q q

(B7)

ik"As2(k ) =ieo (OIWo "(—k —q)co (q)Ic+o(k))
q

ZAZ ZAA
= Z, Zw

' ie (OIW "(—k —q)c (q)Ic+(k)) + Z, Zw
' ie (OIW "(—k —q)c (q)Ic+(k)),

c c q

xk"633(k ) =igocos8w, f(0~A�( L —q)eo (q)~io—(k))

1
= —ZsZ, »s~ Z~~ig cos 8w (OIZ" (

—k —q)c (q) Ic+(k))

—ZsZ, ,s Zz&igcos8w (OIA" (
—k —q)c (q)Ic+(k)),

q

(Bg)

ik"bs4(k ) =igocos8wo (OIWo "( k —q)co (q—)Ico (k))

ZZZ
= ZsZ„,s~Zw

' igcos8w (OIW "(—k —q)c (q)Ic+(k))

ZZA

+HZ, ,s Zw
' igcos8w (OIW "(—k —q)c (q)Ic+(k)) . (B10)

In the neutral sector,

t:k 6 (k ) = (IDz ( k —q)c (q) Ic (k )) —ik„
q

= igo cos8wo (OIWo„(—k —q)co (q)Ico (k)) — (OIWo„(—k —q)co (q)Ico (k))
q

1

Zg Zcos ew Zwzg cos Hw

ZwZAA ZwZAz
(oIW.'(-k —q)c (q)lc'(k)) ~'tZ~

— (oIW.'(-k —q)c (q)lc"(k)) ~;tZ~
ZwZAA ZwZAz-

«IW. (—k —q)c'(q)lc'(k)) ~;tZ'„+ «IW. (-k —q)c'(q)lc" (k)) ~,tZ„ (B11)



4870 HONG-JIAN HE, YU-PING KUANG, AND XIAOYUAN LI

'"-&s"( ') = (OID~„(—k —q)co(q) lco (k)) —ik.
q

=ieo (OlW,+(—k —q)c (q)lco(k)) — (OlWo„(—k —q)c+{q)le~(k))
q

g' ZA
=Z.ZwZ. ie (oIW.'(—k —q)c (q)lc"(k))~, Z„—(oIW.'(—k —q)c (q)lc (k))

q
det Z, q det Z~

g ZZA
(OIW„(—k —q)c+(q)lc (k))

' + (OlW„(—k q)c+(q) lc'(k))
q C

(B12)

(OlD'. (-k —
q) '(q) l

". (k))
q

(oIWo'. (
—k —q)co (q) lco (k)) — (oIW. (

—k —q)co (q) lco (k))

1

= Zggc~sg~oZ~Z zg cos Her

Zzz ZZA
x (OlW+( —k —q)c (q)lc"(k))

'
~

— (OlW+( —k —q)c (q)lc ( ))

v
~ ~ ~ ~ ~A

de
tc2cN

~

q

v

~ ~ ~ cI c
~2

de
tc

Z cN

II
l

ZZ ZZA

(OlW. (
—k —q)c'(q)lc"(k))

~ 'Z~ + (OIW. (
—k —q)c'(q)l' ( )) ~„'Z~

q

(B13)

ik„63 (k ) = (OlD& (
—k —q)co(q)lco (k))

(Ol Wo'. (-k —
q) co (q) lco (k)) — (oI Wo. (-k —

q) co (q) lco (k))
q

ZAZ
= Z, Z~Z~ie (OlW+( —k —q)c (q)lcz(k))

' — (OlW+( —k —q)c (q)lc" (k))

ZAA ZAZ
(OIW. (-k —q)" (q) lc'(k)) ~„'Z~+ (OIW. (-k —q)" (q) lc"(k)) Z„'Z~ (B14)

&i"().")= 2M' f io)HO( —)' —v)~0 (v)l~o i)'))

g Z' ZZZZ ZZAZAA

(OlH( —k —q)c (q)lc (k))
' ' + (OlH( k —q)c (q)l—c (k))

ZzzgAz gZAgAZ
(OlH( —k —q)c (q)lc (k))

' ' — (olH( —k —q)c (q)lc (k)) (B15)

&f"(~*)= f iolHD( —"—v)~o i~)l'o i"))

Zzz 2 ZZAgZZ
(OIH(-k —q)c (q) lc"(k))

' „+(OIH(-k —q)c"(q) lc"(k))

gzzgzA (ZzA)2
(OIH( —k —q)c (q)lc (k))

' — (oIH( —k —q)c"(q)lc (k))
det Z~ det Z~ (B16)



49 FURTHER INVESTIGATION ON THE PRECISE FORMULATION. . . 4871

(k') = I' f (O~bca( k——q)c, (q)lbc (k)) —f(bitt, (
—k —q)cc+(q))b, (k))

1

+(—k —
q) (q)1 (k)) ~,t'z

— (014+(—k —
q) (q)1 "(

ZAA ZAZ
(01$ ( k ——

q) c+ (q) lc (k))
' + (01$ ( k ——

q) c+ (q) lc (k))
det Z~ det Z~ (B17)

&2 "(k') = '
(01&o (-k —q)co (q) lco (k)) —

(01&o (
—k —q)co (q) lco (k))

ZO q
l

z' ,M ( 14 '(-k —
q) (q)i "(k))z„'z — (014"(-k —

q) (q)l '(k)) z„'zN
aa

Zzz ZZA
(014 (-k - q)"(q)lc"(k)) '

„

+ (014 (-k - q)c' (q)lc'(k))
det Z~ det Zp

(Bss)

APPENDIX C

We give here the de6nitions of momentum integrations appearing in the one-loop calculations in the text:

It(a )—:tt 'f = a Ilc( )+tj3,

1 ~2 dDp
Io(a') = ——p —1n D =4 —2e,

4my, 2 ' (2~)~'

(Cs)

I 2. 2 b2 2e 1

f (q* ")i(p+k)*--b'I '

= i 1 cb 2. 2 2——p —1n + 2 —I2o(k; a, b )16m2 4xp2

02 b2

I2o(k; a, b )
—= —

2
ln —+ I2o(k; a, b ),a

(C3)

QAB1 Q—A+ Q B(k2 & ( —
—
b)2)

k g—A —Q B

I (33;k,a)b—= 3 2 cretan/ ((a —b) & k &

(ahab)

),

B — A

(c4)

where A = k2 —(a + b)2, B = k2 —(a —b)2,

pP
3( ):P' f ~

3
t~r~ k)3 cj

—k"Ia(k;a, b )

V
Iblv (k2. 2 b2) 2q I

(J' —a')r(J + k)' —b2]

—
gg vI4&(k2. a2 b2) + klkkvI (k2. a2 b2) (c6)
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