

Theory and Applications of Mathematics & Computer Science 6 (2) (2016) 96-102

Further on Fuzzy Pseudo Near Compactness and *ps-ro* Fuzzy Continuous Functions

A. Deb Ray^a, Pankaj Chettri^{b,*}

^aDepartment of Mathematics, West Bengal State University, Berunanpukuria, Malikapur, North 24 Parganas-700126, India ^bDepartment of Mathematics Sikkim Manipal Institute of Technology, Majitar, Rangpoo East Sikkim- 737136, India

Abstract

Main objective of this paper is to study further properties of fuzzy pseudo near compactness via *ps-ro* closed fuzzy sets, fuzzy nets and fuzzy filterbases. It is shown by an example that *ps-ro* fuzzy continuous and fuzzy continuous functions do not imply each other. Several characterizations of *ps-ro* fuzzy continuous function are obtained in terms of a newly introduced concept of *ps-ro* interior operator, *ps-ro q-nbd* and its graph.

Keywords: Fuzzy pseudo near compactness, fuzzy net, fuzzy filterbase, *ps-ro* interior, *ps-ro q-nbd*. 2010 MSC: 03E72, 54A40, 54D30, 54C08.

1. Introduction

In (Ray & Chettri, 2010), while finding interplay between a fuzzy topological space (*fts*, for short) (X, τ) and its corresponding strong α -level topology(general) on X, the concept of pseudo regular open(closed) fuzzy sets and *ps-ro* fuzzy topology on X was introduced, members of which are called *ps-ro* open fuzzy sets and their complements are *ps-ro* closed fuzzy sets on (X, τ). In (Ray & Chettri, 2011), in terms of above fuzzy sets, a fuzzy continuous type function called *ps-ro* fuzzy continuous function and a compact type notion called fuzzy pseudo near compactness were introduced and different properties were studied.

In this paper, fuzzy pseudo near compactness has been studied via *ps-ro* closed fuzzy sets, fuzzy nets and fuzzy filterbases. Further, it is shown by an example that *ps-ro* fuzzy continuous and fuzzy continuous functions are independent of each other. An interior-type operator called *ps-ro* interior is introduced and several properties of such functions are studied interms of this operator, *ps-ro q-nbd* and its graph.

^{*}Corresponding author

Email addresses: atasi@hotmail.com (A. Deb Ray), pankajct@gmail.com (Pankaj Chettri)

We state a few known definitions and results here that we require subsequently. A fuzzy point x_{α} is said to *q*-coincident with a fuzzy set *A*, denoted by $x_{\alpha}qA$ if $\alpha + A(x) > 1$. If *A* and *B* are not *q*-coincident, we write *A* |qB|. A fuzzy set *A* is said to be a *q*-neighbourhood (in short, *q*-*nbd*.) of a fuzzy point x_{α} if there is a fuzzy open set *B* such that $x_{\alpha}qB \leq A$ (Pao-Ming & Ying-Ming, 1980). Let *f* be a function from a set *X* into a set *Y*. Then the following holds:

(i) $f^{-1}(1-B) = 1 - f^{-1}(B)$, for any fuzzy set *B* on *Y*.

(ii) $A_1 \leq A_2 \Rightarrow f(A_1) \leq f(A_2)$, for any fuzzy sets A_1 and A_2 on X. Also, $B_1 \leq B_2 \Rightarrow f^{-1}(B_1) \leq f^{-1}(B_2)$, for any fuzzy sets B_1 and B_2 on Y.

(iii) $f f^{-1}(B) \leq B$, for any fuzzy set B on Y and the equality holds if f is onto. Also, $f^{-1}f(A) \geq A$, for any fuzzy set A on X, equality holds if f is one-to-one (Chang, 1968). For a function $f: X \rightarrow A$ *Y*, the graph $g: X \to X \times Y$ of *f* is defined by g(x) = (x, f(x)), for each $x \in X$, where *X* and *Y* are any sets. Let X, Y be fts and $g: X \to X \times Y$ be the graph of the function $f: X \to Y$. Then if A, B are fuzzy sets on X and Y respectively, $g^{-1}(A \times B) = A \wedge f^{-1}(B)(Azad, 1981)$. Let Z, X, Y be fts and $f_1: Z \to X$ and $f_2: Z \to Y$ be two functions. Let $f: Z \to X \times Y$ be defined by $f(z) = (f_1(z), f_2(z))$ for $z \in Z$, where $X \times Y$ is provided with the product fuzzy topology. Then if B, $U_1 U_2$ are fuzzy sets on Z, X, Y respectively such that $f(B) \leq U_1 \times U_2$, then $f_1(B) \leq U_1$ and $f_2(B) \leq U_2$ (Bhattacharyya & Mukherjee, 2000). A function f from a fts (X, τ) to fts (Y, σ) is said to be fuzzy continuous, if $f^{-1}(\mu)$ is fuzzy open on X, for all fuzzy open set μ on Y (Chang, 1968). For a fuzzy set μ in X, the set $\mu^{\alpha} = \{x \in X : \mu(x) > \alpha\}$ is called the strong α -level set of X. In a *fts* (*X*, τ), the family $i_{\alpha}(\tau) = \{\mu^{\alpha} : \mu \in \tau\}$ for all $\alpha \in I_1 = [0, 1)$ forms a topology on *X* called strong α -level topology on X (Lowen, 1976), (Kohli & Prasannan, 2001). A fuzzy open(closed) set μ on a fts (X, τ) is said to be pseudo regular open(closed) fuzzy set if the strong α -level set μ^{α} is regular open(closed) in $(X, i_{\alpha}(\tau)), \forall \alpha \in I_1$. The family of all pseudo regular open fuzzy sets form a fuzzy topology on X called *ps-ro* fuzzy topology on X which is coarser than τ . Members of ps-ro fuzzy topology are called ps-ro open fuzzy sets and their complements are known as ps-ro closed fuzzy sets on (X, τ) (Ray & Chettri, 2010). A function f from a fts (X, τ_1) to another fts (Y, τ_2) is pseudo fuzzy ro continuous (in short, ps-ro fuzzy continuous) if $f^{-1}(U)$ is ps-ro open fuzzy set on X for each pseudo regular open fuzzy set U on Y. For a fuzzy set A, $\wedge \{B : A \leq B, B\}$ is *ps-ro* closed fuzzy set on X} is called fuzzy *ps*-closure of A. In a *fts* (X, τ) , a fuzzy set A is said to be a *ps-ro nbd*. of a fuzzy point x_{α} , if there is a *ps-ro* open fuzzy set *B* such that $x_{\alpha} \in B \leq A$. In addition, if A is ps-ro open fuzzy set, the ps-ro nbd. is called ps-ro open nbd. A fuzzy set A is called *ps-ro* quasi neighborhood or simply *ps-ro q-nbd*. of a fuzzy point x_{α} , if there is a *ps-ro* open fuzzy set B such that $x_{\alpha}qB \leq A$. In addition, if A is ps-ro open, the ps-ro q-nbd. is called *ps-ro* open *q-nbd*. Let $\{S_n : n \in D\}$ be a fuzzy net on a *fts X*. i.e., for each member *n* of a directed set (D, \leq) , S_n be a fuzzy set on X. A fuzzy point x_α on X is said to be a fuzzy *ps*-cluster point of the fuzzy net if for every $n \in D$ and every *ps-ro* open *q-nbd*. V of x_{α} , there exists $m \in D$, with $n \leq m$ such that $S_m q V$. A collection \mathcal{B} of fuzzy sets on a fts (X, τ) is said to form a fuzzy filter base in X if for every finite subcollection $\{B_1, B_2, ..., B_n\}$ of $\mathcal{B}, \bigwedge_{i=1}^n B_i \neq 0$ (Ray & Chettri, 2011).

2. Fuzzy Pseudo Near Compactness

It is easy to observe, as pseudo regular open fuzzy sets form a base for *ps-ro* fuzzy topology, replacing *ps-ro* open cover by pseudo regular open cover, we may obtain pseudo near compact-

ness.

Definition 2.1. Let x_{α} be a fuzzy point on a *fts X*. A fuzzy net $\{S_n : n \in (D, \ge)\}$ on *X* is said to *ps*-converge to x_{α} , written as $S_n \xrightarrow{ps} x_{\alpha}$ if for each *ps-ro* open *q-nbd*. *W* of x_{α} , there exists $m \in D$ such that $S_n qW$ for all $n \ge m$, $(n \in D)$.

Definition 2.2. Let x_{α} be a fuzzy point on a *fts X*. A fuzzy filterbase \mathcal{B} is said to

(i) *ps*-adhere at x_{α} written as $x_{\alpha} \leq ps$ -*ad*. \mathcal{B} if for each *ps*-*ro* open *q*-*nbd*. *U* of x_{α} and each $B \in \mathcal{B}$, *BqU*.

(ii) *ps*-converge to x_{α} , written as $\mathcal{B} \xrightarrow{ps} x_{\alpha}$ if for each *ps*-*ro* open *q*-*nbd*. *U* of x_{α} , there coresponds some $B \in \mathcal{B}$ such that $B \leq U$.

Theorem 2.1. A *fts* (X, τ) is fuzzy pseudo nearly compact iff every $\{B_{\alpha} : \alpha \in \Lambda\}$ of *ps-ro* closed fuzzy sets on *X* with $\wedge_{\alpha \in \Lambda} B_{\alpha} = 0$, there exist a finite subset Λ_0 of Λ such that $\wedge_{\alpha \in \Lambda_0} B_{\alpha} = 0$. Proof. Let $\{U_{\alpha} : \alpha \in \Lambda\}$ be a *ps-ro* open cover of *X*. Now, $\wedge_{\alpha \in \Lambda}(1 - U_{\alpha}) = (1 - \bigvee_{\alpha \in \Lambda} U_{\alpha}) = 0$. As $\{1 - U_{\alpha} : \alpha \in \Lambda\}$ is a collection of *ps-ro* closed fuzzy sets on *X*, by given condition, there exist a finite subset Λ_0 of Λ such that $\wedge_{\alpha \in \Lambda_0}(1 - U_{\alpha}) = 0 \Rightarrow 1 - \bigvee_{\alpha \in \Lambda_0} U_{\alpha} = 0$. i.e., $1 = \bigvee_{\alpha \in \Lambda_0} U_{\alpha}$. So, *X*

is fuzzy pseudo nearly compact.

Conversely, let $\{B_{\alpha} : \alpha \in \Lambda\}$ be a family of *ps-ro* closed fuzzy sets on *X* with $\wedge_{\alpha \in \Lambda} B_{\alpha} = 0$. Then $1 = 1 - \wedge_{\alpha \in \Lambda} B_{\alpha} \Rightarrow 1 = \vee_{\alpha \in \Lambda} (1 - B_{\alpha})$. By given condition there exist a finite subset Λ_0 of Λ such that $1 = \vee_{\alpha \in \Lambda_0} (1 - B_{\alpha}) \Rightarrow 1 = (1 - \wedge_{\alpha \in \Lambda_0} B_{\alpha})$. Hence, $\wedge_{\alpha \in \Lambda_0} B_{\alpha} \leq (\wedge_{\alpha \in \Lambda_0} B_{\alpha}) \wedge (1 - \wedge_{\alpha \in \Lambda_0} B_{\alpha}) = 0$. Consequently, $\wedge_{\alpha \in \Lambda_0} B_{\alpha} = 0$.

Theorem 2.2. For a fuzzy set *A* on a *fts*, the following are equivalent:

(a) Every fuzzy net in A has fuzzy ps-cluster point in A.

(b) Every fuzzy net in A has a *ps*-convergent fuzzy subnet.

(c) Every fuzzy filterbase in A ps-adheres at some fuzzy point in A.

Proof. $(a) \Rightarrow (b)$: Let $\{S_n : n \in (D, \geq)\}$ be a fuzzy net in *A* having fuzzy *ps*-cluster point at $x_\alpha \leq A$. Let $Q_{x_\alpha} = \{A : A \text{ is } ps\text{-}ro \text{ open } q\text{-}nbd$. of $x_\alpha\}$. For any $B \in Q_{x_\alpha}$, some $n \in D$ can be chosen such that $S_n qB$. Let *E* denote the set of all ordered pairs (n, B) with the property that $n \in D$, $B \in Q_{x_\alpha}$ and $S_n qB$. Then (E, \succ) is a directed set where $(m, C) \succ (n, B)$ iff $m \geq n$ in *D* and $C \leq B$. Then $T : (E \succ) \rightarrow (X, \tau)$ given by $T(n, B) = S_n$, is a fuzzy subnet of $\{S_n : n \in (D, \geq)\}$. Let *V* be any *ps*-*ro* open *q*-*nbd*. of x_α . Then there exists $n \in D$ such that $(n, V) \in E$ and hence $S_n qV$. Now, for any $(m, U) \succ (n, V)$, $T(m, U) = S_m qU \leq V \Rightarrow T(m, U)qV$. Hence, $T \stackrel{ps}{\rightarrow} x_\alpha$.

 $(b) \Rightarrow (a)$ If a fuzzy net $\{S_n : n \in (D, \ge)\}$ in *A* does not have any fuzzy *ps*-cluster point, then there is a *ps-ro* open *q-nbd*. *U* of X_{α} and $n \in D$ such that $S_n \mid qU, \forall m \ge n$. Then clearly no fuzzy subnet of the fuzzy net can *ps*-converge to x_{α} .

 $(c) \Rightarrow (a)$ Let $\{S_n : n \in (D, \geq)\}$ be a fuzzy net in *A*. Consider the fuzzy filter base $\mathcal{F} = \{T_n : n \in D\}$ in *A*, generated by the fuzzy net, where $T_n = \{S_m : m \in (D, \geq) \text{ and } m \geq n\}$. By (c), there exist a fuzzy point $a_\alpha \leq A \land (ps \text{-} ad\mathcal{F})$. Then for each *ps*-*ro* open *q*-*nbd*. *U* of a_α and each $F \in \mathcal{F}$, UqF, i.e., $UqT_n, \forall n \in D$. Hence, the given fuzzy net has fuzzy *ps*-cluster point a_α .

 $(a) \Rightarrow (c)$ Let $\mathcal{F} = \{F_{\alpha} : \alpha \in \Lambda\}$ be a fuzzy filterbase in *A*. For each $\alpha \in \Lambda$, choose a fuzzy point $x_{F_{\alpha}} \leq F_{\alpha}$, and construct the fuzzy net $S = \{x_{F_{\alpha}} : F_{\alpha} \in \mathcal{F}\}$ in *A* with $(\mathcal{F}, >>)$ as domain, where for two members $F_{\alpha}, F_{\beta} \in \mathcal{F}, F_{\alpha} >> F_{\beta}$ iff $F_{\alpha} \leq F_{\beta}$. By (a), the fuzzy net has a fuzzy *ps*-cluster

point say $x_t \leq A$, where $0 < t \leq 1$. Then for any *ps-ro* open *q-nbd*. *U* of x_t and any $F_{\alpha} \in \mathcal{F}$, there exists $F_{\beta} \in \mathcal{F}$ such that $F_{\beta} >> F_{\alpha}$ and $x_{F_{\beta}}qU$. Then $F_{\beta}qU$ and hence $F_{\alpha}qU$. Thus \mathcal{F} adheres at x_t .

Theorem 2.3. If a fts is fuzzy pseudo nearly compact, then every fuzzy filterbase on X with at most one *ps*-adherent point is *ps*-convergent.

Proof. Let \mathcal{F} be a fuzzy filterbase with at most one *ps*-adherent point in a fuzzy pseudo nearly compact *fts X*. Then by Theorem (2.2), \mathcal{F} has at least one *ps*-adherent point. Let x_{α} be the unique *ps*-adherent point of \mathcal{F} . If \mathcal{F} does not *ps*-converge to x_{α} , then there is some *ps*-*ro* open *q*-*nbd*. *U* of x_{α} such that for each $F \in \mathcal{F}$ with $F \leq U$, $F \wedge (1-U) \neq 0$. Then $\mathcal{G} = \{F \wedge (1-U) : F \in \mathcal{F}\}$ is a fuzzy filterbase on *X* and hence has a *ps*-adherent point $y_t(\text{say})$ in *X*. Now, $U \mid qG$, for all $G \in \mathcal{G}$, so that $x_{\alpha} \neq y_t$. Again, for each *ps*-*ro* open *q*-*nbd*. *V* of y_t and each $F \in \mathcal{F}$, $Vq(F \wedge (1-U)) \Rightarrow VqF \Rightarrow y_t$ is a *ps*-adherent point of \mathcal{F} , where $x_{\alpha} \neq y_t$. This shows that y_t is another *ps*-adherent point of \mathcal{F} , which is not the case.

3. ps-ro Fuzzy Continuous Functions

We begin this section by introducing an interior-type operator, called *ps*-interior operator and observe a few useful properties of that operator.

Definition 3.1. The union of all *ps-ro* open fuzzy sets, each contained in a fuzzy set *A* on a *fts X* is called fuzzy *ps*-interior of *A* and is denoted by *ps-int*(*A*). So, *ps-int*(*A*) = \lor {*B* : *B* \leq *A*, *B* is *ps-ro* open fuzzy set on *X*}

Some properties of *ps-int* operator are furnished below. The proofs are straightforward and hence omitted.

Theorem 3.1. For any fuzzy set A on a $fts(X, \tau)$, the following hold: (a) ps-int(A) is the largest ps-ro open fuzzy set contained in A. (b) ps-int(0) = 0, ps-int(1) = 1. (c) $ps\text{-}int(A) \leq A$. (d) A is ps-ro open fuzzy set iff A = ps-int(A). (e) ps-int(ps-int(A)) = ps-int(A). (f) $ps\text{-}int(A) \leq ps\text{-}int(B)$, $ifA \leq B$. (g) $ps\text{-}int(A \land B) = ps\text{-}int(A) \land ps\text{-}int(B)$. (h) $ps\text{-}int(A \lor B) \geq ps\text{-}int(A) \lor ps\text{-}int(B)$. (i) ps-int(ps-int(A)) = ps-int(A). (j) 1 - ps-int(A) = ps-cl(1 - A). (k) 1 - ps-cl(A) = ps-int(1 - A).

Now, we recapitulate the definition of *ps-ro* fuzzy continuous functions.

Definition 3.2. A function f from $fts(X, \tau_1)$ to $fts(Y, \tau_2)$ is pseudo fuzzy ro continuous (in short, *ps-ro* fuzzy continuous) if $f^{-1}(U)$ is *ps-ro* open fuzzy set on X for each pseudo regular open fuzzy set U on Y.

The following Example shows that *ps-ro* fuzzy continuity and fuzzy continuity do not imply each other.

Example 3.1. Let $X = \{a, b, c\}$ and $Y = \{x, y, z\}$. Let A, B and C be fuzzy sets on X defined by $A(a) = 0.2, A(b) = 0.4, A(c) = 0.4, B(t) = 0.4, \forall t \in X$ and $C(t) = 0.2, \forall t \in X$. Let D and E be fuzzy sets on Y defined by $D(t) = 0.2, \forall t \in Y$ and E(x) = 0.6, E(y) = 0.7, E(z) = 0.7. Clearly, $\tau_1 = \{0, 1, A, B, C\}$ and $\tau_2 = \{0, 1, D, E\}$ are fuzzy topologies on X and Y respectively. In the corresponding topological space $(X, i_\alpha(\tau_1)), \forall \alpha \in I_1 = [0, 1)$, the open sets are $\phi, X, A^\alpha, B^\alpha$ and C^α ,

where $A^{\alpha} = \begin{cases} X, & \text{for } \alpha < 0.2 \\ \{b, c\}, & \text{for } 0.2 \leqslant \alpha < 0.4, B^{\alpha} = \begin{cases} X, & \text{for } \alpha < 0.4 \\ \phi, & \text{for } \alpha \geqslant 0.4 \end{cases}$ and $C^{\alpha} = \begin{cases} X, & \text{for } \alpha < 0.2 \\ \phi, & \text{for } \alpha \geqslant 0.4 \end{cases}$

For $0.2 \le \alpha < 0.4$, the closed sets are on $(X, i_\alpha(\tau_1))$ are ϕ, X and $\{a\}$. Therefore, $int(cl(A^\alpha)) = X$. So, A^α is not regular open on $(X, i_\alpha(\tau_1))$ and hence, A is not pseudo regular open fuzzy sets on (X, τ_1) for $0.2 \le \alpha < 0.4$. Similarly, it can be seen that 0, 1, B and C are pseudo regular open fuzzy set on (X, τ_1) . Therefore, *ps-ro* fuzzy topology on X is $\{0, 1, B, C\}$. Again, E is not pseudo regular open fuzzy set for $0.6 \le \alpha < 0.7$ on Y. Therefore, *ps-ro* fuzzy topology on Y is $\{0, 1, D\}$. Now, *ps-cl*(B) = 1 - B and *ps-cl*(C) = 1 - B where, (1 - B)(t) = 0.6, $\forall t \in X$. Define a function $f : X \to Y$ by f(a) = x, f(b) = y and f(c) = z. Then, $f^{-1}(D)(t) = 0.2 = C(t), \forall t \in X$. Hence, $f^{-1}(U)$ is *ps-ro* open fuzzy set on X, for every *ps-ro* open fuzzy set U on Y. Therefore, f is *ps-ro* fuzzy continuous function. But, f is not fuzzy continuous as $f^{-1}(E)$ is not fuzzy open on X. Clearly, every *ps-ro* open fuzzy set is fuzzy on X. This implies that a fuzzy continuous function need not be *ps-ro* fuzzy continuous. Hence, *ps-ro* fuzzy continuous functions are independent of each other.

The following couple of results give characterizations of *ps-ro* fuzzy continuous functions.

Theorem 3.2. Let (X, τ) and (Y, σ) be two *fts*. For a function $f : X \to Y$, the following are equivalent:

(a) f is *ps-ro* fuzzy continuous.

(b) Inverse image of each *ps-ro* open fuzzy set on *Y* under *f* is *ps-ro* open on *X*.

(c) For each fuzzy point x_{α} on X and each *ps-ro* open *nbd*. V of $f(x_{\alpha})$, there exists a *ps-ro* open fuzzy set U on X, such that $x_{\alpha} \leq U$ and $f(U) \leq V$.

(d) For each *ps-ro* closed fuzzy set F on Y, $f^{-1}(F)$ is *ps-ro* closed on X.

(e) For each fuzzy point x_{α} on X, the inverse image under f of every *ps-ro nbd*. of $f(x_{\alpha})$ on Y is a *ps-ro nbd*. of x_{α} on X.

(f) For all fuzzy set A on X, $f(ps-cl(A)) \leq ps-cl(f(A))$.

(g) For all fuzzy set B on Y, $ps-cl(f^{-1}(B)) \leq f^{-1}(ps-cl(B))$.

(*h*) For all fuzzy set *B* on *Y*, $f^{-1}(ps\text{-}int(B)) \leq ps\text{-}int(f^{-1}(B))$.

Proof. $(a) \Rightarrow (b)$ Let f be *ps-ro* fuzzy continuous and μ be any *ps-ro* open fuzzy set on Y. Then $\mu = \lor \mu_i$, where μ_i is pseudo regular open fuzzy set on Y, for each i. Now, $f^{-1}(\mu) = f^{-1}(\lor_i \mu_i) = \lor_i f^{-1}(\mu_i)$. f being *ps-ro* fuzzy continuous, $f^{-1}(\mu_i)$ is *ps-ro* open fuzzy set and consequently,

 $f^{-1}(\mu)$ is *ps-ro* open fuzzy set on *X*.

 $(b) \Rightarrow (a)$ Let the inverse image of each *ps-ro* open fuzzy set on *Y* under *f* be *ps-ro* open fuzzy set on *X*. Let *U* be a pseudo regular open fuzzy set on *Y*. Every pseudo regular open fuzzy set being *ps-ro* open fuzzy set, the result follows.

 $(b) \Rightarrow (c)$ Let V be any *ps-ro* open *nbd*. of $f(x_{\alpha})$ on Y. Then there is a *ps-ro* open fuzzy set V_1 on Y such that $f(x_{\alpha}) \leq V_1 \leq V$. By hypothesis, $f^{-1}(V_1)$ is *ps-ro* open fuzzy set on X. Again, $x_{\alpha} \leq f^{-1}(V_1) \leq f^{-1}(V)$. So, $f^{-1}(V)$ is a *ps-ro nbd*. of x_{α} , such that $f(f^{-1}(V)) \leq V$, as desired. $(c) \Rightarrow (b)$ Let V be any *ps-ro* open fuzzy set on Y and $x_{\alpha} \leq f^{-1}(V)$. Then $f(x_{\alpha}) \leq V$ and so by given condition, there exists *ps-ro* open fuzzy set U on X such that $x_{\alpha} \leq U$ and $f(U) \leq V$. Hence, $x_{\alpha} \leq U \leq f^{-1}(V)$. i.e., $f^{-1}(V)$ is a *ps-ro nbd*. of each of the fuzzy points contained in it. Thus $f^{-1}(V)$ is *ps-ro* open fuzzy set on X.

 $(b) \Leftrightarrow (d)$ Obvious.

 $(b) \Rightarrow (e)$ Suppose, W is a *ps-ro* open *nbd*. of $f(x_{\alpha})$. Then there exists a *ps-ro* open fuzzy set U on Y such that $f(x_{\alpha}) \leq U \leq W$. Then $x_{\alpha} \leq f^{-1}(U) \leq f^{-1}(W)$. By hypothesis, $f^{-1}(U)$ is *ps-ro* open fuzzy set on X and hence the result is obtained.

 $(e) \Rightarrow (b)$ Let *V* be any *ps-ro* open fuzzy set on *Y*. If $x_{\alpha} \leq f^{-1}(V)$ then $f(x_{\alpha}) \leq V$ and so $f^{-1}(V)$ is a *ps-ro nbd*. of x_{α} .

 $(d) \Rightarrow (f) \ ps-cl(f(A))$ being a *ps-ro* closed fuzzy set on *Y*, $f^{-1}(ps-cl(f(A)))$ is *ps-ro* closed fuzzy set on *X*. Again, $f(A) \leq ps-cl(f(A))$. So, $A \leq f^{-1}(ps-cl(f(A)))$. As *ps-cl*(*A*) is the smallest *ps-ro* closed fuzzy set on *X* containing *A*, *ps-cl*(*A*) $\leq f^{-1}(ps-cl(f(A)))$. Hence, $f(ps-cl(A)) \leq ff^{-1}(ps-cl(f(A))) \leq ps-cl(f(A))$.

 $(f) \Rightarrow (d)$ For any *ps-ro* closed fuzzy set *B* on *Y*, $f(ps-cl(f^{-1}(B))) \leq ps-cl(f(f^{-1}(B))) \leq ps-cl(B) = B$. Hence, $ps-cl(f^{-1}(B)) \leq f^{-1}(B) \leq ps-cl(f^{-1}(B))$. Thus, $f^{-1}(B)$ is *ps-ro* closed fuzzy set on *X*.

 $(f) \Rightarrow (g)$ For any fuzzy set B on Y, $f(ps-cl(f^{-1}(B))) \leq ps-cl(f(f^{-1}(B))) \leq ps-cl(B)$. Hence, $ps-cl(f^{-1}(B)) \leq f^{-1}(ps-cl(B))$.

 $(g) \Rightarrow (f)$ Let B = f(A) for some fuzzy set A on X. Then $ps-cl(f^{-1}(B)) \leq f^{-1}(ps-cl(B)) \Rightarrow ps-cl(A) \leq ps-cl(f^{-1}(B)) \leq f^{-1}(ps-cl(f(A)))$. So, $f(ps-cl(A)) \leq ps-cl(f(A))$.

 $(b) \Rightarrow (h)$ For any fuzzy set B on Y, $f^{-1}(ps\text{-}int(B))$ is ps-ro open fuzzy set on X. Also, $f^{-1}(ps\text{-}int(B)) \leq f^{-1}(B)$. So, $f^{-1}(ps\text{-}int(B)) \leq ps\text{-}int(f^{-1}(B))$.

 $(h) \Rightarrow (b)$ Let *B* be any *ps-ro* open fuzzy set on *Y*. So, *ps-int*(*B*) = *B*. Now, $f^{-1}(ps-int(B)) \leq ps-int(f^{-1}(B)) \Rightarrow f^{-1}(B) \leq ps-int(f^{-1}(B)) \leq f^{-1}(B)$. Hence, $f^{-1}(B)$ is *ps-ro* open fuzzy set on *X*.

Theorem 3.3. Let (X, τ) and (Y, σ) be two *fts*. A function $f : X \to Y$ is *f* is *ps-ro* fuzzy continuous iff for every fuzzy point x_{α} on *X* and every *ps-ro* open fuzzy set *V* on *Y* with $f(x_{\alpha})qV$ there exists a *ps-ro* open fuzzy set *U* on *X* with $x_{\alpha}qU$ and $f(U) \leq V$.

Proof. Let f be *ps-ro* fuzzy continuous and x_{α} a fuzzy point on X, V a *ps-ro* open fuzzy set V on Y with $f(x_{\alpha})qV$. So, $V(f(x)) + \alpha > 1 \Rightarrow f^{-1}(V)(x) + \alpha > 1$. So, $x_{\alpha}q(f^{-1}(V))$. Now, $ff^{-1}(V) \leq V$ is always true. Choosing $U = f^{-1}(V)$ we have, $f(U) \leq V$ with $x_{\alpha}qU$.

Conversely, let the condition hold. Let V be any *ps-ro* open fuzzy set on Y. To prove $f^{-1}(V)$ is *ps-ro* open fuzzy set on X, we shall prove $1 - f^{-1}(V)$ is *ps-ro* closed fuzzy set on X. Let x_{α} be any fuzzy point on X such that $x_{\alpha} > 1_X - f^{-1}(V)$. So, $(1 - f^{-1}(V))(x) < \alpha \Rightarrow V(f(x)) + \alpha > 1$. So,

 $f(x_{\alpha})qV$. By given condition, there exists a *ps-ro* open fuzzy set on *U* such that $x_{\alpha}qU$ and $f(U) \leq V$. Now, $U(t) + (1 - f^{-1}(V))(t) \leq V(f(t)) + 1 - V(f(t)) = 1, \forall t$. Hence, $U \mid q(1 - f^{-1}(V))$. Consequently, x_{α} is not a fuzzy *ps*-cluster point of $1 - f^{-1}(V)$. This proves $1 - f^{-1}(V)$ is a *ps-ro* closed fuzzy set on *X*

Theorem 3.4. Let X, Y, Z be fts. For any functions $f_1 : Z \to X$ and $f_2 : Z \to Y$, a function $f : Z \to X \times Y$ is defined as $f(x) = (f_1(x), f_2(x))$ for $x \in Z$, where $X \times Y$ is endowded with the product fuzzy topology. If f is *ps-ro* fuzzy continuous then f_1 and f_2 are both *ps-ro* fuzzy continuous.

Proof. Let U_1 be a *ps-ro q-nbd*. of $f_1(x_\alpha)$ on X, for any fuzzy point x_α on Z. Then $U_1 \times 1_Y$ is a *ps-ro q-nbd*. of $f(x_\alpha) = (f_1(x_\alpha), f_2(x_\alpha))$ on $X \times Y$. By *ps-ro* continuity of f, there exists *ps-ro q-nbd*. V of x_α on Z such that $f(V) \leq U_1 \times 1_Y$. Then $f(V)(t) \leq (U_1 \times 1_Y)(t) = U_1(t) \wedge 1_Y(t) = U_1(t), \forall t \in Z$. So, $f_1(V) \leq U_1$. Hence, f_1 is *ps-ro* fuzzy continuous. Similarly, it can be shown that f_2 is also *ps-ro* fuzzy continuous.

Theorem 3.5. Let $f : X \to Y$ be a function from a *fts X* to another *fts Y* and $g : X \to X \times Y$ be the graph of the function f. Then f is *ps-ro* fuzzy continuous if g is so.

Proof. Let g be ps-ro fuzzy continuous and B be ps-ro open fuzzy set on Y. By Lemma 2.4 of (Azad, 1981), $f^{-1}(B) = 1_X \wedge f^{-1}(B) = g^{-1}(1_X \times B)$. Now, as $1_X \times B$ is ps-ro open fuzzy set on $X \times Y$, $f^{-1}(B)$ becomes ps-ro open fuzzy set on X. Hence, f is ps-ro fuzzy continuous.

References

- Azad, K.K (1981). On fuzzy semicontinuity, fuzzy almost continuity and fuzzy weakly continuity. *Journal of Mathematical Analysis and Applications* **82**(1), 14 32.
- Bhattacharyya, A. and M.N. Mukherjee (2000). On fuzzy δ -almost continuous and δ^* -almost continuous functions. J. *Tri. Math. Soc.* (2), 45–57.
- Chang, C.L (1968). Fuzzy topological spaces. Journal of Mathematical Analysis and Applications 24(1), 182 190.
- Kohli, J.K. and A.R. Prasannan (2001). Starplus-compactness and starplus-compact open fuzzy topologies on function spaces. *Journal of Mathematical Analysis and Applications* **254**(1), 87 100.
- Lowen, R (1976). Fuzzy topological spaces and fuzzy compactness. *Journal of Mathematical Analysis and Applications* **56**(3), 621 – 633.
- Pao-Ming, Pu and Liu Ying-Ming (1980). Fuzzy topology. I. Neighborhood structure of a fuzzy point and Moore-Smith convergence. *Journal of Mathematical Analysis and Applications* 76(2), 571 – 599.
- Ray, A. Deb and P. Chettri (2010). On pseudo δ-open fuzzy sets and pseudo fuzzy δ-continuous functions. International Journal of Contemporary Mathematical Sciences 5(29), 1403–1411.
- Ray, A. Deb and P. Chettri (2011). Fuzzy pseudo nearly compact spaces and *ps-ro* continuous functions. *The Journal* of Fuzzy Mathematics **19**(3), 737–746.