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Abstract

Thompson Sampling is one of the old-
est heuristics for multi-armed bandit prob-
lems. It is a randomized algorithm based
on Bayesian ideas, and has recently gener-
ated significant interest after several stud-
ies demonstrated it to have comparable or
better empirical performance compared to
the state of the art methods. In this pa-
per, we provide a novel regret analysis for
Thompson Sampling that proves the first
near-optimal problem-independent bound of
O(VNTInT) on the expected regret of this
algorithm. Our novel martingale-based anal-
ysis techniques are conceptually simple, and
easily extend to distributions other than
the Beta distribution. For the version of
Thompson Sampling that uses Gaussian pri-
ors, we prove a problem-independent bound
of O(WNT In N) on the expected regret, and
demonstrate the optimality of this bound by
providing a matching lower bound. This
lower bound of Q(vVNTInN) is the first
lower bound on the performance of a natural
version of Thompson Sampling that is away
from the general lower bound of O(VNT)
for the multi-armed bandit problem. Our
near-optimal problem-independent bounds
for Thompson Sampling solve a COLT 2012
open problem of Chapelle and Li. Addi-
tionally, our techniques simultaneously pro-
vide the optimal problem-dependent bound
of (14+¢€), d(ijﬂl) +O(%) on the expected
regret. The optimal problem-dependent re-
gret bound for this problem was first proven
recently by Kaufmann et al. [2012b].
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1 Introduction

Multi-armed bandit problem models the explo-
ration/exploitation trade-off inherent in sequential
decision problems. Many versions and generaliza-
tions of the multi-armed bandit problem have been
studied in the literature; in this paper we will
consider a basic and well-studied version of this
problem: the stochastic multi-armed bandit prob-
lem. Among many algorithms available for the
stochastic bandit problem, some popular ones in-
clude Upper Confidence Bound (UCB) family of al-
gorithms, (e.g., Lai and Robbins [1985], Auer et al.
[2002], and more recently Audibert and Bubeck
[2009], Garivier and Cappé [2011], Maillard et al.
[2011], Kaufmann et al. [2012a]), which have good
theoretical guarantees, and the algorithm by Gittins
[1989], which gives optimal strategy under Bayesian
setting with known priors and geometric time-
discounted rewards. In one of the earliest works
on stochastic bandit problems, Thompson [1933] pro-
posed a natural randomized Bayesian algorithm to
minimize regret. The basic idea is to assume a sim-
ple prior distribution on the parameters of the reward
distribution of every arm, and at any time step, play
an arm according to its posterior probability of being
the best arm. This algorithm is known as Thompson
Sampling (TS), and it is a member of the family of
randomized probability matching algorithms. TS is a
very natural algorithm and the same idea has been re-
discovered many times independently in the context
of reinforcement learning, e.g., in Wyatt [1997], Strens
[2000], Ortega and Braun [2010].

Recently, TS has attracted considerable atten-
tion.  Several studies (e.g., Granmo [2010], Scott
[2010], Graepel et al. [2010], Chapelle and Li [2011],
May and Leslie [2011], Kaufmann et al. [2012b]) have
empirically demonstrated the efficacy of TS. Despite
being easy to implement, competitive to the state
of the art methods, and being used in practice, TS
lacked a strong theoretical analysis, until very re-
cently. Granmo [2010], May et al. [2011] provide weak
guarantees, namely, a bound of o(T) on expected
regret in time 7. Significant progress was made
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in more recent work of Agrawal and Goyal [2012a]
and Kaufmann et al. [2012b]. In Agrawal and Goyal
[2012a], the first logarithmic bound on expected regret
of TS was proven. Kaufmann et al. [2012b] provided
a bound that matches the asymptotic lower bound
of Lai and Robbins [1985] for this problem. However,
both these bounds were problem dependent, i.e. the
regret bounds are logarithmic in the time horizon T
when the problem parameters, namely the mean re-
wards for each arm, and their differences, are assumed
to be constants. The problem-independent bounds im-
plied by these existing works were far from optimal.
Obtaining a problem-independent bound that is close
to the lower bound of Q(v/NT) was also posed as an
open problem by Chapelle and Li [2012].

In this paper, we give a regret analysis for TS that
provides both optimal problem-dependent and near-
optimal problem-independent regret bounds. Our
novel martingale-based analysis technique is concep-
tually simple (arguably simpler than the previous
work). Our technique easily extends to the distri-
butions other than Beta distribution, and it also ex-
tends to the more general contextual bandits setting
[Agrawal and Goyal, 2012b]. While one of the basic
ideas for the analysis in the contextual bandits setting
of Agrawal and Goyal [2012b] is similar to an idea in
this paper, the details are substantially different.

Before stating our results, we describe the MAB prob-
lem and TS formally.

1.1 The multi-armed bandit problem

We consider the stochastic multi-armed bandit (MAB)
problem: We are given a slot machine with NV arms; at
each time step t = 1,2, 3,..., one of the N arms must
be chosen to be played. Each arm ¢, when played,
yields a random real-valued reward according to some
fixed (unknown) distribution associated with arm 4
with support in [0,1]. The random reward obtained
from playing an arm repeatedly are i.i.d. and inde-
pendent of the plays of the other arms. The reward is
observed immediately after playing the arm.

An algorithm for the MAB problem must decide which
arm to play at each time step ¢, based on the outcomes
of the previous ¢ — 1 plays. Let p; denote the (un-
known) expected reward for arm i. A popular goal is
to maximize the expected total reward in time 7', i.e.,
E[Zthl tict)], where i(t) is the arm played in step ¢,
and the expectation is over the random choices of i(t)
made by the algorithm. It is more convenient to work
with the equivalent measure of expected total regret:
the amount we lose because of not playing optimal arm
in each step. To formally define regret, let us introduce
some notation. Let p* := max; p;, and A; := p* — p;.
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Also, let k;(t) denote the number of times arm i has
been played up to step t — 1. Then the expected total
regret in time 7" is given by

E[R(T) =E [23:1@* - Mz’(t))} =3 A E[k(T+1)].

Other performance measures include PAC-style guar-
antees; we do not consider those measures here.

1.2 Thompson Sampling

The basic idea is to assume a simple prior distribu-
tion on the underlying parameters of the reward dis-
tribution of every arm, and at every time step, play
an arm according to its posterior probability of be-
ing the best arm. While Thompson Sampling is a
specific algorithm due to Thompson, in this paper
we will use Thompson Sampling (TS) to refer to a
class of algorithms that have a similar structure. The
general structure of TS involves the following ele-
ments (this description of TS follows closely that of
Chapelle and Li [2011]):

1. a set ¢ of parameters [i;

2. an assumed prior distribution P(f) on these pa-
rameters;
past observations D consisting of (reward r) for
the arms played in the past time steps;

3.

. an assumed likelihood function P(r|iZ), which
gives the probability of reward given a context
b and a parameter ji;

a posterior distribution P(|D) o« P(D|i)P(i),
where P(D|j1) is the likelihood function.

The notation P(-) in above denotes probability den-
sity. T'S maintains a posterior distribution for the un-
derlying parameter u;, i.e. the expected reward, of ev-
ery arm 4. In each round, T'S plays an arm according to
its posterior probability of being the best arm, that is,
the posterior probability of having the highest value of
;. A simple way to achieve that is to produce a sam-
ple from the posterior distribution of every arm, and
play the arm that produces the largest sample. Be-
low we describe two versions of TS, using Beta priors
and Bernoulli likelihood function, and using Gaussian
priors and Gaussian likelihood respectively.

We emphasize that the Beta priors and Bernoulli likeli-
hood model, or Gaussian priors and the Gaussian like-
lihood model for rewards are only used below to design
the Thompson Sampling algorithm. Our analysis of
these algorithms allows these models to be completely
unrelated to the actual reward distribution. The as-
sumptions on the actual reward distribution are only
those mentioned in Section 1.1, i.e., the rewards are in
the range [0, 1]. In description of Thompson Sampling
using Beta priors and Bernoulli likelihood, we do start
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with the description of the algorithm for Bernoulli ban-
dit problem, i.e., when the rewards are either 0 or 1,
but as we explain later, the algorithm and its anal-
ysis extend to any distribution of rewards with [0, 1]
support.

Thompson Sampling using Beta priors Con-
sider the Bernoulli bandit problem, i.e., when the re-
wards are either 0 or 1, and the likelihood of reward
1 for arm ¢ (the probability of success) is p;. Using
Beta priors is useful for Bernoulli rewards because if
the prior is a Beta(a, 3) distribution, then after ob-
serving a Bernoulli trial, the posterior distribution is
simply Beta(a+ 1, 3) or Beta(«, 8+ 1), depending on
whether the trial resulted in a success or failure, re-
spectively.

TS initially assumes arm ¢ to have prior Beta(1,1) on
i, which is natural because Beta(1,1) is the uniform
distribution on (0, 1). At time ¢, having observed S;(t)
successes (reward = 1) and F;(t) failures (reward = 0)
in k;(t) = S;(t) + Fi(t) plays of arm i, the algorithm
updates the distribution on pu; as Beta(S;(¢)+1, F;(t)+
1). The algorithm then generates independent samples
from these posterior distributions of the u;’s, and and
plays the arm with the largest sample value.

Algorithm 1: Thompson Sampling using Beta priorg
IFor each armi=1,...,N set S; =0, F; = 0.
foreach t = 1,2,..., do
For each arm ¢ = 1,..., N, sample 6;(t) from the
Beta(S; + 1, F; 4+ 1) distribution.
Play arm i(t) := argmax; 0,;(¢) and observe
reward 7.
If ry = 1, then S;) = Si) + 1, else
Fyy = Fyy + 1.
end

We have provided the details of TS with Beta pri-
ors for the Bernoulli bandit problem. A simple exten-
sion of this algorithm to general reward distributions
with support [0, 1] is described in Agrawal and Goyal
[2012a]. This extension, on observing a reward r; €
[0,1], tosses a coin with probability 7, and uses
the {0,1} outcome to update the beta distribution
in the same way as in the above algorithm. It is
easy to show that any expected regret bounds pro-
duced for Algorithm 1 will also hold for this extension
[Agrawal and Goyal, 2012a).

Thompson Sampling using Gaussian priors As
before, let k;(t) denote the number of plays of arm i
until time ¢ — 1, i(¢) denote the arm played at time

t. Let r;(t) denote the reward of arm ¢ at time ¢,
t—1

e "™ Note that

and define fi;(t) as: fi;(t)

101

f;(1) = 0. To derive TS with Gaussian priors, assume
that the likelihood of reward r;(t) at time ¢, given pa-
rameter f;, is given by the pdf of Gaussian distribution
N (i, 1). Then, assuming that the prior for p at time
t is given by N(j;(t), ﬁ), and arm ¢ is played at
time ¢t with reward r, it is easy to compute the poste-
rior distribution Pr(f;|ri(t)) o< Pr(r;(t)|f:) Pr(i;) as
Gaussian distribution A (fi; (¢ + 1), m) In TS
with Gaussian priors, for each arm i, we will gener-
ate an independent sample 6;(¢) from the distribution
N(fi(t), —-=) at time ¢. The arm with maximum

value of 6;(t) will be played.

Algorithm 2: Thompson Sampling using Gaussian
priors

IFor each arm ¢ =1,..., N set k; =0, ji; = 0.
foreach t = 1,2,..., do

For each arm ¢ = 1,..., N, sample 6;(t)
independently from the A (fi;, ﬁ) distribution.
Play arm i(t) := argmax; 0;(¢) and observe

reward 7.
N g oy Koo+
Set ,uz(t) g 7(# (;C)i(t)(iz Tt), ki(t) = kz(t) + 1.
end

1.3 Our results

In this article, we bound the finite time expected regret
of TS. From now on we will assume that the first arm is
the unique optimal arm, i.e., pu* = py > argmax;x1 ;.
Assuming that the first arm is an optimal arm is a
matter of convenience for stating the results and for
the analysis and of course the algorithm does not use
this assumption. The assumption of unique optimal
arm is also without loss of generality, since adding
more arms with p; = p* can only decrease the ex-
pected regret; details of this argument were provided
in Agrawal and Goyal [2012a].

Theorem 1. For the N-armed stochastic bandit prob-

lem, TS using Beta priors has expected regret

N

ER(T)] < (146

=2

InT

N
A; +0O(—=
d(pi, p1) (62)

in time T, where d(pi,p1) = piloght + (1 —
;) log 8:53 The big-Oh  notation

iy Nj,i=1,..., N to be constants.

assumes

Theorem 2. For the N-armed stochastic bandit prob-
lem, TS using Beta priors, has expected regret

E[R(T)] < O(VNTInT)

in time T, where the big-Oh notation hides only the
absolute constants.
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Theorem 3. For the N-armed stochastic bandit prob-
lem, TS using Gaussian priors, has expected regret

E[R(T)] < O(VNTInN)

in time T > N, where the big-Oh notation hides only
the absolute constants.

Theorem 4. There exists an instance of N-armed
stochastic bandit problem, for which TS, using Gaus-
stan priors, has expected regret

E[R(T)] > Q(VNTIn N)

m timeT > N.

1.4 Related work

Let us contrast our bounds with the previous work.
Let us first consider the problem-dependent regret
bounds, i.e., regret bounds that depend on problem
parameters u;,A;;i = 1,...,N. Lai and Robbins
[1985] essentially proved an asymptotic lower bound of

[ZZ\LQ W + 0(1)} InT for any algorithm for this

problem. They also gave algorithms asymptotically
achieving this guarantee. Auer et al. [2002] gave the
UCBI1 algorithm, which achieves a finite time regret
bound of [8 2N, & | m7 + (1 + 72/3) (£, A)).
More recently, Kaufmann et al. [2012a] gave Bayes-
UCB algorithm, and Garivier and Cappé [2011] and
Maillard et al. [2011] gave UCB-like algorithms, which
achieve the lower bound of Lai and Robbins [1985].
Our regret bound in Theorem 1 achieve the lower
bounds of Lai and Robbins [1985], and match the up-
per bounds provided by Kaufmann et al. [2012b] for
TS.

Theorem 2 and 3 show that TS with Beta and Gaus-
sian distributions achieve a problem independent re-
gret bound of O(VNTInT) and O(VNTInN) re-
spectively.  This is the first analyis for TS that
matches the Q(v/NT) problem-independent lower
bound (see Section 3.3 of Bubeck and Cesa-Bianchi
[2012]) for the multi-armed bandit problem within
logarithmic factors. The problem-dependent bounds
in the existing work on TS implied only subop-
timal problem-independent bounds: The results of
Agrawal and Goyal [2012a] implied a problem inde-
pendent bound of O(N/5T%/5). In Kaufmann et al.
[2012b], the additive problem dependent term was not
explicitly calculated, which makes it difficult to derive
the implied problem independent bound, but on a pre-
liminary examination, it appears that it would involve
an even higher power of T

To compare with other existing algorithms for
this problem, note that the best known problem-
independent bound for the expected regret of UCB1 is
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O(VNTInT) (see Bubeck and Cesa-Bianchi [2012]).
Our regret bound of O(v NT'In N) for TS with Gaus-
sian priors is an improvement over the bound for
UCB1 when T is larger than N. More recently,
Audibert and Bubeck [2009] gave an algorithm MOSS,
inspired by UCBI, with regret O(v/NT') that matches
the Q(v NT) problem-inpdependent lower bound for
the multi-armed bandit problem. However, their algo-
rithm needs to know the time horizon T'. It is unclear
whether an O(V NT) regret can be achieved by an
algorithm that does not know the time horizon. Inter-
estingly, Theorem 4 shows that this is unachievable for
TS with Gaussian priors, as there is a lower bound of
Q(VNTInN) on its expected regret. This is the first
lower bound for TS that differs from the general lower
bound for the problem.

2 Proofs of upper bounds

In this section, we prove Theorems 1, 2 and 3. The
proofs of the three theorems follow similar steps, and
diverge only towards the end of the analysis.

Proof Outline: Our proof uses a martingale based
analysis. Essentially, we prove that conditioned on
any history of execution in the preceding steps, the
probability of playing any suboptimal arm i at the
current step can be bounded by a linear function of
the probability of playing the optimal arm at the
current step. This is proven in Lemma 1, which
forms the core of our analysis. Further, we show
that the coefficient in this linear function decreases
exponentially fast with the increase in the number
of plays of the optimal arm (Lemma 2). This allows
us to bound the total number of plays of every
suboptimal arm, to bound the regret as desired. The
differences between the analysis for obtaining the
logarithmic problem-dependent bound of Theorem 1,
and the problem-independent bound of Theorem 2
and Theorem 3 are technical, and occur only towards
the end of the proof.

We recall some of the definitions introduced ear-
lier, and introduce some new notations.

Definition 1 (F2,, fP, Fri*). FP () denotes the
cdf and ffp(-) denotes the probability mass function
of the binomial distribution with parameters n,p. Let
Fgeé“() denote the cdf of the beta distribution with pa-
rameters o, 3.

Definition 2 (Quantities k;(t),i(t), S;(t), f1;(t)). Let
i(t) denote the arm played at time t. k;(t) denotes the
number of plays of arm i until time t — 1. S;(t) is the
number of successes among the plays of arm i until
time t—1 for the Bernoulli bandit case. And, empirical
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E:;ll:i(r):i ri(7)
(ki(t)+1)
ri(t) is the reward for arm i at time t.
fi(t) =0 when k;i(t) =0).
Definition 3 (Quantities z;,y;). For each arm i,
we will choose two thresholds x; and y; such that
i < x; <y < pr. The specific choice of these thresh-
olds will depend on whether we are proving problem-
dependent bound or problem-independent bound, and
will be described at the approporiate points in the proof.
Definition 4 (Events E!(t) and E!(t)). Define
E!(t) as the event that ji;(t) < x;. Define EY(t) as
the event that 6;(t) < y;.
Intuitively, E'(t), EY(t) are the events that fi;(t) and
0:(t), respectively, are not too far from the mean ;.
As we show later, these events will hold with high prob-
ability.
Definition 5 (Filtration F;_1). Define filtration
Fi—1 as the history of plays until time t — 1, i.e.

Fio1 = {i(w), 1},

where i(t) denotes the arm played at time t, and r;(t)
denotes the reward observed for arm i at time t.

By definition, F1 C Fo--- C Fr_1. Also by definition,
for every arm i, the quantities S;(t), k;(t), fu;(t), the
distribution of 0;(t), and whether E!(t) is true or not,
are determined by the history of plays until time t — 1
and therefore are included in Fy_1.

, where
(note that

mean fi;(t) is defined as fi;(t) =

Tiwy(w),w =1,...,t —

Definition 6. Define, p;+ as the probability
Pit = PY(91 (t) > yi|]:t—1)'
Note that p;; is determined by F_q.

We prove the following lemma for Thompson Sam-
pling, irrespective of the type of priors (e.g., Beta or
Gaussian) used.

Lemma 1. For allt € [1,T], and i # 1,

Pr(i(t) = i, BL(0), L (1) | Fiia)
< UoP) pr (i) =1, B0, B (0) | i)
= Dit v o o

where p; , = Pr(01(t) > yi| Fi—1).

Proof. Note that whether E!(t) is true or not is in-
cluded in F;_y (refer to Defintion 5). Assume that
filtration F;_; is such that E!(f) is true (otherwise
the probability on the left hand side is 0 and the in-
equality is trivially true). It then suffices to prove that

Pr( *1|E

(1 — Di t) .
— < Pr(s
Dit ( (

), Fe—1)

< t)=1|E{®), Fir). (1)
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We will use the observation that since E?(t) is the
event that 0;(t) < y;, therefore, given E?(t), i(t) = i
only if 6,(t) < y,,Vj. Therefore, for any ¢ # 1,
)7]:t—l)

t) < ylvv‘] | Eie(t)a‘/—:tfl)

Pr 91 t) < Yi | ]:tfl)

Pr(0;(t) <wi,Vj # 1| E) (), Fio1)
(1= pie) - Pr(6;(t) < wi Vi # 1] B/ (¢

Pr(i(t)=i| E{(t
Pr(ﬂj(
(61(

)7]:1571) .

The first equality holds because because given F;_;
(and hence S;(t), k;(t), f1;(t) and the distributions of
0;(t)F for all j), 61(¢) is independent of all the other
0;(t) and events EY(t),j # 1. Similarly,

Pr(i(t) = 1| E{(t), Fi-1)

Pr(01(t) > yi > 0;(1),¥j # 1| E{(t
Pl“(el(t) >y1|]:t 1)

Pr(0;(t) <y, Vj # 1| EY(t)
pi - Pr (93( ) <wy;,Vj#£1 | Ef

v

), Fe—1)

Fio1)
(t), Fi-1) .

Combining the above two equations, we get Equation
(1). O

2.1 Proof of Theorem 1

We can bound the expected number of plays of a sub-
optimal arm ¢ as follows:

Elk(T)] =

i, B (), B (1)
Pr(i(t) = z‘,Ef(t),Ef’(t))

Pr(i) =i B®) ()

Let 7 denote the time step at which arm 1 is played
for the k' time for k > 1, and let 79 = 0. Note that
for any i, for k > k;(T), 7x > T. Also, 77 > T. Then,
using Lemma 1, we can bound the first term above as:

Y1y Pr(i(t) = i B (1), B (1)
S B [Pr(i() = i B, B
Sl B[ P i) = 1 Bl
| Fi-1)]
%I(i(f) =1,E{(t), B} (1))
— | Fi1]]
(1*Pi,t)]('( ) =1 Ee(t),Ef(t))}

16(t) = 1)]

)]

| Fi
) EY (t)

IN

T
2 B

E|

i E
k= OE[

e

Tk+1
t=1r+1

(1—p;, "'k+1)
Pi,rp+1 Z

T-1

T -1].

(3)

Pi,rp+1



Further Optimal Regret Bounds for Thompson Sampling

The second equality uses that p; ; is fixed given F;_;.
The last inequality uses the observation that p;; =
Pr(61(t) > yi|Fi—1) changes only when the distribu-
tion of 01(t) changes, that is, only on the time step
after each play of first arm. Thus, p;, is same at all
time steps t € {7 +1,...,Tk11}, for every k. We prove
the following lemma to bound the sum of

Pi, Tk+1

Lemma 2. Let 1, denote the time step at which k"
trial of first arm happens, then !

1
E|[ | <
Pi,r+1
1"’%;’ Jor k < 7,
12

1—|—@(87Ai k/2 4 mefDik
+ama ) Jork = 27,
e~ -1 !

where A} = 1y —y;, Dy = y;In % + (1 —yi)ln 11:51 .

Proof. The proof of this inequality uses careful numer-
ical estimates; see Appendix B.3. 1

For the remaining two terms in Equation (2), we prove
the following lemmas.

Lemma 3.

SEAPr(ilt) =0 BF0) < gl + L

Proof. This follows from the Chernoff-Hoeffding
bounds for concentration of [i;(t); see Appendix
B.1. ]
Lemma 4.
S Pr(ift) =i, EP(, B ) < LuT)+1,
. . InT
where L;(T) = oo

Proof. This follows from the observation that 6;(t) is
well-concentrated around its mean when k;(t) is large,
that is, larger than L;(T"); see Appendix B.2. |

For obtaining the problem-dependent bound of Theo-
rem 1, for any 0 < e < 1, we set a; € (u;, 1) such that
d(wi; pa) = d(pi, pa)/(14¢€), and set y; € (2, p11) such
that d(z;, ;) = d(ws,pn1)/(1+€) = d(pi, p1)/ (1 + €)?
(?). This gives

YFor any two functions f(n),g(n), f(n) = ©(g(n)) if
there exist constants b, ¢ and ng such that for all n > ng,
bg(n) < f(n) < cg(n).

This way of choosing thresholds, in order to ob-
tain bounds in terms of KL-divergences d(u;, 1) rather
than Ays, is inspired by Garivier and Cappé [2011],
Maillard et al. [2011], Kaufmann et al. [2012a].
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InT
d(pip)”

InT
d(xi,y:)

Li(T) = =(1+¢)?

Also, by some simple algebraic manipulations of the
equality d(x;, pu1) = d(pi, 1)/ (1 + €), we can obtain

giving d(wiui) < 2(%;”)2 = O(%). Here big-Oh is

hiding functions of u;s and A;s. Substituting in Equa-
tion (2), and Equation (3), we get,

E[k:(T)]
+35

> — d(pis )
! ' = (I+e¢) ln(#l(lﬁui)

pi(l1—p1)

IN

—A2j/2 1 —Dij
A/Z (e i 47/ _|_ WQ 147_’_

1
1 1 1
(A— + ok t Er )
L+ e g +0()
O1) + (1 +€) gy + O( ).

IN

The order notation above hides dependence on ;s and
A;s. This gives expected regret bound

E[R(T)] = > AE[k:(T)]
< Zi(1+€)2d(;12£1)Ai+O(eﬂ2)
< Ei(l"‘fl)d(iil)Ai"‘O(%)v

where ¢ = 3¢, and the order notation in above hides
;s and A;s in addition to the absolute constants.

2.2 Proof of Theorem 2

The proof of O(VNTInT) problem-independent
bound of Theorem 2 is basically the same as the
proof of Theorem 1, except for the choice of x; and
y;. Here, we pick z; = pu; + %,yi = [ — A3i, SO
that A2 = (u1 —v:)? = A;, and using Pinsker’s in-
equality, d(zs, i) > 2(x; — pi)® = ﬁfv d(xi,yi) >

242 n X
2(y; — ;) > =5+, Then, Li(T) = d(lri?;i) QQIA?T’
<

Then, as in previous subsection,

1 9
d(xi,ps) 2A%°
substituting in Equation (2), and Equation (3), we get,

E[ki(T)]
Hryige (e
+ Li(T) + 1+ gty

1
-1 7;)+1

A’,2j/4

and

IN

/2 . .
A2 L o=Dijy
(G+1)A7

A,QJ/Q

IN

+ (]+1)A’2 + A/Q )

t

A?

+0(

N———
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Therefore, for every arm i with A; > W/W’ ex-

(/5.

, total expected regret is

pected regret is bounded by A;E[k; (T)]

For arms with A; < /& ?T

bounded by v NT'InT. This gives a total regret bound
of O(WNTInT). |

2.3 Proof of Theorem 3

The regret analysis of TS with Gaussian priors follows
essentially the same steps as in the analysis of the ver-
sion with Beta priors. Here, we choose x; = u; + %,
yi = — 5 Li(T) = 2(71;(,7})22) = 181niTgA?)
1 is independent of the type of priors 111sed, and the
proof of Lemma 3 can be easily adapted to Gaussian
priors. So, both these lemmas hold as it is for this
case. Corresponding to Lemma 4, and Lemma 2, we
prove the following for the Gaussian distribution case.

. Lemma

Lemma 5.
S P (i) = i, BV, B (1) < LiT)+ 4.
where L;(T) = %EA?).

Proof. The proof of this lemma follows from the con-
centration of the Gaussian distribution (Fact 4); see
Appendix C.1. 1

Lemma 6. Let 7; denote the time of the j'" play of
the first arm. Then

1 el +4 < Li(T)
E ~1| < = ,
[Pi,rjﬂ } - { TlA? Jj > Li(T)
where L;(T) = %EA?).

Proof. See Appendix C.2. (I

Now, substituting in Equation (2), and using Equation

(3),

E[k;(T)]

< YIg {pl - 1} + Li(T) + 2,
a1

< (M AB) 4+ BERD L Ly e,

This gives a bound on expected regret due to arm ¢
2

as AE[R(T)] < (ett +5) + 2% + %?Ai). Above

is decreasing in A; for A; > \/LT Therefore, for every

arm ¢ with A; > e4/ w, expected regret is bounded
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by

(e'' +5) +18In(NIn N)y/ 5iew + 39/ v

Tiln N
< (e +5) + 75/ LR

For arms with A; < ey/ NIT“N, total regret is bounded

by e/ NT In N. This bounds the total regret by O(N +
VNTInN), or O(WNTInN) assuming T > N.

3 Proof of the lower lound

In this section, we prove Theorem 4. We con-
struct a problem instance such that TS has regret of
Q(VNTInN) in time T'. Let each arm ¢ when played
produces a reward of u;. That, is the reward distri-
bution for every arm is a one point distribution. Set

Nln N
T

i =A= yand pg =--- = pun = 0.

Note that f1;(t),7 # 1, will always be 0, as f1;(1) = 0,
and these arms will always produce reward 0 when
played. For arm 1, ji1(t) = %
an arm other than arm 1 is played, there is a regret
of A. Let F;_1 represent the history of plays and out-
comes until time ¢ as defined earlier, which includes
ki(t), pi(t),e = 1,...,N. Define A;_; as the event
that >, ki(t) < SV NTIN for a fixed constant ¢ (to
be specified later). Note that whether the event A;_1
is true or not is included in F;_1.

< pi1. Every time

Now, if A;_1 is not true, then the regret until time ¢ is
at least ¢/ NT In N. Therefore, for any ¢t < T we can
assume that Pr(A;_q) > Otherwise, the expected
regret until time ¢,

3-

E[R(?)]

Y

E [R(t)| ] - 4

2

1/ NTInN = Q(VNTInN).

>

We will show that given any filtration F;_; and the
event A;_1, the probability of playing a suboptimal
arm is at least a constant, so that the regret is
Q(TA) = Q(VNTInN). For this, we show that with
constant probability, 67 (¢) will be smaller than pq, and
0;(t) for some suboptimal arm ¢ will be larger than ;.

Now, given any filtration F;_; with any value of k1 (t),
01(t) is a Gaussian r.v. with mean fi; () = llji((;))ill <

11, therefore, by symmetry of Gaussian distribution,

Pr(0:1(t) <pi | Fio1, A1) >

1
5.

Also, given any Fy_1, 6;(t)s for i # 1 are inde-
pendent Gaussian distributed random variables with

. 1 . .
mean 0 and variance INOFSE therefore, using anti-
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concentration inequality provided by Fact 4 for Gaus-
sian random variables,

Pr (32 7§ 1,91(15) > U | ]:tfl,Atfl)
Pr (Eli £ 1,(0;(t) — 0)/ki(£) + 1

> AV + 1| Foog, A )
(11 (1 e 07))

Given 2, ki(t) < AN the right hand side
in the above inequality is minimized when k;(t) =

“{%W for all ¢ # 1. Then, substituting A =

Nln N
T

>

and choosing the constant ¢ appropriately,
we get

Pr(3i,0,(t) > p1 | Fie1, Ai—1)

> Pr(3i,0i(t) > | ki(t), Vi,
S kilt) < YERN)

> (1-IL (1 —e")

- 1-a- "

To summarize, for any ¢, the probability of playing a

suboptimal arm at time t,

Pr(3i #£ 1,i(t) =)

Pr(0:(t) < py,3,0;(t) > u1)

Pr(01(t) < py,34,0;(t) > p1 | Aiq)
‘Pr(A:—1)

E [Pr(61(t) < p1,30,0;(t) > pa | Fee1, At—1)]
-Pr(A4;-1)

EPr(0:(t) < p1 | Fee1, Ar—1)

- Pr(3i,0;,(t) > pa1 | Fre1, Ae—1)] - Pr(Asq)

(=)

(A\VARAY

Y

1
2

N[

= P

for some constant p € (0,1). Therefore regret in time
T is at least TpA = Q(vVNT In N).

Conclusions. In this paper, we proved a regret up-
per bound of O(VNT InT) for the version of TS with
Beta priors and an upper bound of O(v NT In N) for
the version of TS with Gaussian priors along with a
matching lower bound. The availability of strong anti-
concentration bounds for Gaussian distribution al-
lowed us to derive these tight upper and lower bounds
for the version of TS with Gaussian priors. Similar
lower bound may exist for T'S with Beta priors.

In addition to near-optimal regret bounds, an impor-
tant contribution of this paper is a simple proof tech-
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nique that is easily adapted to provide optimal or near-
optimal problem-dependent and problem independent
bounds, handle different prior distributions. (It can
also be used for contextual bandits as described in
Agrawal and Goyal [2012b] though that requires more
work and hence is treated separately.)
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