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Further PDE Methods for Weak KAM Theory

Lawrence C. Evans∗

Department of Mathematics
University of California, Berkeley

Abstract

We introduce and make estimates for several new approximations that in appropri-
ate asymptotic limits yield the key PDE for weak KAM theory, namely a Hamilton-
Jacobi type equation for a potential u and a coupled transport equation for a measure
σ.

We revisit as well a singular variational approximation introduced in [E1], and
demonstrate “approximate integrability” of certain phase space dynamics related to the
Hamiltonian flow. Other examples include a pair of strongly coupled PDE suggested
by the Lions-Lasry theory [L-L1] of mean field games and a new and extremely singular
elliptic equation suggested by sup-norm variational theory.

1 Introduction

The PDE approach to weak KAM theory (see Fathi [F4] or [E3]) focusses upon two funda-
mental equations, the Hamilton-Jacobi type equation

(1.1) H(Du, x) = H̄(P )

and the coupled transport (or continuity) equation

(1.2) div(DpH(Du, x)σ) = 0,

which is the adjoint of the linearization of (1.1). Here the Hamiltonian H = H(p, x) is
assumed to be nonnegative, uniformly convex in p and T

n-periodic in x, T
n denoting the

unit cube in R
n with opposite faces identified. We introduce the vector P ∈ R

n for reasons
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that will be apparent later. The unknowns for (1.1) are both the value of the effective

Hamiltonian H̄ at P and the potential u = P · x + v, where v is T
n-periodic in x. The

unknown in (1.2) is the measure σ.

The overall goals are (i) to ascertain the solvability of the PDE (1.1) and (1.2), and, more
importantly, (ii) to understand what these two equations imply concerning the Hamiltonian
dynamics

(1.3)

{

ẋ = DpH(p,x)

ṗ = −DxH(p,x).

This is a continuation and elaboration of my earlier papers [E1] and [E2], which intro-
duced two unusual PDE approximations into weak KAM theory. We are particularly inter-
ested in finding smooth approximations to the equations (1.1) and (1.2), for which various
formal calculations giving information about the dynamics (1.3) can be made rigorous.

In Section 2 we revisit the singular variational scheme proposed in [E1], and deduce from
the estimates found there a sort of “approximate integrability” assertion for certain trajec-
tories of (1.3). Sections 3 and 4 propose two completely new approximation schemes, one
Hamiltonian the other Lagrangian, and both involving the Donsker-Varadhan I functional
[D-V]. We show in both cases how analogs of (1.1), (1.2) arise, and derive some basic esti-
mates. Section 5 points out that the recent mean field game theoretical methods of Lions
and Lasry [L-L1] yield in the deterministic case a strongly coupled pair of equations general-
izing (1.1), (1.2). We modify some of our estimates, showing that in certain cases the strong
coupling in fact regularizes the measure σ. In Section 6 we propose a highly speculative
“second order” variant of the PDE for weak KAM theory and derive a few estimates.

Hypotheses on H. We suppose throughout that the Hamiltonian H : R
n × R

n → R,
H = H(p, x), is smooth, nonnegative, and satisfies these conditions:

(i) For each p ∈ R
n, the mapping x 7→ H(p, x) is T

n-periodic.
(ii) There exists a constant γ > 0 such that

(1.4) Hpipj
(p, x)ξiξj ≥ γ|ξ|2

for all p, x, ξ ∈ R
n.

(iii) There exists a constant C such that

|D2
pH(p, x)| ≤ C, |D2

xpH(p, x)| ≤ C(1 + |p|), |D2
xH(p, x)| ≤ C(1 + |p|2)

for all p, x ∈ R
n.
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2 Entropy regularization, approximate integrability

In this section we return to, and reinterpret, the singular variational problem introduced in
[E1] and also explain how minimizers vk = vk(P, x) of the functional

(2.1) Ik[v] :=

∫

Tn

ekH(P+Dv,x) dx

in the singular limit k → ∞ provide some information about the Hamiltonian dynamics
(1.3). This section should be regarded as an addendum to [E1].

(M. Rorro [R] has developed effective numerical methods for computing both the effective
Hamiltonian and the measure σ, using the variational approximation (2.1).)

2.1 Entropy and approximation. We can interpret our approximation (2.1) by introduc-
ing the entropy h(µ) of a Borel probability measure µ on T

n, defined as

h(µ) :=

{

∫

Tn f log f dx if dµ = fdx

+∞ otherwise.

Then for each fixed function v, we have

(2.2) sup
µ

{
∫

Tn

H(P +Dv, x) dµ−
1

k
h(µ)

}

=
1

k
log

(
∫

Tn

ekH(P+Dv,x) dx

)

=
1

k
log Ik[v],

the supremum attained at the measure

dµ =
ekH(P+Dv,x)

Z
dx,

normalized by Z :=
∫

Tn e
kH(P+Dv,x)dx.

We will in Sections 3 and 4 below introduce various alternatives to the functional (2.2).

2.2 Hamiltonian viewpoint. For the reader’s convenience, we briefly review the connec-
tion between the variational integrand (2.1) and the Hamiltonian dynamics (1.3). Setting

uk := P · x+ vk,

we note first that the Euler–Lagrange equation associated with (2.1) reads

(2.3) div(ekHDpH) = 0,

H evaluated at H = H(Duk, x). Writing

(2.4) H̄k(P ) :=
1

k
log

(
∫

Tn

ekH(Duk,x) dx

)

, σk := ek(H(Duk,x)−H̄k(P )),
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we have

div(σkDpH) = 0, σk ≥ 0,

∫

Tn

σk dx = 1.

In particular,

H̄k(P ) = inf
v

sup
µ

{
∫

Tn

H(P +Dv, x) dµ−
1

k
h(µ)

}

.

The function uk = uk(P, x) is smooth. Also, estimates derived in [E1] provide the uniform
bounds

max
Tn

|uk|, |Duk| ≤ C.

Sending k → ∞, we may assume, passing if necessary to subsequence, that uk → u =
P · x+ v uniformly on T

n and σkdx ⇀ dσ weakly as measures on T
n. I proved in [E1] that

limk→∞ H̄k(P ) = H̄(P ) and

(2.5) lim
k→∞

∫

Tn

H(Duk, x)σk dx = H̄(P ),

where H̄ = H̄(P ) is the effective Hamiltonian associated with H = H(p, x), introduced by
Lions, Papanicolaou, and Varadhan [L-P-V]. Furthermore,

H(Du, x) ≤ H̄(P ) a.e.;

u is almost everywhere differentiable on the support of σ;

(2.6) H(Du, x) = H̄ σ-a.e.;

and

(2.7) div(σDpH(Du, x)) = 0.

Equation (2.6) is a version of our basic Hamilton-Jacobi PDE (1.1), and (2.7) is the transport
PDE (1.2).

2.3 Lagrangian viewpoint. The Lagrangian L = L(v, x) associated with H is

L(v, x) := max
p

(p · v −H(p, x)).

Passing as necessary to a subsequence, we may assume for all continuous functions Φ =
Φ(p, x) that

(2.8) lim
k→∞

∫

Tn

Φ(Duk, x)σk dx =

∫

Rn

∫

Tn

Φ(p, x) dν

4



for some probability measure ν on the cotangent bundle R
n×T

n. We then use the change of
variables v = DpH(p, x), p = DvL(v, x) to push ν to a probability measure µ on the tangent
bundle, defined by the formula

(2.9)

∫

Rn

∫

Tn

Ψ(v, x) dµ =

∫

Rn

∫

Tn

Ψ(DpH(p, x), x) dν

for all continuous Ψ = Ψ(v, x).
Define

(2.10) V :=

∫

Rn

∫

Tn

v dµ.

I proved in [E1] that µ is a minimizer of Mather’s action functional

(2.11) A[µ] :=

∫

Rn

∫

Tn

L(v, x) dµ

among all probability measures on R
n × T

n, satisfying the constraint (2.10) and the flow
invariance condition

(2.12)

∫

Rn

∫

Tn

v ·Dφdµ = 0

for all smooth and T
n-periodic φ = φ(x). The minimum value is L̄(V ), where the effective

Lagrangian L̄ is the convex dual of H̄.
Later in this paper we will introduce several other quite different approximations that

also yield probability measures µ minimizing (2.11), subject to (2.10) and (2.12).

2.4 Canonical change of variables. This section is motivated by the classical observation
(see for instance [E3]) that if u = u(P, x) is a smooth solution of (1.1) and if we can solve
the expressions

(2.13)

{

p = Dxu(P, x)

X = DPu(P, x)

for X = X(p, x), P = P (p, x) as smooth functions of p, x, then

X(t) := X(p(t),x(t)), P(t) := P (p(t),x(t))

solve the dynamics

(2.14)

{

Ẋ = DH̄(P )

Ṗ = 0.
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In other words, u is a generating function for a canonical transformation from the variables
(p, x) to (P,X), with respect to which the new Hamiltonian dynamics (2.14) have the trivial
solution

X(t) = X0 + tDH̄(P), P(t) ≡ P.

It is in general impossible to carry out this process, but we may ask to what extent our
PDE/variational methods identify some sort of “approximately integrable” dynamics.

2.5 Approximate dynamics, approximate canonical change of variable. We intro-
duce the solution xk = xk(P, t) of the ODE flow on R

n

(2.15) ẋk = DpH(Dxu
k(P,xk),xk), xk(0) = x.

We also put

(2.16) pk := Dxu
k(P,xk);

so that

(2.17) ẋk = DpH(pk,xk).

Finally, define Xk = Xk(P, t) by

(2.18) Xk := DPu
k(P,xk).

We ask to what extent pk solves the second equation in (1.3) and Xk solves the first
equation in (2.14). The keys to understanding these questions are two identities from [E1].
The first is formula (3.3) from [E1]:

(2.19)

∫

Tn

(Hpipj
ukxixl

ukxjxl
+ k|DH|2)σk dx = −

∫

Tn

(2Hpixi
ukxixj

+Hxixi
)σk dx

for DH := DxH+DpHD
2
xu

k and H evaluated at (Duk, x). The second identity we will need
is equation (4.3) in [E1]:

(2.20)

D2H̄k(P ) = k

∫

Tn

(DpH(Duk, x)D2
xPu

k −DH̄k(P ))

⊗(DpH(Dukx)D2
xPu

k −DH̄k(P ))σk dx

+

∫

Tn

D2
pH(Duk, x)D2

xPu
k ⊗D2

xPu
kσk dx.
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Theorem 2.1 (i) For each R > 0, there exists a constant CR such that

(2.21)

∫

Tn

|ṗk +DxH(pk,xk)|2σkdx ≤
CR

k

for all t ∈ R and |P | ≤ R.

(ii) There exists a constant C such that

(2.22)

∫

B(0,R)

∫

Tn

|Ẋk −DH̄k(P )|2σk dxdP ≤
CR

k

for all t ∈ R and R > 0. Therefore

(2.23)

∫

B(0,R)

∫

Tn

max
|t|≤T

|Xk −Xk
0 − tDH̄k(P )|2σk dxdP ≤

CRT

k

for Xk
0 = Xk(0) and for each time T > 0.

Interpretations. (i) According to (2.17), the functions xk exactly solve the first of
Hamilton’s equations (1.3). We understand (2.21) as providing a quantitative estimate show-
ing that the functions pk are approximate solutions of the second of Hamilton’s equations,
at least for initial data where σk has positive mass in the limit k → ∞.

(ii) Obviously P ≡ P exactly solves the second of Hamilton’s equations (2.14), trans-
formed into the new variables (X,P ). We interpret (2.22) as asserting that the functions Xk

are approximate solutions of the first of the equations (2.14), corresponding to initial data
where σk has positive mass in the limit k → ∞. In this weak sense, the smooth function
uk acts like an approximate generating function, selecting out “approximately integrable”
dynamics. It would be extremely interesting to make this assertion more precise.

Proof. 1. We compute

ṗk +DxH = D2
xu

kDpH +DxH = DH.

Thus
∫

Tn

|ṗk +DxH|2σk dx =

∫

Tn

|DH|2σk dx,

the integrand evaluated at (pk,xk) = (Duk(xk),xk). But since div(σkDpH) = 0, the measure
σkdx is flow invariant. So

(2.24)

∫

Tn

|ṗk +DxH|2σk dx =

∫

Tn

|DH|2σk dx,

H evaluated at (Duk(x), x).
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Now according to (2.19), we have the estimate

(2.25)

∫

Tn

(|D2
xu

k|2 + k|DH|2)σk dx ≤ C

∫

Tn

(|D2
xpH|2 + |D2

xH|)σk dx ≤ CR,

provided |P | ≤ R. This and (2.24) imply (2.21).

2. We have
Ẋk = D2

xPu
kẋk = D2

xPu
kDpH;

and consequently for fixed P ,
∫

Tn

|Ẋk −DH̄k|2σk dx =

∫

Tn

|D2
xPu

kDpH −DH̄k|2σk dx.

In the integrand uk is evaluated at x = xk and H is evaluated at (pk,xk) = (Duk(xk),xk).
These expressions depend upon t ∈ R and the initial point xk(0) = x for the flow (1.3). But
the flow invariance of σkdx implies

(2.26)

∫

Tn

|Ẋk −DH̄k(P )|2σkdx =

∫

Tn

|D2
xPu

kDpH −DH̄k|2σk dx,

where now uk and H are evaluated at x and (Duk(x), x). In view therefore of (2.20), we
have the inequality

∫

Tn

|Ẋk −DH̄k(P )|2σk dx ≤
1

k
tr(D2H̄k(P ));

and then

(2.27)

∫

B(0,R)

∫

Tn

|Ẋk −DH̄k(P )|2σkdxdP ≤
1

Rk

∫

∂B(0,R)

DH̄k(P ) · P dHn−1.

Finally observe from (2.20) that P 7→ H̄k(P ) is convex; whence follows the estimate

(2.28) max
B(0,R)

|DH̄k| ≤
C

R
max
B(0,2R)

|H̄k|.

Furthermore 0 ≤ H ≤ C(|P |2 +1) implies 0 ≤ H̄(P ) ≤ C(|P |2 +1). Since [E1, Theorem 4.1]
implies H̄k ≤ H̄, we have

(2.29) H̄k(P ) ≤ C(|P |2 + 1).

Also

(2.30) H̄k(P ) ≥
1

k
log(|Tn|) = 0.

Hence (2.27)–(2.30) imply the stated estimate (2.22). �
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3 Hamiltonian approximation by principal eigenvalues

3.1 A new approximation. This and the next section introduce alternative variational
principles, based upon two regularizations using various forms of the Donsker–Varadhan
[D-V] I-functional.

Let us first recall that 1
2
∆ is the infinitesimal generator of Brownian motion and that the

corresponding Donsker–Varadhan I-functional for probability measures µ on T
n is

(3.1) I[µ] = − inf
φ>0

∫

Tn

∆φ

2φ
dµ =

{

1
2

∫

Tn |Dψ|
2 dx if dµ = ψ2dx

+∞ otherwise.

We introduce next for ε > 0 and smooth functions v the functional

(3.2) Jε[v] := sup
µ

{
∫

Tn

H(P +Dv, x) dµ− εI[µ]

}

,

which should be compared with the entropy regularization (2.2) that leads to (2.1). In view
of (3.1), for each function v we have

(3.3) Jε[v] = −min
ψ

{
∫

Tn

ε

2
|Dψ|2 −H(P +Dv, x)ψ2 dx |

∫

Tn

ψ2 dx = 1

}

.

We select vε to minimize Jε[·] among functions with mean zero over T
n. That is, we take

v = vε so that the corresponding principal eigenvalue λ = Jε[v] of the problem

ε

2
∆w +H(P +Dv, x)w = λw

is minimized. Let λε denote this minimal value of the principal eigenvalue, and wε be the
corresponding principal eigenfunction. Then

(3.4)
ε

2
∆wε +H(P +Dvε, x)wε = λεw

ε

on the torus T
n, normalized so that

(3.5) wε > 0,

∫

Tn

(wε)2 dx = 1.

For later reference we define

(3.6) σε := (wε)2, uε := P · x+ vε.

We will show that versions of the basic PDE (1.1), (1.2) of weak KAM theory are hidden
within this new minimization problem.
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We will hereafter simply assume that the minimizer vε exists and is smooth, and thus
uε = P · x + vε and the corresponding principal eigenfunction wε are smooth. It seems
possible to prove for each ε > 0 the regularity of uε and wε using the PDE (3.4) and (3.7)
(derived below), but a developing a full proof would be a distraction from the main issue,
the derivation of weak KAM theory in the limit ε→ 0.

3.2 First variation. The first variation of our problem produces the Euler-Lagrange equa-
tion:

Theorem 3.1 The density σε solves the PDE

(3.7) div(DpH(Duε, x)σε) = 0.

Proof. To simplify notation, we drop the superscripts ε; so that (3.4) reads

(3.8)
ε

2
∆w +H(Du, x)w = λw,

where w and λ depend upon u. Let {u(τ) | |τ | ≤ 1} be a smooth curve of functions,
with u(0) = u. Let λ(τ) denote the principal eigenvalue corresponding to the potential
H(Du(τ), x):

ε

2
∆w(τ) +H(Du(τ), x)w(τ) = λ(τ)w(τ).

Since the principal eigenvalue is simple, we can take λ(·) and w(·) to be smooth functions of
τ .

Differentiating with respect to τ and then putting τ = 0, we find

ε

2
∆w′(0) +H(Du, x)w′(0) − λ(0)w′(0) = DpH(Du, x) ·Du′(0)w(0) + λ′(0)w(0).

Multiply by w = w(0) and integrate by parts, recalling (3.5) and (3.6) to discover the identity

λ′(0) = −

∫

Tn

DpH(Du, x) ·Du′(0)σ dx.

Since u = u(0) minimizes the principal eigenvalue λ, we have λ′(0) = 0. Consequently,

∫

Tn

DpH(Du, x) ·Du′(0)σ dx = 0

for all variations u′(0). This implies the weak formulation of (3.7). �

3.3 Second variation. A second variation provides us with bounds on the second deriva-
tives of uε:

10



Theorem 3.2 (i) We have the estimate

(3.9)

∫

Tn

|Duε|2σε dx ≤ C,

the constant C independent of ε.

(ii)Furthermore,

(3.10)

∫

Tn

|D2uε|2σε dx ≤ C.

Proof. 1. Again we omit the superscript ε. Multiply the PDE (3.1) by the periodic function
v = vε and integrate:

∫

Tn

DpH(Du, x) ·Dvσ dx = 0.

Estimate (3.9) follows, since Du = P + Dv and since the uniform convexity of H in the
variable p implies |p|2 ≤ C(DpH(p, x) · p+ 1) for some positive constant C.

2. Differentiate (3.8) once, and then twice, with respect to xk:

(3.11)
ε

2
∆wxk

+Hwxk
+ (H)xk

w = λwxk
,

(3.12)
ε

2
∆wxkxk

+Hwxkxk
+ 2(H)xk

wxk
+ (H)xkxk

w = λwxkxk
.

Here we use the notation (H)xk
= (H(Du, x))xk

. Multiplying (3.12) by w, integrating by
parts and using (3.11), we deduce

∫

Tn

2(H)xk
wxk

w + (H)xkxk
w2 dx = 0.

Consequently, using (3.11) we see that

1

2

∫

Tn

(H)xkxk
w2 dx = −

∫

Tn

((H)xk
w)wxk

dx

=

∫

Tn

(ε

2
∆wxk

+Hwxk
− λwxk

)

wxk
dx

= −

∫

Tn

ε

2
|Dwxk

|2dx+ (λ−H)w2
xk
dx.

(3.13)

Now

λ = Jε[v] = −min
ψ

{

∫

Tn
ε
2
|Dψ|2 −Hψ2 dx
∫

Tn ψ2 dx

}

11



and therefore

(3.14)

∫

Tn

ε

2
|Dψ|2 + (λ−H)ψ2 dx ≥ 0

for all periodic functions ψ. In particular,
∫

Tn

ε

2
|Dwxk

|2 + (λ−H)w2
xk
dx ≥ 0

for k = 1, . . . , n; and so (3.13) implies

∫

Tn

(H)xkxk
σ dx ≤ 0.

But
(H)xkxk

= Hpi
uxixkxk

+Hpipj
uxixk

uxjxk
+ 2Hpixk

uxixk
+Hxlxk

.

We substitute above, and note that Theorem 3.1 implies
∫

Tn

Hpi
uxixkxk

σ dx = 0.

Estimate (3.10) then follows from (1.4), the strict convexity of H in the variable p and (3.9).
�

3.4 Differentiations in the variable P. Next define

(3.15) H̄ε(P ) := λε = Jε[v
ε].

We will later show that the function H̄ε is an approximation to the effective Hamiltonian H̄.

Theorem 3.3 (i) We have

(3.16) DH̄ε(P ) =

∫

Tn

DpH(Duε, x)σε dx.

(ii) Furthermore,

(3.17) D2H̄ε(P ) =

∫

Tn

D2
pHDxPu

ε⊗DxPu
εσε+εDxPw

ε⊗DxPw
ε+2(λ−H)DPw

ε⊗DPw
ε dx.

It follows that the mapping P 7→ H̄ε(P ) is convex, since for all ξ ∈ R
n

∫

Tn

ε|DPw · ξ|2 + 2(λ−H)|DxPw · ξ|2 dx ≥ 0

12



according to (3.14).

Proof. 1. As usual, we drop the superscripts ε. Differentiate (3.8) with respect to Pk, to
find

(3.18)
ε

2
∆wPk

+HwPk
+ (H)Pk

w = λwPk
+ λPk

w.

Multiply by w, integrate by parts, and recall that we are now writing H̄ε = λ:

H̄ε
Pk

=

∫

Tn

Hpi
uxiPk

σdx =

∫

Tn

Hpk
(Du, x)σ dx,

the last equality holding in view of (3.7), since u = P · x+ v and v is periodic in x.

2. Next, differentiate (3.18) with respect to Pl:

ε

2
∆wPkPl

+HwPkPl
+ (H)Pk

wPl
+ (H)Pl

wPk
+ (H)PkPl

w

= λwPkPl
+ λPk

wPl
+ λPl

wPk
+ λPkPl

w.

We discover upon multiplying by w and integrating by parts that

H̄ε
PkPl

=

∫

Tn

((H)Pk
wPl

+ (H)Pl
wPk

)w + (H)PkPl
w2 dx,

since
∫

Tn

wPk
wdx =

1

2

∂

∂Pk

∫

Tn

w2vdx = 0.

Recalling (3.18), we further calculate that

H̄ε
PkPl

=

∫

Tn

((H)Pk
w)wPl

+ ((H)Pl
w)wPk

+ (H)PkPl
w2 dx

=

∫

Tn

(

(λ−H)wPk
−
ε

2
∆wPk

)

wPl
+

(

(λ−H)wPl
−
ε

2
∆wPl

)

wPk
+ (H)PkPl

w2 dx

=

∫

Tn

εDxwPk
·DxwPl

+ 2(λ−H)wPk
wPl

+Hpipj
uxiPk

uxjPl
w2 dx.

�

3.5 Limits as ǫ→0. We next show that in the limit ε → 0 the basic PDE of weak KAM
theory appear.
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Firstly, let us introduce for this section the temporary notation that the Lipschitz con-
tinuous function û and the measure σ̂ are weak solutions of (1.1) and (1.2):

(3.19) H(Dû, x) = H̄(P ),

in the viscosity sense and also σ̂ almost everywhere, where û = P · x+ v̂ for periodic v̂; and

(3.20) div(DpH(Dû, x)σ̂) = 0.

At this point we want to introduce as in Chapter 2 a probability measure ν satisfying
(2.8). There is however a problem since for the current approximation based upon (3.2),
unlike the alternate approximations in Section 2 above and Section 4 below, we do not have
uniform sup-norm bounds on |Duε|. However according to (3.9), we do have uniform L2

bounds on |Duε| if we integrate against the measure σe. The next lemma shows that these
are good enough if we take test functions Φ in (2.8) that grow at most quadratically in p.

Lemma 3.1 (i) We have the bound

(3.21)

∫

Tn

|Duε|2ψ2 dx ≤ C

∫

Tn

ε|Dψ|2 + ψ2 dx+ C

for each smooth function ψ.

(ii) In addition,

(3.22) lim
ε→0

∫

Tn

|Dû−Duε|2σε dx = 0.

Proof. 1. The PDE (3.4) implies

ε

2wε
∆wε +H(Duε, x) = H̄ε(P ).

Multiply by ψ2 and integrate:

ε

2

∫

Tn

|Dwε|2

(wε)2
ψ2 dx+

∫

Tn

H(Duε, x)ψ2 dx = H̄ε(P )

∫

Tn

ψ2 dx+ ε

∫

Tn

ψ

wε
Dwε ·Dψ dx.

Since |p|2 ≤ H(p, x) + C, this implies the estimate (3.21).

2. The uniform convexity hypothesis (1.4) implies

H(Duε, x) +DpH(Duε, x) · (Dû−Duε) +
γ

2
|Dû−Duε|2 ≤ H(Dû, x) = H̄(P ).

14



Consequently,

γ

2

∫

Tn

|Dû−Duε|2σε dx+

∫

Tn

H(Duε, x)σε dx ≤ H̄(P ).

Now multiply (3.4) by wε and integrate:
∫

Tn

H(Duε, x)σε dx = H̄ε(P ) +
ε

2

∫

Tn

|Dwε|2 dx.

Therefore
∫

Tn

|Dû−Duε|2σε dx ≤ C|H̄(P ) − H̄ε(P )| → 0,

since we will see in the proof of Theorem 3.4 below that H̄ε(P ) → H̄(P ). �

In view of this result, we may assume upon passing if necessary to a subsequence that

(3.23) lim
ε→0

∫

Tn

Φ(Duε, x)σε dx =

∫

Rn

∫

Tn

Φ(p, x) dν

for all continuous functions Φ = Φ(p, x) satisfying the quadratic growth bound |Φ(p, x)| ≤
C(|p|2 + 1). We define also the probability measure µ to satisfy

(3.24)

∫

Rn

∫

Tn

Ψ(v, x) dµ =

∫

Rn

∫

Tn

Ψ(DpH(p, x), x) dν

for all continuous Ψ = Ψ(v, x) growing at most quadratically in v.

Next is our main assertion, that the measure µ defined by (3.23) and (3.24) is a minimizing
measure.

Theorem 3.4 (i) We have

(3.25) lim
ε→0

H̄ε(P ) = H̄(P ).

(ii) The measure µ satisfies

(3.26)

∫

Rn

∫

Tn

v ·Dφdµ = 0

for all smooth, periodic functions φ = φ(x); and

(3.27)

∫

Rn

∫

Tn

v dµ =: V ∈ ∂H̄(P ).

(iii) The measure µ minimizes Mather’s action functional (2.11) among all other proba-

bility measures satisfying (3.26) and (3.27).

15



General weak KAM theory (as recounted for instance in [E3]) then implies that the
measure ν has the form ν = δ{p=Dû}σ. This by the way already follows from our estimate
(3.22).

Proof. 1. We have

H̄ε(P ) = inf
v

sup
ψ

{
∫

Tn

H(P +Dv, x)ψ2 −
ε

2
|Dψ|2 dx |

∫

Tn

ψ2 dx = 1

}

;

and so our taking v = v̂ shows
H̄ε(P ) ≤ H̄(P ).

A bound from below is harder. For this, note that

H̄ε(P ) = sup
ψ

{
∫

Tn

H(P +Dvε, x)ψ2 −
ε

2
|Dψ|2 dx |

∫

Tn

ψ2 dx = 1

}

≥

∫

Tn

H(P +Dvε, x)ψ2dx−
ε

2
|Dψ|2 dx,

for each smooth function ψ with L2 norm equaling one. Now in view of estimate (3.21), we
may assume

Duε = P +Dvε ⇀ Du = P +Dv weakly in L2

for some periodic, Lipschitz continuous function v. Therefore lower semicontinuity of the
integral implies

lim inf
ε→0

H̄ε(P ) ≥

∫

Tn

H(Du, x)ψ2 dx.

Recall next the smooth functions uk = P ·x+vk and σk introduced in Section 2. Our taking
ψ2 = σk shows that

lim inf
ε→0

H̄ε(P ) ≥

∫

Tn

H(Du, x)σk dx

≥

∫

Tn

H(Duk, x)σk dx+

∫

Tn

DH(Duk, x) ·D(v − vk)σk dx.

Owing to (2.3), the last term equals zero. We now send k → ∞ and recall (2.5), to deduce
that

lim inf
ε→0

H̄ε(P ) ≥ H̄(P ).

This proves (3.25).

2. According to Theorem 3.1,
∫

Tn

DpH(Duε, x) ·Dφσε dx = 0,
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for all periodic φ. Remember (3.23) and send ε→ 0:
∫

Rn

∫

Tn

DpH(p, x) ·Dφdν = 0.

Changing to the (v, x) variables and recalling the definition of the measure µ gives us (3.26).

Next, recall (3.16):

DH̄ε(P ) =

∫

Tn

DpH(Duε, x)σε dx.

The limit of the right hand side as ε→ 0 is
∫

Rn

∫

Tn

DpH(p, x) dν =

∫

Rn

∫

Tn

v dµ =: V.

Since the functions H̄ε are convex and converge pointwise to H̄, it follows that V ∈ ∂H̄(P ).

3. We now assert

(3.28)

∫

Rn

∫

Tn

L(v, x) dµ+

∫

Rn

∫

Tn

H(p, x) dν = P · V.

To see this, notice that the term on the left equals
∫

Rn

∫

Tn

L(DpH, x) +H(p, x) dν =

∫

Rn

∫

Tn

DpH · p dν

= lim
ε→0

∫

Tn

DpH(Duε, x) ·Duεσε dx

= lim
ε→0

∫

Tn

DpH(Duε, x) · (P +Dvε)σε dx

= P · V.

Next, multiply (3.4) by wε and integrate by parts:

H̄ε(P ) = λε =

∫

Tn

H(Duε, x)σε dx−
ε

2

∫

Tn

|Dwε|2 dx.

This identity and (3.25) imply

H̄(P ) ≤

∫

Rn

∫

Tn

H dν.

Therefore we can invoke (3.28) to calculate
∫

Rn

∫

Tn

Ldµ = P · V −

∫

Rn

∫

Tn

H dν ≤ P · V − H̄(P ) = L̄(V ).

where we recall that the effective Lagrangian L̄ is the dual of H̄. The last equality holds
since V ∈ ∂H̄(P ). But L̄(V ) is the minimum value of the action (2.11) among all probability
measures satisfying (3.26), (3.27), and so it follows that µ is in fact a minimizer. �
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4 Lagrangian approximation by principal eigenvalues

4.1 A different approximation. Inspired in part by Benamou and Brenier [B-B], we
present now a Lagrangian variant of the foregoing approximation. The main new technical
feature is that the symmetric eigenvalue problem (3.4) is replaced by two dual eigenvalue
problems (4.4) for a nonsymmetric operator. These computations are motivated by some-
what related dual eigenfunction calculations in [E2]; and this section represents a partial
solution to the problem of generalizing the approach of that paper to Hamiltonians more
general than 1

2
|p|2 +W (x).

Fix a vector field v = v(x) on T
n, and introduce the generator of corresponding flow,

regularized by an ε-dependent viscosity term:

(4.1) Aε
v
φ := v ·Dφ+ ε∆φ.

The corresponding Donsker–Varadhan I-functional is

(4.2) Iε
v
[µ] := − inf

φ>0

∫

Tn

Aε
v
φ

φ
dµ.

We introduce next for ε > 0 and P ∈ R
n the expression

(4.3) Kε[v] := −min
µ

{
∫

Tn

L(v, x) − P · v dµ+ Iε
v
[µ]

}

,

the minimum taken over probability measures µ on T
n. As we will see, the effect of the

term Iε
v
[·] in the limit ε → 0 will be to enforce the flow invariance requirement (2.12). The

Donsker-Varadhan formula asserts that Kε[v] equals the principle eigenvalue of the operator
ε∆ + v ·D − (L(v, x) − P · v) on T

n.

We select vε to minimize Kε[·] among vector fields over T
n. That is, we take vε to

minimize the corresponding principal eigenvalue λε of the dual problems

(4.4)

{

ε∆wε + vε ·Dw
ε − (L(vε, x) − P · vε)w

ε = λεwε

ε∆wε∗ − div(vεw
ε∗) − (L(vε, x) − P · vε)w

ε∗ = λεwε∗.

The dual eigenfunctions wε and wε∗ are positive and are normalized so that

(4.5)

∫

Tn

wεwε∗ dx = 1.

For later reference we define

(4.6) σε := wεwε∗, vε := logwε, uε := P · x+ vε.
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As in Section 3 we will just assume that the minimizer vε exists and is smooth, although
Theorem 4.1 will show that we can in fact compute vε in terms of uε, which turns out to be
the smooth solution of the PDE (4.9).

4.2 First variation. As usual, the first variation provides useful information:

Theorem 4.1 (i)We have

(4.7) DvL(vε, x) = P +
Dwε

wε
= Duε,

and consequently

(4.8) DpH(Duε, x) = vε.

(ii) Furthermore, uε solves the PDE

(4.9) ε∆uε + ε|Duε − P |2 +H(Duε, x) = λε.

Proof. 1. To simplify notation, we drop the sub- and superscripts ε. Then the first equation
in (4.4) says

(4.10) ε∆w + v ·Dw − (L(v, x) − P · v)w = λw,

where w and λ depend upon v. Let {v(τ) | |τ | ≤ 1} be a smooth curve of vector fields, with
v(0) = v. Let λ(τ) denote the corresponding principal eigenvalue. Then

ε∆w(τ) + v(τ) ·Dw(τ) − (L(v(τ), x) − P · v(τ))w(τ) = λ(τ)w(τ).

Differentiating with respect to τ and then setting τ = 0, we discover

(4.11) ε∆w′(0) + v′(0) ·Dw + v ·Dw′(0) − (DvL(v, x) − P ) · v′(0)w

− (L(v, x) − P · v)w′(0) = λw′(0) + λ′(0)w.

Multiply by the dual eigenfunction w∗ = wε∗ and integrate by parts, using the second
equation in (4.4) to remove the expressions involving w′(0) and deduce

λ′(0) =

∫

Tn

v′(0) ·Dww∗ − (DvL(v, x) − P ) · v′(0)ww∗ dx.

We have λ′(0) = 0, since v = v(0) minimizes the principal eigenvalue λ. Furthermore the
variation v′(0) is arbitrary, and thus

(Dw − (DvL(v, x) − P )w)w∗ = 0.
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Since w∗ > 0, assertion (4.7) follows.

2. In view of (4.7), H(Duε, x) = vε · Du
ε − L(vε, x); and so the first equation in (4.4)

becomes

(4.12) ε∆wε +H(Duε, x)wε = λεwε.

Since vε = logwε, we can rewrite this PDE into the form (4.9). �

Remarks. (i) Observe that the PDE (4.12) satisfied by uε, wε agrees (up to a factor 1
2
)

with the PDE (3.4) satisfied by the corresponding functions uε, wε in Section 3. However
our current function uε (defined by (4.6)) does not seem to correspond to a solution vε the
minimization problem for the functional Jε[·] discussed in Section 3.

(ii) We note also that in fact w′(0) ≡ 0 in the foregoing calculation; that is, an O(τ)
variation of the minimizer vε creates an o(τ) variation in the principal eigenfunction wε.

To see this, observe that our plugging (4.7) into (4.11) gives

ε∆w′(0) + v ·Dw′(0) − (L(v, x) − P · v)w′(0) = λw′(0).

Consequently, since the eigenspace for the principal eigenvalue is one dimensional, we have
w′(0) = κw = κwε for some constant κ. But the normalization

∫

w(τ)2 dx = 1 implies
∫

w(0)w′(0) dx = 0 and therefore κ = 0. �

We derive next a form of the Euler-Lagrange equation:

Theorem 4.2 The density σε solves the PDE

(4.13) −ε∆σε + 2ε div(σεDvε) + div(DpH(Duε, x)σε) = 0.

Proof. We again drop the superscripts ε, so that the dual eigenfunction equations (4.4)
read

(4.14)

{

ε∆w + v ·Dw − (L(v, x) − P · v)w = λw

ε∆w∗ − div(vw∗) − (L(v, x) − P · v)w∗ = λw∗.

Multiply the first equation by w∗, the second equation by w, and subtract:

ε(w∗∆w − w∆w∗) + w∗v ·Dw + w div(vw∗) = 0.

Observe next that

w∗v ·Dw + w div(vw∗) = div(ww∗v) = div(σv) = div(σDpH)
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and

w∗∆w − w∆w∗ = −div

(

w2D

(

w∗

w

))

= −div
(

w2D
( σ

w2

))

= −∆σ + 2 div

(

σ
Dw

w

)

= −∆σ + 2 div(σDv).

�

4.3 Second variation. Similarly to the calculations in §3.3, a second variation calculation
provides us with estimates on the second derivatives of uε:

Theorem 4.3 We have the estimate

(4.15)

∫

Tn

|D2uε|2σε dx ≤ C.

Proof. We drop the superscripts ε, so that the PDE (4.9) becomes

ε∆v + ε|Dv|2 +H(Du, x) = λ.

Differentiate twice with respect to xk:

ε∆vxkxk
+ 2εvxixk

vxixk
+ 2εvxi

vxixkxk
+Hpipj

uxixk
uxixk

+Hpi
uxixkxk

+ 2Hpixk
uxixk

+Hxkxk
= 0.

Therefore

(4.16)

∫

Tn

(Hpipj
uxixk

uxixk
+ 2εvxixk

vxixk
)σ dx =

−

∫

Tn

(ε∆vxkxk
+ 2εvxi

vxixkxk
+Hpi

uxixkxk
+ 2Hpixk

uxixk
+Hxkxk

)σ dx.

Now the Euler-Lagrange equation (4.13) implies

∫

Tn

Hpi
uxixkxk

σ dx = −

∫

Tn

(Hpi
σ)xi

uxkxk
dx

=

∫

Tn

(−ε∆σ + 2ε(σvxi
)xi

)uxkxk
dx

= −ε

∫

Tn

σ∆vxkxk
dx− 2ε

∫

Tn

vxi
vxixkxk

σ dx.
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Consequently the integral of the first three terms on the right hand side of (4.16) vanishes;
whence

∫

Tn

(Hpipj
uxixk

uxixk
+ 2εvxixk

vxixk
)σ dx = −

∫

Tn

(2Hpixk
uxixk

+Hxkxk
)σ dx.

�

4.4 Differentiations in the variable P. By analogy with §3.4 we now redefine

(4.17) H̄ε(P ) := λε = Kε[vε].

Theorem 4.4 (i) We have

(4.18) DH̄ε(P ) =

∫

Tn

vεσ
εdx =

∫

Tn

DpH(Duε, x)σεdx.

(ii) Furthermore,

(4.19) D2H̄ε(P ) =

∫

Tn

(D2
pHDxPu

ε ⊗DxPu
ε + 2εDxPv

ε ⊗DxPv
ε)σε dx.

In particular we see that P 7→ H̄ε(P ) is convex.

Proof. 1. As usual, we drop the sub- and superscripts ε. Differentiate the first PDE in
(4.14) with respect to Pk:

ε∆wPk
+ v ·DwPk

+ vPk
·Dw − (L(v, x) − P · v)wPk

− (DvL(v, x) − P ) · vPk
w + vkw = λwPk

+ λPk
w,

where v = (v1, . . . , vn). In view of the identity (4.7), the terms involving vPk
cancel:

(4.20) ε∆wPk
+ v ·DwPk

− (L(v, x) − P · v)wPk
+ vkw = λwPk

+ λPk
w.

Now multiply by w∗ and integrate by parts:

H̄Pk
= λPk

=

∫

Tn

vkww∗ dx =

∫

Tn

vkσ dx.

2. Upon our dropping the superscripts ε, the PDE (4.9) reads

ε∆v + ε|Dv|2 +H(Du, x) = λ.

Differentiate with respect to Pk and then Pl:

ε∆vPkPl
+ 2εvxiPk

vxiPl
+ 2εvxi

vxiPkPl
+Hpipj

uxiPk
uxjPl

+Hpi
uxiPkPl

= λPkPl
.
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Then

H̄PkPl
= λPkPl

=

∫

Tn

(Hpipj
uxiPk

uxjPl
+ 2εvxiPk

vxiPl
)σ dx

+

∫

Tn

(ε∆vPkPl
+ 2εvxi

vxiPkPl
+Hpi

uxiPkPl
)σ dx.

The last integral vanishes, since the Euler-Lagrange equation (4.13) implies
∫

Tn

Hpi
uxiPkPl

σ dx = −

∫

Tn

(Hpi
σ)xi

uPkPl
dx

=

∫

Tn

(−ε∆σ + 2ε(σvxi
)xi

)uPkPl
dx

= −ε

∫

Tn

σ∆vPkPl
dx− 2ε

∫

Tn

vxi
vxiPkPl

σ dx.

�

4.5 Limits as ǫ→0. This section mirrors §3.5 by showing that in the limit ε→ 0 the basic
structure of weak KAM theory appears.

First note that in view of the PDE (4.9), we have the uniform estimate

sup
Tn

|uε|, |Duε| ≤ C;

and so we may assume upon passing if necessary to a subsequence that the uniform limit

lim
ε→0

uε =: u

exists. As in §3.5 we may also suppose that the limit (3.23) holds for some measure ν and
all continuous functions Φ = Φ(p, x). We then define µ by the formula (3.24).

Theorem 4.5 (i) The functions H̄ε converge to H̄:

(4.21) lim
ε→0

H̄ε(P ) = H̄(P ).

(ii) The measure µ satisfies

(4.22)

∫

Rn

∫

Tn

v ·Dφdµ = 0

for all smooth, periodic functions φ = φ(x); and

(4.23)

∫

Rn

∫

Tn

v dµ =: V ∈ ∂H̄(P ).
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(iii) The measure µ minimizes the action functional (2.11) among all other probability

measures satisfying (4.22) and (4.27).

(iv) The function u is a viscosity solution of

(4.24) −H(Du, x) = −H̄(P ).

Proof. 1. The functions H̄ε are convex and locally bounded, and so, passing if necessary
to a further subsequence, the limit

(4.25) lim
ε→0

H̄ε(P ) =: K(P )

exists locally uniformly. Then (4.9) implies u = P · x+ v is a viscosity solution of

−H(Du, x) = −K(P )

and so also solves this PDE almost everwhere. Hence

H(Duδ, x) ≤ K(P ) +O(δ),

for uδ := ηδ ∗ u, uδ = P · x+ vδ. We now use vδ in the variational formula

H̄(P ) = inf
w∈C1(Tn)

sup
x∈Tn

H(P +Dw, x)

and send δ → 0, to deduce

(4.26) H̄(P ) ≤ K(P ).

Later we will show that in fact H̄(P ) = K(P ).

2. As in the proof of Theorem 3.4, we employ the identity (4.13) to show that measure
µ satisfies

∫

Rn

∫

Tn

v ·Dφdµ = 0

for all smooth, periodic functions φ = φ(x). Likewise, (4.25) and (4.18) imply

(4.27)

∫

Rn

∫

Tn

v dµ =: V ∈ ∂K̄(P ).
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Now calculate

(4.28)

∫

Rn

∫

Tn

L(v, x) dµ+

∫

Rn

∫

Tn

H(p, x) dν =

∫

Rn

∫

Tn

L(DpH, x) +H(p, x) dν

=

∫

Rn

∫

Tn

DpH · p dν

= lim
ε→0

∫

Tn

DpH(Duε, x) ·Duεσε dx

= lim
ε→0

∫

Tn

DpH(Duε, x) · (P +Dvε)σε dx

= P · V + lim
ε→0

∫

Tn

DpH(Duε, x) ·Dvεσε dx.

3. Next multiply (4.13) by vε and integrate by parts:

(4.29)

∫

Tn

DpH(Duε, x) ·Dvεσε dx = −ε

∫

Tn

(∆vε + 2|Dvε|2)σε dx.

Likewise, multiply (4.12) by wε∗ and integrate, to find

H̄ε(P ) =

∫

Tn

H(Duε, x)σε dx+

∫

Tn

ε∆wεwε∗ dx.

Recall from (4.6) that vε = logwε, and therefore

∆wε = (∆vε + |Dvε|2)wε.

We use this identity and the identity before in (4.29), concluding that
∫

Tn

DpH(Duε, x) ·Dvεσε dx = −ε

∫

Tn

|Dvε|2σε dx+

∫

Tn

H(Duε, x)σε dx− H̄ε(P ).

This identity lets us return to (4.28), to deduce that
∫

Rn

∫

Tn

L(v, x) dµ ≤ P · V −K(P ) = K∗(V ),

where K∗ is the dual convex function to K. The last equality holds since (4.27) tells us that
V ∈ ∂K(P ). But (4.26) implies for all V that

K∗(V ) ≤ H̄∗(V ) = L̄(V ).

Therefore
∫

Rn

∫

Tn

L(v, x) dµ ≤ L̄(V );

and this fact, as already noted in the proof of Theorem 3.4 means that µ is a minimizing
measure. In particular, L̄ ≡ K∗: whence K ≡ H̄. �
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5 PDE for deterministic mean field games

Lasry and Lions in [L-L1]–[L-L3] have introduced some fascinating classes of stochastic “mean
field games”, which in turn correspond to various systems of PDE that generalize the two
basic PDE (1.1), (1.2) of weak KAM theory. In the stationary case [L-L2] some of their
equations read, in our notation,

−ε∆uε +H(Duε, x) = H̄(P ) + V [σε]

and
−ε∆σε + div(DpH(Duε, x)σε) = 0,

where σε > 0 and
∫

Tn σ
ε dx = 1. Here ε > 0 is a viscosity coefficient resulting from the

stochastic terms in the dynamics and V [·] is a functional defined for probability measures,
the precise form of which depends upon the particular rules of the mean field game. The
deterministic version of these two PDE are

(5.1) H(Du, x) = H̄(P ) + V [σ]

and

(5.2) div(DpH(Du, x)σ) = 0.

These have almost the exact from of our two basic PDE (1.1), (1.2) of weak KAM theory, the
only difference being the term V [·] which couples the measure σ with to the Hamilton-Jacobi
equation for u. (We note also that coupled PDE of the from (5.1) and (5.2) arise also from
WKB expansions for solutions of nonlinear dispersive equations: see for instance Section
14.2 in Whitham [W].)

Let us take
V [σ] = Φ(σ),

for some smooth, nondecreasing function Φ : R → R, and for heuristic purposes assume that
u, σ are smooth solutions of (5.1), (5.2).

Theorem 5.1 (i) We have the estimate

(5.3)

∫

Tn

|D2u|2σ + Φ′(σ)|Dσ|2 dx ≤ C.

(ii) In particular, if Φ′(s) ≥ c|s|γ for positive constants c and γ, then

(5.4)

∫

Tn

σ
n(γ+2)

n−2 dx ≤ C.
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The significance is that estimate (5.4) shows σ ∈ Lp for p = n(γ+2)
n−2

. This is not the case
for the more weakly coupled PDE (1.1), (1.2) of weak KAM theory, in which σ is in general
a measure that may be singular with respect to Lebesgue measure. The term V [σ] = Φ(σ)
has a regularizing effect, persisting even for the deterministic case ε = 0.

Proof. Differentiate (5.1) twice with respect to xk:

Hpipj
uxixk

uxixk
+Hpi

uxixkxk
+ 2Hpixk

uxixk
+Hxkxk

= (Φ′(σ)σxk
)xk
.

Next multiply by σ and integrate over T
n, using (5.2) to simplify and obtain the identity

∫

Tn

Hpipj
uxixk

uxixk
σ + Φ′(σ)σxk

σxk
dx = −

∫

Tn

(2Hpixk
uxixk

+Hxkxk
)σ dx.

The estimate (5.3) follows, and then (5.4) results from the Sobolev inequality. �

6 Nonvariational approximations, “second order” weak

KAM theory

In this speculative section we return to the entropy regularization discusses in Section 2, and
examine an very singular nonvariational approximation.

6.1 A linearization. To motivate developments in subsequent subsections, we next cal-
culate linearization of the Euler–Lagrange PDE (2.3), which we rewrite in the symmetric
form

(6.1) AkH [uk] := −
1

k
e−kH(ekHHpi

)xi
= −

1

k
(Hpi

)xi
−Hpi

Hpj
ukxixj

−Hxi
Hpi

= 0,

H evaluated at (Duk, x). I proved in [E1] that u = limk→∞ uk is a viscosity solution of
Aronsson’s equation

(6.2) AH [u] := −Hpi
Hpj

uxixj
−Hxi

Hpi
= 0,

H evaluated at (Du, x).

Define the linearization

Lkv :=
d

dτ
AkH [uk + τv]

∣

∣

∣

∣

τ=0

= −
1

k
e−kH(ekHHpipj

vxj
)xi

−
1

k
e−kH(ekHkHpj

vxj
Hpi

)xi

+
1

k
e−kHkHpj

vxj
(ekHHpi

)xi
.
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Thus

(6.3) Lkv = −
1

k
(Hpipj

vxj
)xi

−Hpipj
(H)xi

vxj
−Hpi

(Hpj
vxj

)xi
.

Again H = H(Duk, x). The formal adjoint of Lk with respect to the usual L2 inner product
is

(6.4) L∗
kw := −

1

k
(Hpipj

wxi
)xj

+ (Hpipj
(H)xi

w)xj
− (Hpj

(Hpi
w)xi

)xj
.

Observe that σk = ek(H−H̄k) solves

(6.5) L∗
kσ

k = 0,

since (σkHpi
)xi

= 0 and σkxi
= σkk(H)xi

. We will return to this observation in the next
section.

6.2 A solution for the dual operator, symmetry. Define now the weighted inner
products

〈f, g〉k :=

∫

Tn

fgσkdx, [f, g]k :=

∫

Tn

fg(σk)−1dx.

We show next that Lk is symmetric with respect to〈·, ·〉k, and L∗
k is symmetric with respect

to[·, ·]k:

Theorem 6.1 (i) For all smooth v, w, we have

(6.6) 〈Lkv, w〉k = 〈v, Lkw〉k =

∫

Tn

{

(Hpi
vxi

)(Hpj
wxj

) +
1

k
Hpipj

vxj
wxi

}

σk dx.

As usual, H is evaluated at (Duk, x).
(ii) Furthermore

(6.7) L∗
k(σ

kw) = σkLkw

and

(6.8)
[L∗

kv, w]k = [v, L∗
kw]k

=
∫

Tn

{(

Hpi

(

v
σk

)

xi

) (

Hpj

(

w
σk

)

xj

)

+ 1
k
Hpipj

(

v
σk

)

xi

(

w
σk

)

xj

}

σk dx.

Proof. 1. Define for τ ∈ R the inner product

〈f, g〉τ :=

∫

Tn

fgekH(Duk+τDv,x)dx.
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Then

(6.9) 〈AkH [uk + τv], w〉τ = −
1

k

∫

Tn

e−kH(ekHHpi
)xi
wekH dx =

1

k

∫

Tn

Hpi
wxi

ekHdx,

H evaluated at (Duk + τDv, x). We compute

d

dτ
〈AkH [uk + τv], w〉τ

∣

∣

∣

∣

τ=0

= 〈Lkv, w〉0 + 〈AkH [uk], wkDpH ·Dv〉0 = 〈Lkv, w〉0,

since AkH [uk] ≡ 0. Also,

d

dτ

(

1

k

∫

Tn

Hpi
wxi

ekHdx

)∣

∣

∣

∣

τ=0

=

∫

Tn

(

1

k
Hpipj

vxj
wxi

+ (Hpi
wxi

)(Hpj
vxj

)

)

ekHdx.

Insert the previous two calculations into (6.9) and multiply by e−kH̄
k

to obtain (6.6).

2. We have
∫

T

vL∗
k(σ

kw) dx =

∫

Tn

Lkvwσ
k dx =

∫

Tn

v(Lkw)σk dx,

for all smooth functions v and w. Hence (6.7) holds, and consequently

L∗
kw = σkLk

( w

σk

)

.

Then

[L∗
kv, w]k =

[

σkLk

( v

σk

)

, w
]

k
=

(

Lk

( v

σk

)

, w
)

=
( v

σk
, L∗

kw
)

= [v, L∗
kw]k.

Also

[L∗
kv, w]k =

(

Lk

( v

σk

)

, w
)

=
〈

Lk

( v

σk

)

,
w

σk

〉

k

=

∫

Tn

{(

Hpi

( v

σk

)

xi

) (

Hpj

( w

σk

)

xj

)

+
1

k
Hpipj

( v

σk

)

xi

( w

σk

)

xj

}

σkdx.

�

6.3 A nonvariational approximation. Recall from the introduction that the PDE ap-
proach to weak KAM turns upon the pair of equations (1.1) and (1.2). The variational
approximation (2.1) replaces (1.1) with Aronsson’s PDE

(1.1)′ AH [u] := −Hpi
(Du, x)Hpj

(Du, x)uxixj
−Hxi

(Du, x)Hpi
(Du, x) = 0.

I suggest now that the proper generalization of (1.2) is the PDE

(1.2)′ Lσ := −(Hpj
(Du, x)(Hpi

(Du, x)σ)xi
)xj

= 0,
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and interpret the pair of PDE (1.1)′, (1.2)′ as a “second order” version of weak KAM theory.
Note carefully that sufficiently smooth solutions u, σ of (1.1) and (1.2) also solve (1.1)′, (1.2)′.
However a solution u of (1.1)′ need not solve (1.1), and it is not clear to me if a solution of
(1.2)′ must necessarily solve (1.2).

We conclude with the derivation of some uniform estimates for a regularization of the
foregoing PDE. That such natural estimates hold is perhaps an indication that (1.2)′ is
indeed a proper generalization of (1.2). Consider for δ > 0 the equation

(6.10)

AδH [uδ] = −δ∆uδ + AH [uδ]

= −δ∆uδ −Hpi
(Duδ, x)Hpj

(Duδ, x)uδxixj
−Hpi

(Duδ, x)Hxi
(Duδ, x)

= 0

and the corresponding linearization

Lδv :=
d

dτ
AδH [uδ + τv]

∣

∣

∣

∣

τ=0

.

A calculation shows

(6.11) Lδv = −δ∆V −Hpj
(Hpi

vxi
)xj

−Hpipj
(H)xi

vxj
,

H evaluated at (Duδ, x). The adjoint of Lδ with respect to the usual L2 inner product is

(6.12) L∗
δw = −δ∆w − (Hpj

(Hpi
w)xi

)xj
+ (Hpipj

(H)xi
w)xj

.

Next, let σδ > 0 solve

(6.13) L∗
δσ

δ = −δ∆σδ − (Hpj
(Hpi

σδ)xi
)xj

+ (Hpipj
(H)xi

σδ)xj
= 0,

with the normalization
∫

Tn

σδ dx = 1.

We conclude our paper with the following elegant energy estimate, which is an analog of
(3.10) and (4.15):

Theorem 6.2 We have the estimate

(6.14)

∫

Tn

(

|DH|2

δ
+ |D2uδ|2

)

σδ dx ≤ C

for a constant C independent of δ > 0.
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Proof. Multiply (6.13) by H = H(Duδ, x) and integrate by parts. We calculate

∫

Tn

Hpipj
(H)xi

(H)xj
σδdx =

∫

Tn

δσδxi
(H)xi

+Hpj
(H)xj

(Hpi
σδ)xi

dx

=

∫

Tn

δσδxi
(H)xi

− δ∆uδ(Hpi
σδ)xi

dx

= δ

∫

Tn

σδxi
(Hpk

uδxkxi
+Hxi

) − uδxixj
(Hpi

σδ)xj
dx

= δ

∫

Tn

σδxi
Hxi

− uδxixj
(Hpi

)xj
σδ dx

= −δ

∫

Tn

((Hxi
)xi

+Hpixj
uδxixj

+Hpipk
uδxixj

uδxkxj
)σδ dx.

This identity leads to (6.14). �
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