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Abstract

Suslov and Tran [3] recently revisited the study carried out by Hron et al. [1] and they on the basis of their analysis

claim that some of conclusions concerning one specific example, amongst the many considered by Hron et al. [1], are

not justified. They claim that the class of simple flows of fluids with pressure dependent viscosity considered by Hron

et al. [1] do not allow multiple solutions, and that the inflection velocity profiles reported in Hron et al. [1] cannot

exist.

We have reexamined both papers, and we find that whether or not velocity profiles with inflection points exist

depends on the class of functions to which the pressure belongs. If the pressure field is allowed to be discontinuous,

which is in keeping with the class of functions to which pressure belongs to in the study of Hron et al. [1], such

inflectional profiles are possible. However, if one requires the pressure field to be continuous then as Suslov and Tran

[3] claim, such inflectional profiles are not possible. We provide a detailed explanation for this phenomenon that

goes beyond the discussion presented in the paper by Suslov and Tran [3], and concerns subtle mathematical issues.

Among other results we show that the solution with the inflectional profile is—interestingly—not a weak solution of

the governing equations.

Concerning the non-uniqueness of the solution, we show that if we explicitly—instead of assuming that constants

are fixed by an unknown procedure—specify a procedure for fixing all the integration constants in the solution, for

example by fixing the pressure at two points or fixing the pressure gradient and the pressure at one point, we get a

unique solution to the problem, provided all relevant quantities are continuous. On the other hand, if we relax the

assumption on continuity, we can get multiple solutions.
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1. Introduction

Recently Suslov and Tran [3] re-examined the several solutions established by Hron et al. [1] for the flow of

fluids with pressure dependent viscosities, and claimed that one of them, namely the flow between parallel plates that

showed the possibility of profiles with inflection, to be incorrect. In this study we re-study the problem and show

that the conclusion of Suslov and Tran [3] is correct if one requires the pressure to be continuous, or if one requires

that the constructed solution is a weak solution. However, on the other hand, if one allows for the pressure to be

discontinuous, then such profiles with inflections are possible, and the conclusion drawn by Suslov and Tran [3] is

incorrect. In this context, it ought to be borne in mind that the pressure field in the analysis of Hron et al. [1] belongs
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to the class of functions that could be discontinuous4. In fact one could find such mathematical solution even to the

classical Navier–Stokes fluid if one allows the pressure field to be discontinuous—see Footnote 12 below for details.

However for the Navier–Stokes fluids, the solution corresponding to the discontinuous pressure possesses a jump

discontinuity in the second derivative of the velocity, while for the particular model of fluid with pressure dependent

viscosity analyzed by Hron et al. [1], the velocity profile corresponding to the discontinuous pressure field has smooth

derivatives of all order, and the same holds for the pressure at the line x = 0. Hron et al. [1] did not realize that

the mathematically admissible solution they obtained (and that showed profiles with inflections) corresponded to the

pressure being discontinuous.

The arguments given by Suslov and Tran [3] concerning existence of flows constructed by Hron et al. [1] are

devoid of any discussion of the subtle mathematical and physical issues. However, they are to be commended for their

intuition as they realized that the solutions with inflection points are possibly not physically realizable. In fact, their

calculations unfortunately does not address the issue of the continuity or otherwise of the pressure. One of the aims

of the present paper is to clarify the issue of existence of velocity profiles with inflection and its relation to continuity

of the pressure. Moreover, we discuss whether the solutions with discontinuous pressure are weak solutions to the

problem, and we find that the discontinuity in pressure contradicts the possibility that the solution is a weak solution.

In our opinion this is a significant drawback of solutions with discontinuous pressure.

Similarly, whether one has uniqueness or non-uniqueness of solutions is tied intimately to whether the pressure

field is required to be continuous or not. Thus, if one requires continuity of the pressure field, Suslov and Tran [3] are

correct in their conclusion that there is no non-uniqueness in the velocity field (at least in the class of unidirectional

flows). However, if the pressure field is allowed to be discontinuous, then Hron et al. [1] are correct in their claim that

there are multiple solutions to the velocity field.

An interesting issue that is also at the heart of the different claims by Hron et al. [1] and Suslov and Tran [3]

is the procedure that is used to fix a constant that appears in the explicit solution that is established. Requiring that

the pressure field meet specific values at two distinct points, prescribing the pressure at one point and the pressure

gradient, or the pressure at a specific point and the volumetric flux, lead to different solutions. We have to remember

that the viscosity of the fluid depends on the pressure and thus specifying just the pressure gradient is insufficient to

define the problem fully.

Finally, we observe that one could choose to require that the pressure field be continuous, allowing the velocity

field to be discontinuous. This leads to interesting mathematical possibilities. Whether such solutions are physically

meaningful and realizable is of course a legitimate question that can only be decided on the basis of observation.

The arrangement of the paper is as follows. In the next section we introduce the problem. This is followed by

deriving the analytical expressions for the exact solution in §3. In the following section we develop analytical formulae

for the velocity profiles corresponding to a discontinuous pressure field and we show that such solutions are not weak

solutions. In §5 we discuss results concerning non-monotone velocity profiles where the pressure field is continuous

and in §6 we delineate the range of values for a parameter that guarantees the existence of non-monotone velocity

profiles. Section 7 consists of a discussion of the various methods of fixing an arbitrary constant that appears in the

exact solution for the velocity–pressure pair, based on different physical requirements. In the final section, we end the

paper with a brief discussion of the possibility of discontinuous velocity fields while pressure field is continuous.

4In the general mathematical analysis of initial and boundary value problems related to the equations of fluid mechanics the notion of a weak

solution arises in a natural manner—see for example Málek and Rajagopal [2] and the references therein. In quite a large number of problems such

a solution exists for a large class of data and for an arbitrarily large time interval. Within the framework of weak solutions, pressure is in general

just an integrable function (there are cases connected with internal flows wherein the fluids adhere to the boundary where it is not known if such an

integrable pressure exists). From mathematical standpoint, the integrability of pressure does not exclude the possibility of it being discontinuous,

and from the mathematical point of view it is perfectly reasonable to consider discontinuous pressure fields.

From the physical point of view, pressure in an incompressible fluid is whatever it needs to be to enforce the constraint of incompressibility and

thus once again a discontinuous pressure is not precluded. For instance, in problems in solid mechanics one looks for solutions with discontinuous

deformation gradients though one usually expects deformation gradients to be continuous. Similarly, when one is concerned with discontinuities

such as shocks in a compressible fluid, we do look for discontinuous density and velocity fields. Thus, it is legitimate to look for discontinuous

pressure fields. However, within the purview of classical solutions one usually looks for continuous pressure and velocity and experiments suggest

that such is indeed the case.
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2. Problem description

In this section we briefly introduce the problem that was initially studied by Hron et al. [1] and then re-examined

by Suslov and Tran [3]. The aim is to find a pair U, Π, the velocity and the pressure, defined in the region between

two infinite flat plates
{

[

x, y
] ∈ R

2| y ∈ [−1, 1]
}

such that the pair solves5

∂U

∂t
+ [∇U] U = −∇Π + α div

(

2Π |D|p−2
D

)

, (2.1a)

div U = 0, (2.1b)

where D is the symmetric part of the velocity gradient, α > 0 is a positive parameter (an analogue of the Reynolds

number—if p = 2 we have α = 1
Re

), and the pair meets the following boundary conditions for the velocity

U|y=−1 = 0, (2.1c)

U|y=1 = Vex̂, (2.1d)

and attains a given pressure at a fixed point

Π|[x,y]=[0,0] = 1. (2.1e)

A solution is sought in the form of an unidirectional flow U = U(y)ex̂ (see Figure 1) with velocity being an increasing6

function of y.

3. Derivation of analytical formulae for the exact solution

Let us now focus on the particular case p = 3
2

that was re-examined by Suslov and Tran [3], and let us first try to

pin point the arguments that led Hron et al. [1] to claim existence of solutions with profiles that have an inflection for

plane Couette flow. In this case the solution is—according to both papers—given by the following formula (we use

notation used by Suslov and Tran [3])

U(y) =
y + 1

α2
− 4M1,2

α2C0

eC0y − e−C0

(

M1,2e−C0 + 1
) (

M1,2eC0y + 1
) , (3.1)

and on fixing boundary condition on the upper plate U(y) = V we get the following algebraic equation to determine

M1,2 in terms of the remaining integration constant C0

M2
1,2 + 2δM1,2 + 1 = 0, (3.2a)

δ = cosh C0 +
4

α2V − 2

sinh C0

C0

. (3.2b)

We assume that α2V , 2, for a discussion of the singular case see Suslov and Tran [3]. We can observe—and it will

be important later—that from the quadratic equation (3.2a) we get

M1M2 = 1, (3.3a)

M1 + M2 = −2δ, (3.3b)

and moreover (3.2b) is an even function of C0, i.e., δ(C0) = δ(−C0). The pressure corresponding to velocity pro-

file (3.1) is

Π(x, y) =
M1,2 + e−C0y

M1,2 + 1
eC0

x+y

2 . (3.4)

5The viscosity takes form µ(Π) = αΠ, this model could be however understood as an illustrative or representative model, since a realistic model

for viscosity being a linear function of pressure should be µ(Π) = β(1 + αΠ).
6For solutions with non-monotone velocity profiles see §5.
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Plots7 given in Hron et al. [1] show inflection velocity profiles for α = 1, V = 1, C0 = −1.9 and these values

correspond to α = 1, V = 1 and C0 = −3.8 in the notation used in Suslov and Tran [3] and in this paper. This

particular value of C0 falls in the interval8 in which—according to Suslov and Tran [3]—solutions of form (3.1) are

not possible, since the requirement on monotonicity for the velocity profile U ′(y) ≥ 0 can not be met.

Let us take formulae (3.1) and (3.4) and try to plug them into governing equations for the simple shear flow in a

channel9

−∂Π
∂x
+ α
∂

∂y

(

Π
(

U ′
)p−1

)

= 0, (3.5a)

−∂Π
∂y
+ α
∂

∂x

(

Π
(

U ′
)p−1

)

= 0, (3.5b)

where U ′ = dU
dy

, and observe the consequences. A simple calculation gives (we recall that p = 3
2
)

U ′(y) =
1

α2

(

M1,2eC0y − 1

M1,2eC0y + 1

)2

, (3.6)

(

U ′(y)
)p−1
=

1

α

∣

∣

∣

∣

∣

∣

M1,2eC0y − 1

M1,2eC0y + 1

∣

∣

∣

∣

∣

∣

, (3.7)

∂Π

∂x
=

C0

2
Π, (3.8)

∂Π

∂y
=

C0

2

M1,2eC0y − 1

M1,2eC0y + 1
Π, (3.9)

substituting these expressions into the governing equations (3.5) leads to the following pair of equations

−C0

2
Π +

C0

2

M1,2eC0y − 1

M1,2eC0y + 1
Π

∣

∣

∣

∣

∣

∣

M1,2eC0y − 1

M1,2eC0y + 1

∣

∣

∣

∣

∣

∣

+ Π
∂

∂y

∣

∣

∣

∣

∣

∣

M1,2eC0y − 1

M1,2eC0y + 1

∣

∣

∣

∣

∣

∣

= 0, (3.10a)

−C0

2

M1,2eC0y − 1

M1,2eC0y + 1
Π +

∣

∣

∣

∣

∣

∣

M1,2eC0y − 1

M1,2eC0y + 1

∣

∣

∣

∣

∣

∣

C0

2
Π = 0. (3.10b)

Clearly the second equation can be satisfied for all y ∈ (−1, 1) if and only if

M1,2eC0y − 1

M1,2eC0y + 1
≥ 0. (3.11)

If this condition holds then

∂

∂y

∣

∣

∣

∣

∣

∣

M1,2eC0y − 1

M1,2eC0y + 1

∣

∣

∣

∣

∣

∣

=
∂

∂y

(

M1,2eC0y − 1

M1,2eC0y + 1

)

=
2M1,2C0eC0y

(

M1,2eC0y + 1
)2
,

and substituting this identity into (3.10a) immediately shows that (3.10a) is also satisfied. Now10 it is clear that the

(non)existence of a solution depends on the sign of the term M1,2eC0y − 1 in (3.11). The solution to M1,2eC0y − 1 = 0,

is

ycrit = −
1

C0

ln M1,2, (3.12)

7Constant C0 is not fixed by data (boundary conditions and value of pressure at the given point, conditions (2.1c), (2.1d) and (2.1e)), and this

naturally means that the problem has multiple (infinitely many) solutions—in that different conditions used to fix C0 possibly lead to different

solutions, an issue that was not recognized or discussed by Suslov and Tran [3]. The authors rather tacitly—in the same way as Hron et al. [1]

do—assume that C0 is somehow fixed, for example by prescribing the value of the pressure at two different points or by fixing the pressure gradient.

Later, after thorough discussion of fallacies of Suslov and Tran [3] and Hron et al. [1] papers, we will comment on this issue in some detail (see

§7). Now, let us also assume that C0 is fixed by an unknown procedure.
8See also §6 for a precise description of the parameter range that allows velocity profiles with inflection.
9Note that we have already used the assumption U′(y) ≥ 0.

10For the parameter values we are interested in (α = 1, V = 1, C0 = −3.8) the constant δ is negative, and consequently M1,2 are positive.

Furthermore we can denote the roots of (3.2a) such that M1 ≥ 1 and M2 ≤ 1. For our particular parameter values we have M1 = 1.728107163,

M2 = 0.5786678174 and δ = −1.15338749.

4



and for the values of the parameter that we are interested in we get ycrit ∈ (−1, 1), in other words the point where

condition (3.11) fails lies in the channel. Finally we get11

∣

∣

∣

∣

∣

∣

M1eC0y − 1

M1eC0y + 1

∣

∣

∣

∣

∣

∣

=















M1eC0y−1

M1eC0y+1
, y ∈

[

−1,− 1
C0

ln M1

]

,

−M1eC0y−1

M1eC0y+1
, y ∈

[

− 1
C0

ln M1, 1
]

,
(3.13a)

∣

∣

∣

∣

∣

∣

M2eC0y − 1

M2eC0y + 1

∣

∣

∣

∣

∣

∣

=















M2eC0y−1

M2eC0y+1
, y ∈

[

−1,− 1
C0

ln M2

]

,

−M2eC0y−1

M2eC0y+1
, y ∈

[

− 1
C0

ln M2, 1
]

.
(3.13b)

where − 1
C0

ln M2 < 0 < − 1
C0

ln M1, and moreover in virtue of (3.3a), − 1
C0

ln M1 = −
(

− 1
C0

ln M2

)

. We also notice that

U ′(ycrit) = 0.

Consequently, the pair

U(y) =
y + 1

α2
− 4M1

α2C0

eC0y − e−C0

(

M1e−C0 + 1
) (

M1eC0y + 1
) , (3.14a)

Π(x, y) =
M1 + e−C0y

M1 + 1
eC0

x+y

2 , (3.14b)

solves the governing equations (3.5) for y ∈
(

−1,− 1
C0

ln M1

)

, and the pair

U(y) =
y + 1

α2
− 4M2

α2C0

eC0y − e−C0

(

M2e−C0 + 1
) (

M2eC0y + 1
) , (3.15a)

Π(x, y) =
M2 + e−C0y

M2 + 1
eC0

x+y

2 (3.15b)

solves governing equations (3.5) for y ∈
(

−1,− 1
C0

ln M2

)

, but neither (3.14) nor (3.15) solves governing equations in

the whole domain, thus for all y ∈ (−1, 1).

It therefore seems that velocity profiles with inflection do not indeed exist as concluded in Suslov and Tran [3]

if we require the pressure to be continuous. The situation is however very interesting since we have an explicit

formula for a solution of a system of partial differential equations and this formula is valid—as we will see in the next

paragraphs—only if one of the terms is discontinuous! That is, if we relax the tacit assumption on the continuity of

all the considered quantities, and we allow certain quantities (namely pressure) to be discontinuous, the formulae are

valid. If we insist on having continuous pressure and velocity, we can however relax condition U ′(y) ≥ 0, and try to

find a non-monotone velocity profile—this is done in Suslov and Tran [3] and reviewed in §5.

Let us now focus on one of the key equalities in the derivation of the analytical formula, namely on equation (20)

in Suslov and Tran [3] that reads
1

2

d

dy
ln

∣

∣

∣

∣

∣

∣

1 + α (U ′)p−1

1 − α (U ′)p−1

∣

∣

∣

∣

∣

∣

=
C0

2
, (3.16)

and let us analyze the equation for our particular choice of parameters and solution (3.14). The argument of the

logarithm is (we are using formulae (3.13))

1 + α (U ′)p−1

1 − α (U ′)p−1
=

1 +
∣

∣

∣

∣

M1eC0y−1

M1eC0y+1

∣

∣

∣

∣

1 −
∣

∣

∣

∣

M1eC0y−1

M1eC0y+1

∣

∣

∣

∣

=















M1eC0y, y ∈
(

−1,− 1
C0

ln M1

)

,
1

M1
e−C0y, y ∈

(

− 1
C0

ln M1, 1
)

,

and for the derivative of the logarithm we get

d

dy
ln

∣

∣

∣

∣

∣

∣

1 + α (U ′)p−1

1 − α (U ′)p−1

∣

∣

∣

∣

∣

∣

=



























C0, y ∈
(

−1,− 1
C0

ln M1

)

,

not exist, y = − 1
C0

ln M1,

−C0, y ∈
(

− 1
C0

ln M1, 1
)

.

11 In all subsequent calculations we have to keep in mind that we assume C0 < 0 and M1,2 > 0, since the sign of C0 clearly the affects solution

of the key inequality M1,2eC0 y − 1 ≥ 0. If C0 < 0 then the inequality is satisfied for y ∈
(

−∞,− 1
C0

ln M1,2

)

, on the other hand if C0 > 0 then the

inequality is satisfied for y ∈
(

− 1
C0

ln M1,2 ,+∞
)

.
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A similar calculation can be carried out for the other solution (3.15).

The simple observation sketched above shows that if the critical point ycrit lies in the channel, formula (3.16)

may be wrong, or more precisely one should be cautious in assuming that ln
∣

∣

∣

∣

1+α(U′)p−1

1−α(U′)p−1

∣

∣

∣

∣
is differentiable in the whole

domain. If such an assumption is not true, then the whole reasoning chain based on this equation (and this is precisely

what is done in Suslov and Tran [3]) breaks down. Now we know that something interesting happens with regard

to (3.16), and let us try to find a solution in the whole channel exploiting the non-differentiability of the logarithm

in (3.16).

4. Analytical formulae for velocity profiles with with inflection corresponding to discontinuous pressure

Having identified the problem with regard to (3.16), we are almost ready to extend12 the solution to the whole

domain. First we can observe that formula (3.1) is invariant to a special change of constants. If we take C0 =def −C0

and M1,2 =def
1

M1,2
the formula will not change, indeed if

U(y; C0,M1,2) =
y + 1

α2
− 4M1,2

α2C0

eC0y − e−C0

(

M1,2e−C0 + 1
) (

M1,2eC0y + 1
) ,

U

(

y;−C0,
1

M1,2

)

=
y + 1

α2
+

4 1
M1,2

α2C0

e−C0y − eC0

(

1
M1,2

eC0 + 1
) (

1
M1,2

e−C0y + 1
) ,

then

U(y; C0,M1,2) = U

(

y;−C0,
1

M1,2

)

. (4.1)

This identity holds for all y ∈ [−1, 1] regardless of whether M1,2 is related to C0 by (3.2a). Formula (3.4) for the

pressure is however invariant to the change of constants only for x = 0, indeed if

Π(x, y; C0,M1,2) =
M1,2 + e−C0y

M1,2 + 1
eC0

x+y

2 ,

Π

(

x, y;−C0,
1

M1,2

)

=

1
M1,2
+ eC0y

1
M1,2
+ 1

e−C0
x+y

2 ,

12The extension procedure is however a little bit curious, and this is best seen if we consider the classical Navier–Stokes fluid undergoing

combined Couette–Poiseuille flow (flow is driven by moving upper plane and by a pressure gradient). In this case we can also generate velocity

profiles with inflection if we allow the pressure to be a discontinuous function. Indeed, if we want to solve problem with V = 2, Π(0, 0) = 3 and if

we prescribe pressure gradient in form

∂Π

∂x
=















−2, y ∈ (−1, 0) ,

2, y ∈ [0, 1) ,

then the corresponding velocity profile is given by

U(y) =















(

1 − y2
)

, y ∈ (−1, 0) ,

2 −
(

1 − y2
)

, y ∈ [0, 1) ,

and pressure field is

Π(x, y) =















−x + 3, y ∈ (−1, 0) ,

x + 3, y ∈ [0, 1) .

The velocity profile is continuous, has continuous first derivatives and has an inflection point—in the sense that at this point the function changes

form convex to concave—in the middle of the channel. The solution given above of course does not satisfy the Navier–Stokes equations pointwise,

since d2U

dy2 and ∂Π
∂y

have jump discontinuity at line y = 0.

This analogue with the classical Navier–Stokes fluid shows that the possibility of having discontinuous pressure is not a feature that is due to

pressure-dependent viscosity. In the case of fluid with the pressure dependent viscosity we are studying, we still get a discontinuity in the pressure,

nevertheless the velocity and its all derivatives are continuous.
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then a simple manipulation yields

Π(x, y; C0,M1,2) = Π

(

x, y;−C0,
1

M1,2

)

eC0 x, (4.2)

and consequently for x = 0 we have Π
(

0, y; C0,M1,2

)

= Π
(

0, y;−C0,
1

M1,2

)

, but for x , 0 we get Π(x, y; C0,M1,2) ,

Π
(

x, y;−C0,
1

M1,2

)

. The observation above again holds regardless of whether M1,2 is related to C0 by (3.2a).

4.1. Formulae for negative C0

Let us now take C0 < 0 and the corresponding M1 > 1 that solves equation (3.3) (we know that for our particular

parameter values such a solution exists), and let us consider the following velocity profile

U(y) =















U(y; C0,M1), y ∈
[

−1,− 1
C0

ln M1

]

,

U(y;−C0,
1

M1
), y ∈

[

− 1
C0

ln M1, 1
]

.
(4.3a)

From the analysis carried out above we already know that in fact U(y) = U(y; C0,M1) in the whole domain, since

the formula for velocity profile is invariant with respect to the change of parameters introduced above. Velocity

profile (4.3a) is continuous, has a continuous first derivative and the first derivative is equal to zero at ycrit = − 1
C0

ln M1,

furthermore the second derivative is also continuous and is equal to zero at ycrit. This can be clearly seen from formula

derived in Hron et al. [1] and Suslov and Tran [3] (formula (30)).

Moreover we know that the velocity (4.3a) leads to non-differentiability in (3.16) at y = − 1
C0

ln M1, but we can

still demand at least

d

dy
ln

∣

∣

∣

∣

∣

∣

1 + α (U ′)p−1

1 − α (U ′)p−1

∣

∣

∣

∣

∣

∣

=















C0, y ∈
(

−1,− 1
C0

ln M1

)

,

−C0, y ∈
(

− 1
C0

ln M1, 1
)

,

and this equation is indeed satisfied by our velocity profile.

Now it is time to derive a corresponding formula for the pressure. On the part of the domain where we require the

derivative above to be equal to C0, we can repeat a step by step derivation of the formula for the pressure (see Hron

et al. [1] or Suslov and Tran [3] for details), but we have to keep in mind that the formula for the pressure will hold

only for y ∈
[

−1,− 1
C0

ln M1

)

, the pressure in this part of the domain will therefore be given by

Π(x, y; C0,M1) =
M1 + e−C0y

M1 + 1
eC0

x+y

2 , y ∈
[

−1,− 1

C0

ln M1

)

. (4.3b)

In the remaining part of the domain we require the derivative of the logarithm to be equal to −C0. In this case we can

again repeat step by step the procedure that gives the formula for the pressure, but we have to take M1 =def
1

M1
—this

is necessary because we require the velocity to be continuous, see (4.3a). The formula for pressure will be

Π

(

x, y;−C0,
1

M1

)

=

1
M1
+ eC0y

1
M1
+ 1

e−C0
x+y

2 , y ∈
(

− 1

C0

ln M1, 1

]

, (4.3c)

Summarizing formulae (4.3), we claim that pair

U(y) =
y + 1

α2
− 4M1

α2C0

eC0y − e−C0

(

M1e−C0 + 1
) (

M1eC0y + 1
) , y ∈ [−1, 1] , (4.4a)

Π(x, y) =



















ΠL(x, y) = M1+e−C0 y

M1+1
eC0

x+y

2 , y ∈
[

−1,− 1
C0

ln M1

)

,

ΠR(x, y) =
1

M1
+eC0y

1
M1
+1

e−C0
x+y

2 , y ∈
[

− 1
C0

ln M1, 1
]

,
(4.4b)

solves pointwise the governing equations (3.5) in the whole domain except the set
{

[

x, y
] ∈ R

2, y = − 1
C0

ln M1

}

, the

set where there is a jump discontinuity in the pressure (4.4b), and quantities appearing in the governing equations are
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not defined. Whether such a solution is physical or not can be disputed, but from mathematical point of view such a

solution is acceptable. A plot of the solution is given in Figure 2.

If we want to make sure that pair (4.4) is indeed a solution to system (3.5), we can verify it by direct computation,

we have

U ′(y) =
1

α2

(

M1eC0y − 1

M1eC0y + 1

)2

, y ∈ (−1, 1)

(

U ′(y)
)p−1
=

1

α

∣

∣

∣

∣

∣

∣

M1eC0y − 1

M1eC0y + 1

∣

∣

∣

∣

∣

∣

=















1
α

M1eC0y−1

M1eC0y+1
, y ∈

(

−1,− 1
C0

ln M1

)

,

− 1
α

M1eC0y−1

M1eC0y+1
, y ∈

(

− 1
C0

ln M1, 1
)

,

∂Π

∂x
=















C0

2
ΠL, y ∈

(

−1,− 1
C0

ln M1

)

,

−C0

2
ΠR, y ∈

(

− 1
C0

ln M1, 1
)

,

∂Π

∂y
=















C0

2
M1eC0y−1

M1eC0y+1
ΠL, y ∈

(

−1,− 1
C0

ln M1

)

,
C0

2
M1eC0y−1

M1eC0y+1
ΠR, y ∈

(

− 1
C0

ln M1, 1
)

.

substituting these expressions to governing equations (3.5)—see also (3.10)—gives for y ∈
(

−1,− 1
C0

ln M1

)

−C0

2
ΠL +

C0

2

M1eC0y − 1

M1eC0y + 1
ΠL

M1eC0y − 1

M1eC0y + 1
+ ΠL

∂

∂y

(

M1eC0y − 1

M1eC0y + 1

)

= 0,

−C0

2

M1eC0y − 1

M1eC0y + 1
ΠL +

M1eC0y − 1

M1eC0y + 1

C0

2
ΠL = 0,

and for y ∈
(

− 1
C0

ln M1, 1
)

−
(

−C0

2
ΠR

)

+
C0

2

M1eC0y − 1

M1eC0y + 1
ΠR

(

−M1eC0y − 1

M1eC0y + 1

)

+ ΠR

∂

∂y

(

−M1eC0y − 1

M1eC0y + 1

)

= 0,

−C0

2

M1eC0y − 1

M1eC0y + 1
ΠR +

(

−M1eC0y − 1

M1eC0y + 1

)

(

−C0

2
ΠR

)

= 0.

Introduction of a discontinuous pressure therefore balances the sign changes in (3.10) that occurs due to presence of

(U ′)p−1, and (4.4) is indeed a solution.

Now we can without doubts claim that for certain parameter values there exists a velocity profile U that has one

inflection point, this means that the conclusion in Suslov and Tran [3] is not valid—provided we are willing to accept

solutions with discontinuous pressure. On the other hand conclusions drawn in Hron et al. [1] should be faulted as the

authors do not recognize that the pressure field that they are dealing with is discontinuous. It is clear from discussions

in Hron et al. [1] that they are oblivious to the important role played by the discontinuous pressure gradient. Curiously

enough, the plots of pressure in Hron et al. [1] are valid, since they are given only for x = 0 and in this case we have

ΠL(x, y) = ΠR(x, y) and pressure is on this line continuous.

Furthermore, we can see that for the construction above we do not need M1 > 1, we can repeat the same procedure

also for the other root of (3.2a) M2 that is, in virtue of (3.3a), equal to 1
M1

. The critical point (3.12) is now ycrit =

− 1
C0

ln M2 =
1

C0
ln M1, therefore it has the same magnitude as the critical point for the solution found above, but lies

in the opposite half plane (−1 < − 1
C0

ln M2 < 0 < − 1
C0

ln M1 < 1). Repeating step by step the solution procedure, we

get (using the fact that M2 =
1

M1
)

U(y) =
y + 1

α2
−

4 1
M1

α2C0

eC0y − e−C0

(

1
M1

e−C0 + 1
) (

1
M1

eC0y + 1
) , y ∈ [−1, 1] , (4.5a)

Π(x, y) =



















ΠL(x, y) =
1

M1
+e−C0y

1
M1
+1

eC0
x+y

2 , y ∈
[

−1, 1
C0

ln M1

)

,

ΠR(x, y) = M1+eC0y

M1+1
e−C0

x+y

2 , y ∈
[

1
C0

ln M1, 1
]

.
(4.5b)
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We claim that pair (4.5) is another solution to (3.5)—this claim can be again verified by direct computation—and that

this solution is not equal to (4.4), therefore the claim of Suslov and Tran [3] that multiple solutions can not exist is

wrong13. (We however again require the pressure to be a discontinuous function.) Plots of the alternative solution

and the former solution are given in Figure 2, the functions are denoted as U2(x, y), Π2(x, y) and U1(x, y), Π1(x, y)

respectively.

4.2. Formulae for positive C0

If C0 is positive, the outcomes of the analysis above are the same, but the formulae for the pressure are switched14,

and thus the analogue of (4.4) is

U(y) =
y + 1

α2
− 4M1

α2C0

eC0y − e−C0

(

M1e−C0 + 1
) (

M1eC0y + 1
) , y ∈ [−1, 1] , (4.6a)

Π(x, y) =



















ΠL(x, y) =
1

M1
+eC0 y

1
M1
+1

e−C0
x+y

2 , y ∈
[

−1,− 1
C0

ln M1

)

,

ΠR(x, y) = M1+e−C0 y

M1+1
eC0

x+y

2 , y ∈
[

− 1
C0

ln M1, 1
]

,
(4.6b)

whereas now the critical point ycrit = − 1
C0

ln M1 corresponding to M1 is negative. If we take M2 =
1

M1
instead of M1,

then we get analogue of (4.5), thus

U(y) =
y + 1

α2
−

4 1
M1

α2C0

eC0y − e−C0

(

1
M1

e−C0 + 1
) (

1
M1

eC0y + 1
) , y ∈ [−1, 1] , (4.7a)

Π(x, y) =



















ΠL(x, y) = M1+eC0 y

M1+1
e−C0

x+y

2 , y ∈
[

−1, 1
C0

ln M1

)

,

ΠR(x, y) =
1

M1
+e−C0 y

1
M1
+1

eC0
x+y

2 , y ∈
[

1
C0

ln M1, 1
]

,
(4.7b)

whereas now the critical point ycrit =
1

C0
ln M1 corresponding to M2 is positive.

4.3. On the notion of solution

In the previous section we have constructed solutions (4.4) and (4.5) that do not satisfy the governing equations

in the pointwise sense. One can ask whether these solutions—that in fact fulfill the governing equations pointwise

up to a set of zero measure (the line y = ycrit)—are weak solutions to the problem. Let us recall that weak solution

is a very natural concept of solution since it considers the governing equations in the sense of “averages” (see for

example Málek and Rajagopal [2] for a notion of the weak solution to the governing equations for fluids with pressure

dependent viscosity).

Concerning the problem investigated in this study, any weak solution (in the form of the unidirectional flow) to

system (3.5) has to satisfy15

∀ϕ ∈ D (B) × D (B) , ϕ = ϕ1ex̂ + ϕ2eŷ : (Π, divϕ)B =

(

αΠ
(

U ′
)p−1
,
∂ϕ1

∂y
+
∂ϕ2

∂x

)

B
, (4.8)

where B ⊂ B ⊂
{

[x, y] ∈ R
2| y ∈ (−1, 1)

}

is an open bounded set, D (B) denotes the space of infinitely differentiable

functions with compact support in B, and (u, v)S =def

∫

S uv dx.

13But the “non-uniqueness” of this kind can be hardly interpreted as non-uniqueness since the issue of fixing C0 has not been clarified, see §7
for further discussion on this.

14This is a consequence of sign change in C0 , because if C0 changes sign, then the inequality M1,2eC0y − 1 ≥ 0 is satisfied for y > ycrit =

− 1
C0

ln M1,2 instead of y < ycrit = − 1
C0

ln M1,2 as in the case C0 < 0, see also Footnote 11.
15The relation is a “weak” counterpart to the balance of linear momentum (3.5). It is formally obtained by multiplying (3.5a) by an arbitrary

function ϕ1 and (3.5b) by an arbitrary function ϕ2, summing up both equations, integrating over a domain B and using integration by parts

simultaneously with the assumption that functions ϕ1,2 vanish on the boundary of the domain B.
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In particular, equation (4.8) must hold for any set B as drawn in Figure 1. Using this particular choice of B we

will show in Lemma 4.1 that the jump discontinuity in the pressure

Π+(x, ycrit) , Π
−(x, ycrit), (4.9)

whereΠ±(x, ycrit) =def limy→ycrit± Π(x, y) are the limits of the pressure approaching the jump from “below” and “above”,

is not compatible with (4.8), although the pair Π and U is a solution to the governing equations (3.5) except the line

Γ =
{

[x, y] ∈ R
2| y = ycrit

}

(thus up to a set of measure zero). This is an important observation, since it shows that

“averaging” in the notion of a weak solution is in our case sensitive to discontinuities even if the discontinuities take

place in a small set. The fact that (4.4) and other solutions with discontinuous pressure are not weak solutions is in

our opinion a significant drawback of such solutions.

As we have already pointed out Hron et al. [1] were not aware of the fact that the solutions they constructed have

a jump discontinuity in the pressure since they studied only the pressure in the cross-section x = 0, and the pressure

in this cross-section is continuous and has continuous derivatives.

Lemma 4.1 (Solution with jump discontinuity in the pressure is not a weak solution). Let U(y), Π(x, y) be a weak

solution to system (3.5) with appropriate boundary conditions—the solution in particular satisfies (4.8)—and let

U ′(ycrit) = 0. Then16

∀x ∈ R : Π+(x, ycrit) = Π
−(x, ycrit). (4.10)

Consequently, neither of the solutions (4.4), (4.5), (4.6) and (4.7) is a weak solution.

Proof. Let us integrate (4.8) by parts separately in B+ and B− (see Figure 1), and use the fact that the governing

equations hold in B± pointwise and that U ′(ycrit) = 0. More explicitly

0 =

(

αΠ
(

U ′
)p−1
,
∂ϕ1

∂y
+
∂ϕ2

∂x

)

B
− (Π, divϕ)B =

(

− ∂
∂y

(

αΠ
(

U ′
)p−1

)

+
∂Π

∂x
, ϕ1

)

B+

+

(

− ∂
∂y

(

αΠ
(

U ′
)p−1

)

+
∂Π

∂x
, ϕ1

)

B−
+

(

− ∂
∂x

(

αΠ
(

U ′
)p−1

)

+
∂Π

∂y
, ϕ2

)

B+

+

(

− ∂
∂x

(

αΠ
(

U ′
)p−1

)

+
∂Π

∂y
, ϕ2

)

B−
+

(

Π+ − Π−, ϕ2(·, ycrit)
)

Γ =
(

Π+ − Π−, ϕ2(·, ycrit)
)

Γ

hence ∀ϕ2 ∈ D(B) : (Π+ − Π−, ϕ2(·, ycrit))Γ = 0 and (4.10) immediately follows.

ex̂

eŷ

y = ycrit

y

x

B−

B
B+

U = U(y)ex̂

Γ

Figure 1: Problem geometry.

5. Analytical formulae for non-monotone velocity profiles with continuous pressure

5.1. Formulae for negative C0

Suslov and Tran [3] also report another kind of solution, the so-called Poiseuille like solution. This solution

arises form the assumption that the velocity profile is not monotone and that the derivative U ′(y) changes sign once

16By ∀x ∈ R we mean for all x up to a zero measure set in R.
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in y ∈ (−1, 1). Let us denote—following Suslov and Tran [3]—this point as Y, and let us assume that U ′(y) ≥ 0 in

y ∈ (−1, Y) and U ′(y) ≤ 0 in y ∈ (Y, 1). In the part of the domain where we assume the derivative to be negative, the

governing equations take form17

−∂Π
∂x
− α ∂
∂y

(

Π
(−U ′

)p−1
)

= 0, (5.1a)

−∂Π
∂y
− α ∂
∂x

(

Π
(−U ′

)p−1
)

= 0, (5.1b)

and the system can be solved once again analytically, and if we combine the solutions for y ∈ (−1, Y) and y ∈ (Y, 1),

we get the following solution (we again assume that C0 < 0)

U(y) =



















y+1

α2 +
4
α2C0

1−eC0 (y+1)

(1+eC0(y−Y))(1+eC0(Y+1))
, y ∈ [−1, Y) ,

V +
1−y

α2 − 4
α2C0

1−eC0 (y−1)

(1+eC0(y−Y))(1+eC0 (Y−1))
, y ∈ [Y, 1] ,

(5.2a)

Π(x, y) =
1 + eC0(Y−y)

1 + eC0Y
eC0( x+y

2 ), y ∈ [−1, 1] , (5.2b)

where the unknown constant18Y is now determined using the continuity condition on the velocity, thus limy→Y+ U(y) =

limy→Y− U(y). This leads to implicit equation19

4 sinh (C0Y)

cosh (C0Y) + cosh C0

− 2C0Y = −α2VC0. (5.3)

The non-monotone velocity profile and corresponding pressure are plotted in Figure 2. Since (5.2) is a classical

solution (the governing equations are satisfied pointwise), it is also a weak solution.

5.2. Formulae for positive C0

One can also derive a similar solution even for C0 > 0, but this result is not important for the following discussion.

We refer the reader to Suslov and Tran [3] for details.

6. Parameter range for velocity profiles with inflection

In the previous sections we have shown that there exist one set of parameters that leads—provided we are willing to

accept the discontinuity in the pressure—to velocity profiles with inflections and to multiple solutions to the governing

equations. Now we can try to describe the whole parameter range where we can observe velocity profiles with

inflection.

We have seen that for the existence of velocity profiles with inflections there must exist a critical point in the

channel, we therefore require ycrit ∈ (−1, 1). If this is true, then we immediately get—in virtue of (3.3a)—that there

17Note that if U′(y) ≤ 0, then |U′|p−2 U′ = − |U′|p−1.
18In fact we set M = e−C0Y in the already derived formulae. If we go through the derivation of the solution for U′(y) ≥ 0, then the only difference

for the solution with U′(y) ≤ 0 is that for U′(y) we finally get

U′(y) = − 1

α2

(

MeC0 y − 1

MeC0 y + 1

)2

= − 1

α2

(

eC0 (y−Y) − 1

eC0 (y−Y) + 1

)2

instead of (3.6), thus the formula for the velocity is U(y) = −
(

y−Y

α2 +
4
α2C0

1

eC0 (y−Y)+1
+ K

)

, where the constant K must be fixed by the boundary

condition (2.1d). The derivative of pressure using (5.2b) is obviously

∂Π

∂y
=

C0

2

1 − eC0 (Y−y)

1 + eC0 (Y−y)
Π,

using this fact, one can immediately see that (5.2) is—for y < Y—indeed a solution to (2.1).
19The implicit equation has only one solution, since the implicit function is monotone in Y .
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are in fact two such points, and that the situation is qualitatively the same (after proper labeling of the roots of (3.2a))

as in the previous sections. Therefore the whole problem of finding the parameter range that leads to velocity profiles

with inflections reduces to problem whether for given α and V there exist C0 such that ycrit = − 1
C0

ln M1 ∈ (−1, 1) .

Since M is a solution to (3.2a) we can plot ycrit as function of C0, assuming the rest of parameters are being kept

fixed. Let us again choose α = 1, V = 1 and let us consider only the root M = −δ +
√
δ2 − 1. Then we get the

following plot of ycrit (see Figure 3). Point Cinf
0

denotes value of C0 below which we have a critical point ycrit in the

channel, Cex
0

denotes value of C0 where the formula for root of (3.2a) fails to provide real roots, thus the point where

δ = −1.

In our particular situation we have Cex
0
= −3.830016096, Cinf

0
= −1.915008048, and in the whole range

(

Cex
0
,Cinf

0

)

the situation is qualitatively the same as in §4, and all conclusions reached in this section are valid. We note that

Cinf
0
= −1.915008048 is exactly the value of K that is used in Figure 4 in Suslov and Tran [3], and that is the value of

C0 for which the critical point lies on the channel wall—we can indeed see that one of the velocity profiles given in

their Figure 4 has derivative equal to zero on the channel wall.

If one wants to get the formulae for Cex
0

and Cinf
0

, it is possible to derive the following implicit equations (see

also Suslov and Tran [3])

−2 tanh Cinf
0 =

(

α2V − 2
)

Cinf
0 , (6.1a)

cosh Cex
0 +

4

α2V − 2

sinh Cex
0

Cex
0

= −1. (6.1b)

7. Realistic problem setting – fixing pressure at two points and other possibilities

As we have already noted—see the introductory part in §3—we have not fixed the constant C0 using data (bound-

ary conditions, value of the pressure at given point); we have assumed that C0 is given a priori.

7.1. Fixing pressure at two points

If we—in addition to (2.1e)—try to fix the value of pressure at another point or fixing the pressure gradient, we

can still have multiple solutions if we allow the pressure to be a discontinuous function. One can for example try to

fix C0 by the following additional requirement

Π|[x,y]=[1,0] = e
C
2 , (7.1)

since we want the pressure to be positive, we can always rewrite the value of the pressure in the form given above.

7.1.1. Velocity profiles with inflection and non-monotone velocity profiles

Let us for simplicity assume that C < 0 and for the sake of illustration, let us pick C = −3.8, that is a value that

falls into the parameter range for velocity profiles with inflection. If we want to get an inflection in the velocity profile,

we have to choose an appropriate solution from options (4.4), (4.5), (4.6) and (4.7).

Let us now denote C0 =def C. If we want C0 < 0, then the available options are20(4.4) and (4.5). But we can not

use (4.5) since in this case the pressure at the centerline is given by ΠR(x, y), and pressure gradient on the centerline

is therefore positive, and consequently condition (7.1) can not be met. The only option is to use (4.4). Indeed, in this

case the critical point ycrit = − 1
C0

ln M1 lies in the positive half line, and if we are interested in values of the pressure

on the centerline, we always deal with ΠL(x, y) in (4.4b), obviously the pressure fulfills (2.1e) and (7.1). We therefore

have at least one solution

U(y) =
y + 1

α2
− 4M1

α2C

eCy − e−C

(

M1e−C + 1
) (

M1eCy + 1
) , y ∈ [−1, 1] , (7.2a)

Π(x, y) =



















ΠL(x, y) = M1+e−Cy

M1+1
eC

x+y

2 , y ∈
[

−1,− 1
C

ln M1

)

,

ΠR(x, y) =
1

M1
+eCy

1
M1
+1

e−C
x+y

2 , y ∈
[

− 1
C

ln M1, 1
]

.
(7.2b)

20Suppose that we have already found solutions to (3.2a) and we have denoted them in such way that M1 > 1 and M2 < 1.
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Let us try to generate another solution, let us now denote C0 =def −C, if we want C0 > 0 then the available options

are21(4.6) and (4.7). Now we can not use alternative (4.6) since for this type of solution the pressure at the centerline

is given by ΠR(x, y) and pressure is therefore increasing along the centerline. Formula (4.7) however gives a solution,

because in this case pressure at the centerline is given by ΠL(x, y) and we can satisfy condition (7.1). The alternative

solution is therefore

U(y) =
y + 1

α2
+

4 1
M1

α2C

e−Cy − eC

(

1
M1

eC + 1
) (

1
M1

e−Cy + 1
) , y ∈ [−1, 1] , (7.3a)

Π(x, y) =



















ΠL(x, y) = M1+e−Cy

M1+1
eC

x+y

2 , y ∈
[

−1,− 1
C

ln M1

)

,

ΠR(x, y) =
1

M1
+eCy

1
M1
+1

e−C
x+y

2 , y ∈
[

− 1
C

ln M1, 1
]

,
(7.3b)

but unfortunately, formulae (7.2) and (7.3) are the same, since the formulae for pressure are obviously identical, and

we have (4.1) for the velocity.

Furthermore, we can also have a solution with a non-monotone velocity profile that is given by (5.2) with C0 = C,

thus

U(y) =



















y+1

α2 +
4
α2C

1−eC(y+1)

(1+eC(y−Y))(1+eC(Y+1))
, y ∈ [−1, Y) ,

V +
1−y

α2 − 4
α2C

1−eC(y−1)

(1+eC(y−Y))(1+eC(Y−1))
, y ∈ [Y, 1] ,

(7.4a)

Π(x, y) =
1 + eC(Y−y)

1 + eCY
eC( x+y

2 ), y ∈ [−1, 1] , (7.4b)

where Y is a solution to implicit equation22

4 sinh (CY)

cosh (CY) + cosh C
− 2CY = −α2VC. (7.5)

We therefore have two solutions, solution (7.4) with non-monotone velocity profile and continuous pressure and

(7.2) with monotone velocity profile with inflection and discontinuous pressure.

7.1.2. Monotone velocity profiles without inflection point

If C is in the parameter range that does not lead to velocity profiles with inflection (let us again for definiteness

fix C = −1, C < 0), then the situation is different from the situation in the previous paragraph, because now we do

not have the possibility of dealing with a non-monotone velocity profile, since for this particular choice of C we—

from (7.5)—would get Y > 1 (in our case Y = 1.723618963), but one of the assumptions that leads to a solution of

type (7.4) was that Y ∈ (−1, 1).

One should also note, that the value of C that gives Y = 1 is equal to C0
inf

given by (6.1a), this is obvious since

for Y = 1, the implicit equation (7.5) coincides with (6.1a). Therefore whenever the critical point ycrit is within the

channel, Y is also within the channel and vice versa—velocity profiles with inflection are always accompanied by

non-monotone velocity profiles.

Now we can take C0 =def C in (4.4) and (4.5), and a quick calculation gives ycrit = − 1
C0

ln M1 > 1 in (4.4)

and ycrit =
1

C0
ln M1 < −1 in (4.5). In our particular case we have M1 = 6.152923926 and consequently ycrit =

±1.816927404. Therefore, the pressure in (4.4) is, for all y ∈ [−1, 1], given by ΠL(x, y), whereas in (4.5) pressure in

the whole domain is equal to ΠR(x, y). More precisely, (4.4) is for a parameter range that does not lead to velocity

profiles with inflection, and is given by

U(y) =
y + 1

α2
− 4M1

α2C0

eC0y − e−C0

(

M1e−C0 + 1
) (

M1eC0y + 1
) , y ∈ [−1, 1] , (7.6a)

Π(x, y) = ΠL(x, y) =
M1 + e−C0y

M1 + 1
eC0

x+y

2 , y ∈ [−1, 1] , (7.6b)

21Suppose that we have already found solutions to (3.2a) and we have denoted them in such way that M1 > 1 and M2 < 1.
22A brief inspection of the equation shows that the equation has an unique solution.
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whereas (4.5) reduces to

U(y) =
y + 1

α2
−

4 1
M1

α2C0

eC0y − e−C0

(

1
M1

e−C0 + 1
) (

1
M1

eC0y + 1
) , y ∈ [−1, 1] , (7.7a)

Π(x, y) = ΠR(x, y) =
M1 + eC0y

M1 + 1
e−C0

x+y

2 , y ∈ [−1, 1] . (7.7b)

Obviously, if we want to satisfy condition (7.1), we have to choose a solution of the type (4.4), thus (7.6). Both

“solutions” are compared in Figure 4. Now it is easy to understand why Hron et al. [1] claim that the problem has in

this case multiple solutions. If we indeed solve the problem in such way that C0 is almost treated as a material constant

(“clearly related the pressure gradient along the x-direction”) then both (7.6a) and (7.7) are solutions, nevertheless if

we—instead of just assigning a value for C0—require an explicit procedure for fixing its value (fixing pressure at

two points, fixing pressure gradient and pressure at one point), then this procedure will automatically tell us which

solution must be ignored, and which solution is the unique solution to the problem. If Hron et al. [1] had given plots of

pressure on the channel centerline—Figure 4(f)—they would have been able to notice the importance of being more

specific with regard to which procedure is to be used in fixing the remaining free parameter C0.

7.2. Fixing pressure gradient and pressure at one point

Another possibility of how to make the problem determinate is to require the pressure to attain a given value at a

certain point, (2.1e), and additionally to have a prescribed gradient at this point,

∂Π

∂x

∣

∣

∣

∣

∣

[x,y]=[0,0]

=
C

2
. (7.8)

In this case the discussion is identical to the discussion in the previous section. Indeed if C allows velocity

profile with inflection and a non-monotone velocity profile, then (7.2) and (7.4) are solutions to problem (2.1) with

condition (2.1e) supplemented by (7.8). Similarly, if C does not allow velocity profiles with inflection, (7.6) is solution

to problem (2.1) with condition (2.1e) supplemented by (7.8).

7.3. Fixing volumetric flow rate and pressure at one point

Another possibility is to fix the pressure at one point, (2.1e), and the volumetric flow rate, thus

∫ 1

−1

U(y) dy = Q. (7.9)

Although it is easy to get the formulae for volumetric flow rate, the equation for C0 that arises form (7.9) is a compli-

cated implicit equation. The numerical treatment of the problem is more suitable in this case, and numerical results

have been given in Hron et al. [1].

8. Analytical formulae for discontinuous velocity profiles with continuous pressure

Now one can ask, whether we can for example relax the assumption on the continuity of velocity23. We can try to

require pressure to take form (3.4), for definiteness we can fix pressure to have the same form as in §5 thus

Π(x, y) =
1 + eC0(Y−y)

1 + eC0Y
eC0( x+y

2 ), y ∈ [−1, 1] . (8.1a)

23This is again (see also Footnote 12) a procedure that we should probably avoid. We can in fact obtain discontinuous velocity profiles even for

the classical Navier–Stokes fluid, indeed, if we consider Couette–Poiseuille channel flow of the classical Navier–Stokes fluid, then any parabolic

velocity profile U(y) solves the governing equations (if we fix the coefficient at y2 to match the prescribed pressure gradient). Now we can divide

the channel to two parts and we can use a different parabola in each part of the channel, the parabola in the bottom part of the channel will be fixed

in such way that it fulfills the boundary condition on the bottom plane and the parabola in the upper part of the channel will be fixed such that

it fulfills the boundary condition on the upper plane. But we still have enough degree of freedom to change for example slope of the parabolas,

and if we do not require the velocity to be continuous we can chose slopes is such way, that the parabolas will not meet on the artificial boundary

separating upper and bottom part of the channel.
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From §5 we already know that velocity profile that corresponds to this pressure is (5.2a) thus

U(y) =



















y+1

α2 +
4
α2C0

1−eC0 (y+1)

(1+eC0(y−Y))(1+eC0(Y+1))
, y ∈ [−1, Y) ,

V +
1−y

α2 − 4
α2C0

1−eC0(y−1)

(1+eC0(y−Y))(1+eC0 (Y−1))
, y ∈ [Y, 1] .

(8.1b)

When we were examining this non-monotone velocity profile, we required continuity of velocity at point Y, and this

requirement lead to the implicit equation (5.3) that fixed the value of Y. But if we do not want the velocity to be

continuous we can choose Y in (8.1) arbitrarily, and consequently we get a discontinuous velocity profile with jump

discontinuity at point Y. A plot of such a solution is given in Figure 5.
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[1] Hron, J., J. Málek, and K. R. Rajagopal (2001). Simple flows of fluids with pressure-dependent viscosities. Proc. R. Soc. Lond., Ser. A, Math.

Phys. Eng. Sci. 457(2011), 1603–1622.
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