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1. Introduetion

In his recent treatise [U], Rawls argues that redistribution should continue
to "that point which ... maximizes the expectations of the least advantaged group".
Moreover in the intergenerational context he argues that "the appropriate
expectation ... is that of the long term prospects of the least favoured extending
over future generations."l

The following note further explores the savings implicetions of this 'maxi-min'
welfare criterion.

Since a "no {net) saving" rule leaves further generations equally well off,
and since saving cen only teke place at the cost of present consumption, such a
criterion might appear to preclude growth either in the short or the long run.
Certainly this is the case if present consumption is the only argument in the
utility function of potential savers. However the situation is no longer clearcut
if the latter also have a personal stake in the future.

One important reason why this should be the case is that generations overlap.
Assuming capital is durable, trades between any generation and its immediate
descendants become feasible. Phelps and Riley [3] have shown that such trades are
in general advantageous to all generations, and that under weak conditions there
is long run accumulation of the capital stock.

Rawls' own suggestion is that each generation benefits from an increase in
future wealth, in that it cares about its immediate descendents. The implications
of this idea have been analyzed in a paper by Arrow {1}, His interpretation is
that the utility of generation t is a function of its own consunption (ct) and the
consumption of its children ( °t+1)'

i.e. W, = W(ct,ct+1)

To simpligy the discussion utility is further assumed to be of the separable form

= .
W£ = U(ct) + U(e

T+ 7 ), 020 (1.1)

t+17?
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Assuming also that the marginal product of cepital is a constant Y (> 0), and that
the population is stationary, Arrow shows that despite the inclusion of future
consumption, net saving after an even number of periods is always zero. Two
possibilities are isolated depending upon whether or not the rate of pure time
preference (p) is larger than the marginal product of cepital. The solutions are
sumarized in figures 1(a) and 1(b), with s¥ equal to the optimal net saving after
t periods.

While economists traditionally assume & non-negative rate of pure time pre-
ference, it is far from cbvious that such an assumption is appropriate in the
context of family transfers. Despite the many desires of the present, and some
degree of myopia with respect to the future, the urge on the part of parents to
provide greater opportunities for their children is strong. In what follows it
is assumed that the latter dominates, that is, children are favored by their .
parents.

One way of expressing such preference for the future is:

Assumption F.  W(c ) > W(ct-t-l’ct) if and only if ¢ ., > c,.

t°Ct+1
That is, parents prefer to switch their own and their children's consumption
bundles if and only if the former are larger. For the separable utility function
given in (1.1), assumption F of course requires p< O.

In the next two sections it is shown that when this assumption is satisfied
the character of the solution changes significantly. First it is no longer the
case that some generations have a higher utility than others. Second, and perhaps
most surprising, the Rawlsiesn maxi-min criterion does lead to long run growth in
the capital stock. Both results are summarized in Figure 2. 4

Interesting also, from a technical standpoint, the solution is no longer a

*balanced variation' of the stationary "nmo savings" economy. Hence the spproach
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Figure 2

JUST SAVING WITH CHILDREN FAVOURED




used by Arrow is not immediately extendible to this case. Instead a dynamic
programming formulation is employed, which not only yields the form of the growth

path but also readily yields Arrow's solution.

2. A Dynamic Progremming Formulation
Individuals of generation t derive utility from their own consumption cy

snd that of their children c , according to a differentieble, strictly quasi-

t+l

concave function W, = W(c ) defined over the positive quadrant. To avold

t £2Ct+1
possible corner solutions it is assumed that W(0,c) = W{c,0) = - =,

It is further assumed that each unit of cepitsl invested during period t hes
a2 net yield vy exceeding zero. Then if kt is the per-capita stock at the begin-

ning of period t and if population is stationary, we have,

keyy = (14 ¥k - )y ¥ >0 (2.1)
Since kt-!-l must be non-negative, kt and ct must satisfy the constraint
0< e < k. {(2.2)

Respecting the preferences of immediate ancestors, the Rawlsien problem in

some period T can be written as:

) = mex [in? {W(c 1} (2.3)

,C
Doy bt

m(k't-l Cra1

subject to {2.1) ana (2.2)

The variables, k and hence k‘r’ are all predetermined.

Cru1?® ¥1-1
Given a finite initial capital stock, the utility of the first generation is

certeinly bounded from sbove. Then the infimum is bounded from sbove, implying

the existence of a supremum m(k ). Moreover a unit incresse in k‘t-—l

1-1°%7-1
increase initial resources by one unit. If the latter is invested in perpetuity,

it yields an annuity of Yy to all generations. Hence m is a strictly increasing
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function of k Meking similer arguments for smell changes in k‘t-l and Cr 1

T-1'
it can be shown that m is also a continuous ﬁmction.2

Having just esteblished that m(+) is bounded from above, it follows that
the supremum is attained and hence that m(k't-l’c'r-l) is the maximum.

Applying Bellman's 'Principle of Optimality' [2], decisions after the (t)~th
period must also constitute an optimal policy and we cen rewrite (2.3) as the

following dynamic programming problem.

m(k ) = max (minlW(e,_,,c.), =l e )]), (2.4)

r

where k_ is given by (2.1).

1-1°%1-1

Note also that for the first generation, there are no ancestral preferences,
hence the first stage of the dynamic programming problem is to o‘btain the solu-
tion for

m:x m(ko,co). (2.5)
0

Before analyzing the nature of the optimal path it is necessary to charac-
terize further the form of the return function m(k,c). This is achieved in the
following lemmas.

Lemma 1. The return function m(k,c) is semi-strictly quasi concave.3

It is convenient to introduce the notation xv to represent a convex
combination of two numbers x' and x"
i.e. x =vx'+(1-v)x" 0< V<,
Writing the optimal sequences corresponding to two initial states (k6 ,cc')) and
(k3 .cp) s {k',x'lk',c } and {xf,c Ik" o} it 1s essy to check thet the convex

(This

combination {kt’ct} is a feasible solution for sn initial state (kg,c\(;).

follows directly from the linearity of the production constraint.)

But W(c' } > m(k!,c!) and W(c t+l) > m(k",c”) for all t. Then from

Cge1 0°% 0°%0
the strict quasi-concavity of W, it follows that vwhenever mn" > m', there exists



ad =8{(v) >0 such that:

W(cys Cppq) > @' +68(V)

VIRY VA
> i ' ' ] . »
Therefore, m(ko,co) > 1:1‘ [W(ct, ct+1)] >nm'. Q.E.D
Corullary l. m(k,c) is quasi-concave

This follows directly from Lemma 1 since m is also continuous.

Lemma 2. The return function m(k,c) is & strictly quasi-concave function of c.

From the previous lemma we know that m is & semi-strietly quesi-concave

function of ¢. It remains to show that when
m(ko,co) m(ko,co) we have
v '
m(ko,co) > m(ko,co) 0 <v <l

Without loss of generality assume c6 < cs. Then for any M such that 0 <u <v
we have cg > cg. From Corollary 1 we also have m(ko,cg) 2 m(ko,c('))

Furthermore, since c6 # cg, the strict quasi-concavity of W implies that

u(eb,cl) > min [U(e 1), Ulel, o))

0°%1

|
> m(ko,co)

Then, if |v - u| is sufficiently small it follows that U(co,cu) > m(kg,el).
The reduction in first period consumption releases (co - co) units of
resources which can be invested in perpetuity yielding an annuity
a = ylch - cp).
But m(ko,cé) U(ct, ct_‘_l) <U(c +a, ¢ :ﬂ + a) for all t > O.

We have therefore obtained a feasible sequence {cg, c;_1 + a, cg + a, «e.} which

yields utility to all generations strictly greater than m(ko ,c(')). Since the
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maximized infimum must be at least as large, we have finally,
n(k.,eo) > mlk,,c?) Q.E.D.
0*"0 070

Corollary 2, For k, mlk,c) achieves a uni paximum at 8 int

] in so.k)o

From our assumptions on W we have m(k,0) = m(k,k) = ~» with m(k,c) > -

on (0,k), Also m is bounded from above. Therefore an interior maximum exists

and given strict 'quasi-conca,vity it is unique. Q.E.D.
All these results are summarized by the iso-m contours in Figure 3.

Since m is an increaaing function of k the contours farther to the right-

correspond to higher values of m. From Corollary 2 it follows immediately

that the solution of the first stage of the dynamic progremming problem is

a unique interior point c*,

0
We now turn to an exemination of the optimal path.

3. Cyclical Growth
From (2.4) the (t)-th stage of the dynamic programming problem is as

follows:

mik,_1.c. ;) =m = m:; (ain [w(ct_l,ct), m(kt,ct)]). (3.1)
t

By assumption, ¥, _, = W(ct-l ,ct) is a strictly increasing function of c , and

from the previous section m, is a strictly quasi-concave function of e, with

a unique maximum Et in (O,kt). Then either the two curves intersect to the
right of the meximum (figure 4(a)), or they do not (figure 4(b)). If the former

the solution is:

m =m = Ulc,

1 D ,_10C,) with e > (3.2)

t



-9-‘

Figure 3. Iso-m Contours
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If the latter, the solution becomes

= L4 = e .
m , =m < U(ct-l’ct) with ¢, = € (3.3)
Combining these results we have immediately;

Theorem 1: The return function m(kt af, ) bas the s value for v

Next, suppose that the solution is m*., From Theorem 1, my = m*, Also
from section 2, the cptimal first period assumption cf maximizes m(ko,co).
Therefore cff = EO as depicted in figure 5.

Furthermore, from (3.2) and (3.3), the optimal consumption c:, is given
by the intersection from above, of m(kg,c) and m = m*, Suppose k: < kg
Since m is strictly increasing in k, the profile m(k: ,¢) lies strictly below

m(ko ,c), implying,

< * < m
m, < max m(kt,c) m

But this contradicts Theorem 1, therefore k: > ko for all t. If the equality,

the solution of the (t)-th stage of the programming problem is as depicted in

#* = of
figure 4(b) and c} = c2.

If the strict inequality, as depicted in Mlgure 5, the three curves, m = m*.
n = U(c:_l o), and m = m(k:,c), all intersect at (c:,m*). Moreover, the larger
the capital stock, the further the m~curve is shifted upwards, and hence the
larger the optimal consumption level. All this is summarized in the following
theoren,

is either positive or zero for all t.

T}) . —- * .
eorem 2, Cumulative saving s t =k =Ky

Furthermore, c:(_>_c3) is a strictly increasing function of k: and

* > ¥ # #) = ¥
whenever c > cff we have U(ct_l, ct) m*,
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It follows that ki = ko if snd only if c{ = cg. But then the second

stage of the dynamic programming problem is identical to the first and

k7 = Kg» €3

period, there is never any saving.

= co*, etc. Therefore, if there is no saving in the first

We now characterize cases vhen first period saving is optimal.

Theorem 3. If the marginal product of capital exceeds the rate of pure

time preference, there is saving in the short run, i.e. ki’ > ko.

We prove the contrapositive. From the above discussion ki’ = ko implies

kg = ko. Also from Theorem 2

cf = c(k:) with e¢'(:) > 0. (3.4)

Therefore, ki = k0 also implies cg = ¢qe We next examine the greatest
minimum utility essociated with all feasible paths of the form

fys kp» kot {egs € o)

In Arrow's terminology, these are the two period 'balanced variations' of the
stationary state. We seek a necessary condition for the optimel first period

capital stock k; to be equal to ko.

From Theorem 2 the additiongal constraint cl 2 ¢, must be imposed.

0
tee. max (min [W(cy,c,), Wey.cp)])
co,cl
kp = {1+ ¥)(ky = ey )= (1+ )%y~ (1+7)%¢ = (1+7v)e;

s.t. k

and ¢ ¢

jv

ot
It is a straightforward matter to check that c{ = C, if and only if

M oW
1t % 5 zY
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Finally applying (3.L), the cptimal first period capital, k} =k, if and

only if this inequality holds. Q.E.D.

We can now prove that the Rawlsien Principle of Just Saving' may imply

long run capital accumulation.

Theorem 4, If assumption F is satisfied, total saving 8, = kt - kg is

always positive and oscillates towards en ssymptote s > O.

The proof is by induction. We know from Theorem 2 that c: > cg for
all t. Moreover assumption F implies a negative rate of pure time preference,

therefore from Theorem 3,

* * # .
k¥ >k, and cf > cB. (3.5)

Now suppose for some t

£ < o < o
€0 = %t-1 " %

We shall prove that c: +1 must lie strictly between the consumption levels

in the two preceding periods.

Writing m* as the infimum we have,

U(cfb", c:ﬂ) > m* : (3.6)

also by assumption c: > c#*, therefore, from Theorem 2, we have,
¥ o #* * .
m U(ct-l’ ct) (3.7)

> ® ¥ .
U(ct, ct-l) by assumption F

Combining this with (3.6) we must have

" AN < ot .
Ctel © Ct4a
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*
Then ¢, > cg and again applying Theorem 2 we have

1

U(c:, °:+1) = m¥,

Comparing this with (3.7) and noting that we haeve assumed, e > cf

it follows that,

* < c*,
Crer S

An elmost identical argument establishes that c§+2 also lies between the
consunption levels in the two periods preceding it. Combining the two

results yields

# < o%* < ok < c¥* .
cl 1 c 1 c o cl (3.8)
whenever
o < o¥ < o 3.9
0 " Tte-l 'ct ( )

From Theorem 2, optimal consumption is & strictly increasing function

of the capital stock, therefore we also have

» * * *
kP, < k“_l <k¥., <x¥ (3.10)

Finally we note that if (3.9) is true for t = T, it must be true for t = T+2
(from (3.8)). Since we have seen that it is true for ¢t =1, (3.8) end hence

(3.10) must hold for all odd t.

<*< <*<* eliedle
i.e. ko k2 ove k3 kl Q.E.D

For completeness we conclude by summarizing the implications of the al-

ternative assumption that generations favour themselvas over their children.



We can express this as:

Assumption S: W(c_,c, ,.) > W(e

£ 24 ) 2 ’c+1’ct) if and only if ¢, > ¢

t+l

Clearly the utility functions (1.1l) comsidered by Arrow all have the
property S.
From Theorem 2, c: > cs and either c{ = cs, in which case the optimal

solution is the stationary solution, or cf > cg.

Suppose the latter, and that in addition

cs > cg (3.11)

Then

U(ci',cg) > U(c*,cg) by (3.11)

> * ok 3 * > o¥
> U(co,cl) from Assumption S and cf > cff

> m¥* since n* is the infimum

But from Theorem 2

" % #* #* = ot ;
U(cl,cz) >m* + c4 = c} contradicting (3.11)

It follows that the optimal second period consumption c; must equal the
initial consumption cg, and from Theorem 2, k,’z' = ko.

Therefore, in either case net savings must be zero after two periods.
Whether or not savings in the short run is optimal is then determined by ex-
amining all feasible two period 'balanced variations'. The proof of Theorem 3
establishes that the criticel condition is the relative size of the rate of

pure time preference and the marginal product of capital., We therefore have

finally:
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Theorem 5. If assumption S is satisfied, cumulative saving is zero after

two periods. Furthermore, short run (saw-tooth) saving is

optimal if end only if the marginal product of capital exceeds

the rste of pure time preference.
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Footnotes

Rawls, op. cit. p 285.

For a fuller discussion of the issues involved see Phelps and Riley,
op. cit.

A function f(x) is said to be semi-strictly quasi-concave if for any
x', JXC.” such that £{x'') > £(x') we have £(Ax' + (2-A)x'*) > £(x'),
0 < <1l.

Having established that k: > ko for all t, it then follows from Theorem
3 that U(cg‘l,cg) = m* for all t, as depicted in figure 2.
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