
Further Results and Considerations on Side Channel
Attacks on RSA

Vlastimil Klíma1 and Tomáš Rosa1,2

1 ICZ, Prague, Czech Republic
2 Dept. of Computer Science and Eng., FEE, Czech Technical University in Prague

{vlastimil.klima, tomas.rosa}@i.cz

Abstract. This paper contains three parts. In the first part we present a new side
channel attack on a plaintext encrypted by EME-OAEP PKCS#1 v.2.1. In con-
trast with Manger's attack, we attack that part of the plaintext, which is shielded
by the OAEP method. In the second part we show that Bleichenbacher's and
Manger's attack on the RSA encryption scheme PKCS#1 v.1.5 and EME-OAEP
PKCS#1 v.2.1 can be converted to an attack on the RSA signature scheme with
any message encoding (not only PKCS). In the third part we deploy a general
idea of fault-based attacks on the RSA-KEM scheme and present two particular
attacks as the examples. The result is the private key instead of the plaintext as
with attacks on PKCS#1 v.1.5 and v.2.1. These attacks should highlight the fact
that the RSA-KEM scheme is not an entirely universal solution to problems of
RSAES-OAEP implementation and that even here the manner of implementa-
tion is significant.

1 Introduction

In 1998, Bleichenbacher [5] described an attack on the PKCS#1 v.1.5 encoding and in
2001 Manger [15] described an attack on the improved scheme EME-OAEP PKCS#1
v.2.1, called also RSAES-OAEP. These attacks underline the significance of the theo-
rem of RSA individual bits [13] which states that: If RSA cannot be broken in a ran-
dom polynomial time, then it is not possible to predict the value of any selected bit of
the plaintext with a probability not negligibly different from 1/2. A negligible differ-
ence for the purpose of this theorem is such ε(n) that for any constant c > 0 it holds
that ε(n) < L(n)-c, where L(n) is the length of an appropriate sufficiently large RSA
modulus n. From the standpoint of side channels it is important to understand this
theorem as saying: If the value of any chosen bit of the plaintext can be predicted with
a probability not negligibly different from 1/2 then RSA can be broken within a ran-
dom polynomial time. Breaking RSA [21] is understood here to mean that a value of
the plaintext is obtained. Bleichenbacher's and Manger's attacks use side channels
which provide the attacker with a relatively large amount of information about the
plaintext (at least that the two most significant bytes are 00 02 or the first one is 00).

In this paper plaintext will always mean a value of m which is created immediately
after an operation with a private RSA key, m = cd mod n, not the value of M obtained
after decoding m.

In Section 2 we present another possible attack on the RSAES-OAEP (PKCS#1
v.2.1) scheme. It is a chosen ciphertext based side channel attack using only the side
information about Hamming weight of certain 32-bit words produced in the process of
decoding m by the EME-OAEP-DECODE procedure according to PKCS#1 v.2.1.
Theoretically, it is a weakening of the assumptions of Manger's and Bleichenbacher's
attacks. From the practical point of view, the new attack can be used especially on
smart cards. It follows from the theorem of RSA individual bits that it is necessary to
prevent the leakage of any information about the individual bits of the plaintext. Our
attack demonstrates that the Hamming weight of a part of the plaintext can be used to
carry out a successful attack.

In Section 3 we present a very simple but efficient conversion of the Man-
ger/Bleichenbacher breaking oracle to a universal (signature) oracle. The principle
that a private RSA key should not be used simultaneously for encryption and for digi-
tal signature is well known but is very often violated in practice. Typical examples
include some of the current implementations of Public Key Infrastructure (PKI), the
SSL protocol etc. We show that if we can perform Bleichenbacher's or Manger's at-
tack on the encryption scheme using PKCS#1 (v.1.5 or v.2.1) in such way that we can
obtain the plaintext then we can also obtain the digital signature of any message (en-
coded in any way) using the same private RSA key. In the SSL protocol this means the
ability to create signatures with the server-side private key and even create false serv-
ers with the identity of the original server, provided that sufficient decrypting speed
can be ensured.

In Section 4 we present a new fault side channel attack on the RSA-KEM. RSA-
KEM attempted to remove the structural relations in order to prevent leaking of in-
formation about the plaintext. Despite this we discovered a natural method of obtain-
ing such information. Input plaintext for RSA-KEM consists of symmetric encryption
keys, information about which can be obtained by means of an integrity check of the
messages they encrypt (e.g. checking the PKCS#5 [18] padding). The result produced
by the attack that uses this information is a private RSA key whilst the attacks on
PKCS#1 v.1.5 and 2.1 always discovered only a plaintext.

2 Side Channel Attack on RSAES-OAEP Plaintext

In this section we will demonstrate a new method of attacking the RSAES-OAEP
scheme (PKCS#1 v.2.1 [17]) at the time when decoding operation EME-OAEP-
DECODE(EM, P) is performed, see Fig. 1. The attack is based on the assumption that
there is a side channel carrying some information about the plaintext. In particular we
assume that the attacker can obtain the Hamming weight w(x) (i.e. the number of '1'
bits) of a word x during the time when the plaintext m is being processed in the MGF
operation (to be specified later). As it was shown in [16], this assumption is realistic
for instance in power side channels which tend to leak this information in a relatively

readable way. We note that this attack is possible with some modifications even when
we have access to the Hamming distance of processed data rather than the Hamming
weight.

side channel

attack due MGF
(SHA-1)

M = EME-OAEP-DECODE(EM,P)

DB

EM = I2OSP(m)

m = RSADP(c) = cd mod n

M 01 PS pHash

0x00

seed

dbMask

maskedSeed

MGF

maskedDB MGFseedMask
Manger's
attack

Fig. 1. New side channel attack against RSAES-OAEP

2.1 Attack Description

Consider RSA with a modulus n which has the length of L(n) bits where L(n) is the
multiple of 512, i.e. L(n) = 512*k, where k is a natural number. The attack will target
the RSAES-OAEP scheme during the processing of the plaintext immediately after the
RSA decryption operation cd mod n, see Fig. 1. SeedMask will be computed according
to [17] as seedMask = MGF(maskedDB,20) = SHA-1(maskedDB || 00 00 00 00),
where the four zero bytes (we will write constants mostly in the hex. notation) are
appended to the message by the MGF function. It follows from the definition of
OAEP encoding that maskedDB always contains 64*k-1-20 bytes, so that 64*k-17
bytes (4 extra zero bytes) enter SHA-1. By the definition of SHA-1 [22] the message

is divided into blocks of 64 bytes, which are processed sequentially by the compres-
sion function. Note that the least significant bit of the original message m is processed
in the last block. It is followed by four zero bytes and 17 bytes of the SHA-1 padding.
For various values of L(n) the particular value of the padding is different, but it is a
constant known to the attacker. To present an example, we will consider n, such that
L(n) = 1024. Let us denote the i-th byte of the plaintext as m[i] where m[0] is the least
significant byte. The last block entering the SHA-1 compression function is in this
case equal to m[42.....0] 00 || 00 00 00 80 || 00 00 00 00 || 00 00 00 00 || 00 00 00 00 ||
00 00 03 78, where m is followed by 4 zero bytes (from MGF) and the SHA-1 pad-
ding. The padding consists of bit 1, 71 zero bits and a 64-bit representation of the
message bit length. The length is 88810 = 0x00000000 00000378 bits in this case
(64*2–17 = 11110 bytes). The SHA-1 compression function fills this last block into
32-bit variables W0, ..., W15, where W8 = m[10] m[9] m[8] m[7], W9 = m[6] m[5] m[4]
m[3], W10 = m[2] m[1] m[0] 00, W11 = 00 00 00 80, W12 = 00 00 00 00, W13 = 00 00
00 00, W14 = 00 00 00 00, W15 = 00 00 03 78. And then expansion to words W16 , ...,
W79 is performed according to the following relations (where S1 denotes the left cyclic
shift by one bit) W16 = S1(W13 xor W8 xor W2 xor W0), W17 = S1(W14 xor W9 xor W3 xor
W1), W18 = S1(W15 xor W10 xor W4 xor W2), etc. When calculating W16, the first opera-
tion performed is W13 xor W8, where W13 is a known constant. This moment is an ex-
ample of a general situation when D-1 known parameters and one unknown enter a D-
ary operation. Here various side channels are often applicable, especially the power
side channel.

We assume that the attacker is able to gather the Hamming weight w(W8) ∈ {0, ...,
32} of word W8 during the W13 xor W8 operation (W8 is the only unknown operand in
it). The same situation arises in the following two operations as well, so we are able to
gather w(W9) and w(W10).

We number the bits of the word Wi (from the msb to the lsb) as Wi,31 Wi,30 Wi,29 ...
Wi,0. We will show that now we can predict the value of W10,8 with a probability not
negligibly different from 1/2. Note that this is the value of the least significant bit (lsb)
of the plaintext m. Hence, using the theorem of RSA individual bits [13] we can de-
sign an attack on the entire plaintext. It is widely known that information about the lsb
of the plaintext leads to very efficient attacks [25, p.144].

2.2 Obtaining the Least Significant Bit of a Plaintext (Building an lsb-Oracle)

The procedure which leads to obtaining the value of W10,8 is as follows. We denote the
ciphertext to be attacked as c, the modulus as n and the public RSA exponent as e.
First we let the attacked device decrypt and decode the original ciphertext c. During
decoding we gather the values of Hamming weights w(W8), w(W9) and w(W10). In the
next step we request the equipment to decrypt and decode a value c' = c*2-e mod n.
Plaintext m' is the result of this and during the calculation we will obtain Hamming
weights w(W8'), w(W9') and w(W10'). If the bit W10,8 is zero, then the decryption returns
the value m' = m >> 1, where ">> 1" means a shift one bit to the right. Otherwise m' =
(m + n) >> 1. If we assume W10,8 = 0 then (W8', W9', W10') will be created of (W8, W9,
W10) by a shift one bit to the right (with the exception of W10, where the shift only

affects the leftmost bits which are then independently complemented by eight zero
bits). The difference between appropriate Hamming weights w(W8), w(W9), w(W10)
and w(W8'), w(W9'), w(W10') is therefore 0 or 1. More precisely w(W8') = w(W8) - W8,0
+ W7,0, w(W9') = w(W9) - W9,0 + W8,0, w(W10') = w(W10) - W10,8 + W9,0 = w(W10) + W9,0
and therefore the three relations included in exactly one of the eight rows of Table 1
are valid.

Table 1. Possible relations among random variables W and W' when W10,8 = 0

W9,0 W8,0 W7,0 Possible relations
0 0 0 w(W10') = w(W10) w(W9') = w(W9) w(W8') = w(W8)
0 0 1 w(W10') = w(W10) w(W9') = w(W9) w(W8') = w(W8) +1
0 1 0 w(W10') = w(W10) w(W9') = w(W9) +1 w(W8') = w(W8) -1
0 1 1 w(W10') = w(W10) w(W9') = w(W9) +1 w(W8') = w(W8)
1 0 0 w(W10') = w(W10) +1 w(W9') = w(W9) -1 w(W8') = w(W8)
1 0 1 w(W10') = w(W10) +1 w(W9') = w(W9) -1 w(W8') = w(W8) +1
1 1 0 w(W10') = w(W10) +1 w(W9') = w(W9) w(W8') = w(W8) -1
1 1 1 w(W10') = w(W10) +1 w(W9') = w(W9) w(W8') = w(W8)

However, if W10,8 = 1, m' is not created by a shift of m, but produced as (m + n) >>

1. This, with a high probability, destroys the linear relations in the Table 1. By the
obtained weights (w(W8), w(W9), w(W10)) and (w(W8'), w(W9'), w(W10')) we determine
whether they fit all relations in any single row. If so, we adopt a hypothesis that W10,8
= 0, otherwise we refuse it and assume that W10,8 = 1. The probability of establishing
the bit W10,8 correctly is close to 1 for an ideal side channel. It will be sufficient to
realize that m is randomized by a hash function in MGF and n is assumed to be com-
mon, not specially constructed. Therefore, the probability of adopting the hypothesis
that W10,8 = 0 if it was W10,8 = 1, can be estimated as the probability that the random
variables W8, W9, W10 and W8', W9', W10' (with the properties that lower nine bits of W10
are 1000000002 and lower eight bits of W10' are 000000002) will fit any of the rela-
tions in Table 1, which is approximately 0.008. That enables us to obtain the least
significant bit of the plaintext m with a high probability and therefore, in accordance
with [13] we can establish the remaining part of m.

For the demonstration purpose the procedures in [13] can be used directly, in par-
ticular we suggest the methods based on computing gcd (for details see [2]). However
some improvements of these procedures are necessary when planning a real practical
attack (mainly with respect to a minimization of oracle calls, because some devices
may limit the total amount of RSA decryptions). First we need to compute our oracle’s
advantage, which we define in the following way: Let the lsb(m) be the least signifi-
cant bit of the plaintext m corresponding the ciphertext c and let the Olsb(c) be the
oracle’s estimate of lsb(m). We assume that the oracle works according to the proce-
dure described above. The advantage adv is defined as adv = |P[lsb(m) = Olsb(c)] –
1/2|, where the probability of correct estimation, P[lsb(m) = Olsb(c)], is computed over
the probability space of all possible ciphertexts and all possible oracle internal coin
tosses. From [13] we have that the adv must be at least non-negligible (c.f. above).

The higher advantage the better oracle we have. Of course, better oracle leads to a
more efficient attack. For instance, if we have an oracle with adv = 1/2, then we can
use well known and rather quick methods, needing approximately O(L(n)) oracle calls
(c.f. for example [25, p.144]).

If adv < 1/2, we have to employ some methods, which are equipped with a built-in
error correction. In fact, these methods must have been already employed in the proofs
of theorems in [2,13]. But these proofs have rather existential form, which is not suit-
able for a practical attack. However there are stronger proofs developed in [9] and
improved later in [10], which can be used to mount practically feasible attacks. In
particular we suggest to use the RSA inversion algorithm ([10, p.226]), which de-
scribes a randomized algorithm for the RSA decryption, which needs approximately
O(L(n)2adv-2) oracle calls ([10, p.223]).

Note that using the absolute value for adv (c.f. definition above) is possible here
since there is no dependence between previous oracle responses and further oracle
calls in the RSA inversion algorithm. Therefore we can run this algorithm (in particu-
lar parts 2. and 3. – c.f. [10, p.223]) twice, once for Olsb(c), once for neg(Olsb(c)),
where we use simple inversion of the responses captured in the previous run. Such a
method induces only a constant multiplicative slow down in the computational part of
the algorithm, without an increase of the number of total oracle calls. On the other
hand this method allows to exploit any correlation between oracle response and the
correct value of lsb(m). This further relaxes requirements on the quality of particular
side channel used in this attack.

There are other questions, which have to be carefully answered when developing an
efficient attack – namely on how to measure Hamming weights, whether to do some
error corrections during a measurement phase or whether to let it all on a majority
decision used in the RSA inversion algorithm, etc. In this paper we strive to show that
such an attack is possible and that it operates in a random polynomial time, having in
mind that its concrete efficiency strongly depends on a particular implementation.
From here we would like to emphasize the importance of a thorough implementation,
which cannot simply be reduced to the problem of finding “the right encoding
method” as was perhaps deemed earlier.

3 Note on Converting the Deciphering Oracle to a Signing Oracle

In this section we will demonstrate that if the attacker can use Bleichenbacher's or
Manger's attack on the PKCS#1 v.1.5 or 2.1 encryption scheme, he/she is also able to
create false signatures using the same private RSA key with any encoding of the mes-
sage to be signed. This conversion is technically very simple but it has interesting
practical consequences on the applications where the same key is used both for en-
cryption and for digital signature. One example is the SSL/TLS protocol used to se-
cure access to web servers. In its application the public key certificate at the server
sometimes permits the use of the key both for encryption and for signature. That
means that a signature made by the server's private key is meaningful in the PKI sys-
tem and it is not appropriate that it should be forgeable. Conversion will be demon-

strated for both Bleichenbacher's attack on PKCS#1 v.1.5 and for Manger's attack on
PKCS#1 v.2.1. Manger's attack uses only one element of the EME-OAEP PKCS#1
v.2.1 encoding - whether a zero occurred in the most significant byte (MSB) of the
plaintext decrypted by the private key. We will denote the oracle which tells the at-
tacker this as “Partial information oracle” PIOMSB: PIOMSB(c) = "yes" iff c = me mod
n, MSB(m) = 0x00. Using this oracle a decryption machine (Whole information ora-
cle) WIOMSB is constructed in [15]. If the plaintext has a format of m = 00 ||, then
the WIOMSB (using PIOMSB) can extract from the ciphertext c the original plaintext m
= WIOMSB(c) = cd mod n. Now, we will assume that the same private key (d) is used in
another RSA scheme (with any encoding) for digital signature. The attacker can now
easily forge the digital signature of any message using the same private key (d) if
he/she has access to PIOMSB. Let c be the message that the attacker prepares for sign-
ing. He/she then selects different random natural numbers r = r1, r2, ... smaller than n
and sends c' = c*re mod n to the oracle PIOMSB successively. After decryption there is
calculated m' = m*r mod n on the recipient's side. Unless the most significant byte of
m' is zero, it is rejected by PIOMSB: PIOMSB(c') = "no". Because the most significant
byte of m' is random, it is zero with a probability of 1/256. After several hundreds of
trials the value of c' will conform with the initial condition of Manger's attack and
WIOMSB then decrypts c': m'= WIOMSB (c') = (c')d mod n. The attacker then only has to
calculate m = m'* r-1 mod n as a valid signature of the message c. The particular type
of encoding for a signature is irrelevant here. The attacker follows the same procedure
when converting Bleichenbacher's attack. This attack assumes the oracle PIOPKCS-CONF,
which tells the attacker whether the plaintext produced by decryption is “PKCS#1
conforming” [5]. That means that the two most significant bytes of the plaintext must
be equal to 00 || 02 and from the 11th byte onwards some byte must be zero (separa-
tor). On the basis of PIOPKCS-CONF a decryption machine WIOPKCS-CONF is then con-
structed. If the plaintext is “PKCS#1 conforming”, then WIOPKCS-CONF can use
PIOPKCS-CONF on the corresponding ciphertext c to obtain the original plaintext m =
WIOPKCS-CONF(c) = cd mod n. Using the same procedure as above, i.e. by a randomly
selected r, we test whether PIOPKCS-CONF on c' = c*re mod n responds “yes”. This time
the probability of such answer is several hundred times lower than in the case of Man-
ger's attack (depending on the number of bits of n; for 1024 it is approximately 715-
times less, see [15]). As soon as such a situation occurs, the attacker can again com-
pute m = m'* r-1 mod n as a valid signature of the message c. Note that the attack de-
scribed in Section 2 of this paper does not place any special requirements on the ci-
phertext. It is therefore suitable for forging signatures even without any changes.

In the case of the SSL/TLS protocol the concrete threat of this attack depends not
on the protocol itself, but rather on the PKI, which the particular server works in. This
PKI manages the server certificate and this PKI decides (via certificate attributes)
whether signatures on behalf of that server are meaningful or not. In practice we have
seen many server certificates, which were attributed for the purpose of document sign-
ing as well.

4 Side Channel Attack on RSA-KEM

After Bleichenbacher's attack on the scheme PKCS#1 v.1.5, the new scheme PKCS#1
v.2.1, based on the EME-OAEP encoding, was recommended for use. However, Man-
ger's attack [15] showed that RSAES-OAEP is also vulnerable to side channel attacks.
After that Shoup [23] proposed the new key encapsulation mechanism RSA-KEM.
This mechanism was believed to have eliminated problems with side channels. We
show that RSA-KEM is also vulnerable to some types of side channel attacks, and
therefore has to be implemented carefully. Next we will describe an RSA confirmation
oracle (CO) based on RSA-KEM and show how to use a CO to obtain a RSA private
key.

4.1 Confirmation Oracle

The purpose of RSA-KEM is to transmit the symmetric key to the receiver, and so it is
natural to consider the properties of the whole hybrid public-key encryption scheme
H-PKEKEM, DEM, consisting of the Data Encapsulation Mechanism (DEM) and the Key
Encapsulation Mechanism (KEM) (c.f. [23]). Our attack on RSA-KEM is based on the
behaviour of the entire hybrid scheme. Its requirements are sufficiently general and
make it easily realizable in practical applications. We will start by reviewing some
important terms from [23] in a simplified form:

The Key Encapsulation Mechanism (KEM) has this abstract interface:
KEM.Encrypt(PubKey) → (K, C0) - generates a symmetric encryption key K and

by using the public key PubKey creates a corresponding ciphertext C0
KEM.Decrypt(PrivKey, C0) → (K) - decrypts C0 using the private key PrivKey

and derives the symmetric key K by applying the key derivation function KDF to that
result

The Data Encapsulation Mechanism (DEM) has this abstract interface:
DEM.Encrypt(K, M) → (C1) - encrypts the message M with the symmetric key K

and returns the corresponding ciphertext C1
DEM.Decrypt(K, C1) → (M) - decrypts the ciphertext C1 with the symmetric key K

and returns the plaintext M
The hybrid public-key encryption scheme H-PKEKEM, DEM is a combination of the

KEM and DEM schemes. The algorithm for the encryption of a message M by the
public key PubKey resulting in the ciphertext C is as follows:

1. (K, C0) = KEM.Encrypt(PubKey)
2. C1 = DEM.Encrypt(K, M)
3. Ciphertext C = C0 || C1
On the receiving end, the decryption of the ciphertext C with the private key

PrivKey is carried out as follows:
1. Let C = C0 || C1
2. K = KEM.Decrypt(C0)
3. M = DEM.Decrypt(K, C1)
We assume that there is no integrity check for the key K (e.g. analogous to a check

used in the encoding method OAEP) however an integrity check exists for the mes-

sage M in the third step. It can be based on the message padding check, as in PKCS#5
[18], on the usage of labels as described in [23], or on any other technique. We as-
sume that the attacker will find out whether the receiver's integrity check rejects a
ciphertext C. In this situation we can expect that the receiver will send an error mes-
sage to the sender. Acceptance or rejection of a ciphertext C defines the receiver ora-
cle (RO). On the basis of RO we can define the confirmation oracle (CO). This term
may be defined more generally, however, we will only define the RSA confirmation
oracle (RSA-CO) here.

We assume that the private key PrivKey is a private exponent d and n is a public
modulus. Later we will show that the modulus n should be part of the private key
rather than independently taken from the public key, as it is recommended in [23].

Definition. RSA confirmation oracle RSA-COd, n(r, y).

Let us have a receiver oracle RO that uses RSA in the hybrid encryption H-
PKEKEM,DEM. We will construct a RSA confirmation oracle RSA-COd, n(r, y) →
(ANSWER = “yes/no”) as follows:

1. K = KDF(r); KDF - Key Derivation Function
2. C0 = y; for simplicity we omit the conversion between integers and strings
3. C1 = DEM.Encrypt(K, M); where M contains an integrity check
4. C = C0 || C1
5. Send the ciphertext C to the receiver oracle ROd, n. RO then continues:

a. Compute K = KEM.Decrypt(d, C0) following these steps:
i. Check if y = C0 < n. If not, an error has occurred.
ii. Compute r' = (yd mod n)
iii. K' = KDF(r')

b. M' = DEM.Decrypt(K', C1)
c. Check the integrity of M'
d. If it is correct, the answer of RO is “yes”, otherwise it is “no”

6. The answer of RSA-COd, n(r, y) is “yes”, if RO returned “yes”, otherwise it is
“no”

We note that whenever r = (yd mod n), the oracle returns “yes”. If r ≠ (yd mod n)
then the oracle returns “no” with a high probability close to 1 (the value depends on
collisions in the function KDF and the strength of the integrity check). The key point
is that an attacker may use the oracle RSA-COd, n(r, y) to check the congruence
r ≡ yd (mod n) without knowledge of the particular value of the private key d used in
the step 5.a.ii above.

4.2 Fault Side Channel Attacks

The congruence r ≡ yd (mod n) can be confirmed with the public key as well. How-
ever, using RSA-COd, n(r, y) is the natural way of exploiting the receiver's behaviour.
The oracle becomes far more interesting when an error occurs in step 5.a.ii of the
algorithm above. This confirmation oracle can be used to design many attacks. There-
fore we will only present a brief description of two examples to illustrate the core of
this problem. We note that these attacks are targeted at the private key, rather than the

plaintext. This is paradoxically caused by the absence of structural checks of the plain-
text in RSA-KEM, which is really a positive quality in other contexts.

4.2.1 Faults in the Bits of the Private Exponent d
The impact of faults in the bits of the private exponent RSA was described in [3]. We
will show that the confirmation oracle RSA-COd, n can be used to mount these attacks
on the hybrid encryption scheme based on RSA-KEM. As an example we will assume
that the attacker is able to swap the i-th bit d(i) of the receiver's private exponent d (in
step 5.a.ii), and this change will go undetected by the receiver. Such a situation can
occur with chip cards.

Let us assume that a fault occurred in the i-th bit d(i) and let us denote by d' the de-
fect value of the private exponent. Depending on the value of d(i), either d' = d + I or
d' = d - I, where I = 2i. Let α ≡ yI (mod n) and α*α-1 ≡ 1 (mod n). For the value r = yd'
mod n we have:

r = (yd * α mod n) if d(i) = 0
r = (yd * α-1 mod n) if d(i) = 1
Using the access to the confirmation oracle RSA-COd' ,n we can find out the value

of d(i) in this way:
1. Randomly pick x, 0 < x < n
2. Compute y = xe mod n, where e is the corresponding public exponent RSA
3. Compute r = x * α mod n
4. If RSA-COd', n(r, y) returns “yes” then set d(i) = 0 else set d(i) = 1.
We can repeat this procedure for various bit positions (and their combinations) and

thus obtain the whole private key d. In the case of irreversible changes we will gradu-
ally carry out an appropriate correction in step 3 using the previously obtained bits. In
this way the corruption of d is allowed to be irreversible. Moreover, it is enough to
obtain only a part of d from which the remaining bits can be computed analytically in
a doable time, see overview in [6]. In [3,7] we may find other sophisticated attacks of
this type. We have presented the confirmation oracle as an “interface” that allows the
attacker to apply some general attacks on “unformatted RSA” to RSA-KEM.

4.2.2 The Usage of Trojan Modulus
We have mentioned that in the RSA-KEM scheme, the modulus n is not part of the
private key. This would allow for a change of the modulus n without any security
alarm. The following attack shows the need to change this set up.

Let us assume that we can obtain the value r = gd mod n' for an unknown exponent
d and arbitrary values of g and n'. It is widely known that one such value r is sufficient
to discover d. We can, for instance, choose a modulus n' to be a prime in the form n' =
t*2s+1, where t is a very small prime number and s is a very large natural number.
Further we choose g to be a generator of the multiplicative group Zn'

*.
Now we can solve the discrete logarithm problem in Zn'

* by a simple modification
of the Pohlig-Hellman algorithm [19]. This algorithm requires the value of r, r = gd
mod n', directly, which we cannot obtain from the confirmation oracle. We can only
ask the oracle whether the pair of integers (x, g) satisfies the congruence x ≡ gd mod n'.
On a closer look at the Pohlig-Hellman algorithm we notice that it can be modified so

that the value of r is not needed directly, but only in comparisons of the type
x =? (rα mod n') for some integers x, α. It means that we only want to know whether x
=? ((g d) α mod n'), which can be obtained by calling the confirmation oracle RSA-COd,

n'(x, gα mod n'). This is the main idea of the modification. The complete algorithm A1
is presented in the next subsection.

This attack is also possible even if the modulus n is part of the private key. How-
ever in this case we can expect that it will be a little bit more difficult to plant a false
value of n'. This idea can also be extended to the case when a method based on the
Chinese Remainder Theorem is used for operations with the private key.

4.2.3 Algorithm A1: Computation of the Private Exponent Using the Access to
a RSA Confirmation Oracle

In the following we will describe an efficient algorithm for a private exponent d com-
putation, based on a modified Pohlig-Hellman algorithm for the discrete logarithm
problem in the multiplicative group Zp

*. This group has a special structure chosen by
an attacker, because the value of p is taken to be the fraudulent modulus n'.

Proposition. Let us assume to have an access to a confirmation oracle RSA-COd, p,
where p is a prime such that p = t*2s + 1 and t is a small prime. Let g be the generator
of Zp

*. (We note that the order of Zp
* has to be larger than the highest possible value of

d.) The following procedure computes the private exponent d in the three steps.
Step 1: Computation of the value Ds = d mod 2s
Let d = d(b-1)*2b-1 + d(b-2)*2b-2 + ...+ d(0), where b is the number of bits of the bi-

nary form of d, and d(i) ∈ {0, 1}, for 0 ≤ i ≤ b-1. We assume that p-1 is divisible by 2i
and we define r = gd mod p and D(i) = d mod 2i. Let us denote I = 2i and J = 2j. Then

r(p-1)/I ≡ [gd](p-1)/I ≡ [g(p-1)/I]d ≡ [g(p-1)/I]d mod I ≡ [g(p-1)/I]D(i) (mod p), and hence

r(p-1)/I ≡ [g(p-1)/I]D(i) (mod p) . (1)

The value of D(i) can be expressed as D(i) = d(i-1)*2i-1 + d(i-2)*2i-2 + ...+ d(0). We
will show that having access to the confirmation oracle we can easily compute the
lowest s bits of the private exponent d (one bit of d per one oracle call). We will start
with the lowest bit d(0) and inductively go to the bit d(s-1). For i = 1 from (1) we have
r(p-1)/2 ≡ [g(p-1)/2]d(0) (mod p). From the definition of r we have r(p-1)/2 ≡ [g(p-1)/2]d (mod
p), and so

[g(p-1)/2]d ≡ [g(p-1)/2]d(0) (mod p) . (2)

We note that g(p-1)/2 ≡ p-1 (mod p), and [g(p-1)/2]d(0) mod p can achieve only two pos-
sible values, depending on the bit d(0). Using the confirmation oracle, we can either
confirm or refute the value of d(0) in (2). Let d(0) = 1 and let us make the oracle call
RSA-COd, p(p-1, p-1), which represents the congruence (2). If the oracle returns “yes“
we set d(0) = 1, otherwise we set d(0) = 0. We note that a correctly generated private
exponent RSA should induce d(0) = 1, therefore this step can be omitted. We deter-
mine the remaining bits of D(s) inductively. We assume that we know the value D(j)
for some 0 < j < s. Next we will compute the value D(j+1). From (1) we have

r(p-1)/(2J) ≡ [g(p-1)/(2J)]D(j+1) (mod p) . (3)

Let α = d(j) * 2j = d(j) * J. Then D(j+1) = d mod 2j+1 = α + D(j). For the value on
the right-hand side of (3) we have that [g(p-1)/(2J)]D(j+1) ≡ [g(p-1)/(2J)]α *[g(p-1)/(2J)]D(j) ≡ [g(p-

1)/2]d(j) * [g(p-1)/(2J)]D(j) ≡ (p-1)d(j) * [g(p-1)/(2J)]D(j) (mod p), so we get r(p-1)/(2J) ≡
≡ (p-1)d(j) * [g(p-1)/(2J)]D(j) (mod p). Using the definition of r (r = gd mod p) we obtain

[g(p-1)/(2J)]d ≡ (p-1)d(j) * [g(p-1)/(2J)]D(j) (mod p) . (4)

On the right-hand side of (4), almost entirely known values appear, with the excep-
tion of the value of d(j). We will again use the confirmation oracle to decide between
the two possible values of the bit d(j). We guess that d(j) = 0 and call the oracle in the
form RSA-COd, p([g(p-1)/(2J)]D(j) mod p, g(p-1)/(2J) mod p), which represents the congru-
ence (4). If the oracle returns “yes“, we set d(j) = 0, otherwise we do the correction
d(j) = 1. The inductive step is finished and we have obtained Ds = D(s).

Step 2: Computation of the value Dt = d mod t
It is simple to show that an integer j, under the condition r(p-1)/t ≡ [g(p-1)/t]j (mod p),

satisfies that Dt ≡ j (mod t). Whenever j < t, then we directly obtain that Dt = j. There-
fore we can identify the value Dt in this step by testing every number j = 0, ..., t-1,
until we find the j that satisfies the congruence r(p-1)/t ≡ [g(p-1)/t]j (mod p). This j is then
the sought value of Dt. In order to determine this value we rewrite the congruence
(using the definition of r) as follows:

[g(p-1)/t]d ≡ [g(p-1)/t]j (mod p) (5)

and use the oracle in the form RSA-COd, p([g(p-1)/t]j mod p, g(p-1)/t mod p) gradually for
j = 0,..., t-1. The correct value of j is reached when the oracle returns “yes“ and we set
Dt = j.

Step 3: Computation of the value d
In the previous steps we have obtained two congruencies d ≡ Ds (mod 2s) and d ≡

Dt (mod t). It also holds that gcd(t, 2s) = 1, and so by the Chinese Remainder Theo-
rem, there exists a single value 0 ≤ d < t*2s, satisfying both congruencies. The value of
d can be computed directly as bellow:

1. Compute γ, γ*2s ≡ 1 (mod t), a unique value exists because gcd(t, 2s) = 1
2. Compute v = (Dt - Ds)*γ mod t
3. d = Ds + v*2s
Note that this attack requires at most s + t oracle calls together with a trivially fea-

sible number of group multiplications on Zp
*.

4.2.4 Other Computational Faults
So far we have only considered the attacks based on modifications of the private ex-
ponent d and the modulus n. However, similar attacks may be developed, considering
general permanent or transient faults that appear during RSA computations within the
function KEM.Decrypt. A discussion on these attacks, however, is beyond the scope
of this paper. For more details, the reader may consult papers [3, 7]. We can realisti-
cally assume that certain types of attacks described there can be used on RSA-KEM
with the use of the confirmation oracle.

4.2.5 Comparison of Attacks on RSA Schemes
Manger [15] showed that the RSAES-OAEP scheme has certain problems with the
most significant byte. These problems must be avoided by proper implementation. We
have shown that RSA-KEM has similar problems, when fault side channel attacks can
occur. Whenever we use RSA-KEM it is therefore essential to exclude fault side
channels. We must carry out reliable private key integrity checks (the modulus should
be a natural part of the private key) as well as using fault tolerant computations. We
still need to consider the consequences of the RSA individual bit theorem and make
sure that no information about any individual bit of the plaintext has leaked. Table 2
below contains a brief overview of the current state of most used RSA schemes when
side channel attacks are considered.

Table 2. RSA schemes and side channel attacks

 PKCS1 v.1.5 RSAES-OAEP RSA-
KEM

Public attack Yes Yes Yes
Side channel
(information)
used in attack

The information
about whether
the plaintext is
PKCS#1 v.1.5
conforming

- The information about whether the
most significant byte of plaintext is
zero
- Hamming weight of processed data

Fault
side
channel

Information
obtained in
attack

Plaintext Plaintext Private
key

4.3. General Countermeasures

When we consider the state-of-the-art in cryptanalysis, we can specify three basic
security criteria that need to be satisfied in every cryptosystem design on the RSA
basis. These are:

(a) Resistance to adaptive chosen ciphertext attacks
(b) Resistance to side channel information leakage
(c) Resistance to fault side channels
Imperfect resistance to any of these types of attack can result in the ability to de-

crypt ciphertext (mainly (a)) or to obtain directly the value of the private key (mainly
(c)). We have purposely omitted from the list resistance to purely algebraic attacks,
such as problems with a low value of the private or public exponent, among other
similar ones (their overview appears in [6]), since most successful attacks are based on
an incorrect use of RSA and implementation faults. The problem of the correct use of
RSA is rooted in the mathematics underlying the algorithm (for details see
[13,2,6,7,15,5,9,10] and attacks presented there) and thus it should be examined from
a mathematical perspective. It seems too risky to leave the issue in the hands of im-
plementators. We also note that cryptanalysis has gradually accepted the assumption
that an attacker has nearly unlimited access to an attacked system. We do not merely

consider attacks on "data passing through" but direct attacks on autonomous crypto-
graphic units

Furthermore, we can see that it is not possible to satisfactorily solve the defence
against the types of attacks specified above by a single universal encoding of data
being encrypted. This is a consequence of the fact that the encoding mechanism is
only part of the whole scheme and as such can only affect part of its properties.

Now we will look at basic defence mechanisms against the above types of attacks.
The first category, adaptive chosen ciphertext attacks, has not been considered in this
paper. We think that a satisfactory solution is the random oracle paradigm [4], which
has been successfully applied [23,24,11]. For category (b), we need to constantly bear
in mind the claim in [13], and prevent any leakage of plaintext information. It is not
possible to limit our attention only to the easily visible information such as the value
of the most significant byte of plaintext in RSAES-OAEP. In Section 2, we showed
that the leakage of information from completely other part of the scheme has also a
negative effect on security. Power side channel attacks [14,16,1] and nascent theory of
electromagnetic side channel attacks [20,12] is necessary to be considered a particu-
larly high threat. However, defence measures against these channel attacks [8] are
beyond the scope of this paper. It was our aim to show that these countermeasures
need to be used in every single function that deals with individual parts of the plain-
text. Here we focused our attention on the function SHA-1 as an example.

Finally the last category are fault attacks. The vulnerability of RSA to these attacks
does not originate directly from the theorem [13]. However, it seems to be an innate
quality of the RSA system [3,6,7]. As well as with the other types of attacks, certain
types of encoding can more or less eliminate fault attacks. We showed that RSA-
KEM, despite it seems to be well resistant to other types of attacks [23], can be easily
and straightforwardly affected by fault side channel attacks. To avoid fault attacks it is
recommended especially:

(i) To consistently check the integrity of the private key and of the other parameters
used with it in its processing

(ii) To minimize the range of error messages
(iii) Wherever possible, to use platforms equipped with fault detection and eventu-

ally also correction facilities (fault tolerant systems)
As a rather strong countermeasure, even though not 100% sure, we can recommend

to check every result x = (yd mod n) as y =? (xe mod n), where d is the private expo-
nent, e is the public exponent and n is the modulus. This measure effectively prevents
both attacks presented as the examples in this paper. The proof is simple: with a high
probability, the relationship e*d ≡ 1 (mod ord(y)), where ord(y) is the order of y in the
multiplicative group Zn

*, will be violated in both examples.

5 Conclusion

The RSA individual bits theorem [13] is generally considered to be a good property of
RSA. However, it also shows the way for attacks based on side channels [5,15].

We have presented another possible attack on the encryption scheme RSAES-
OAEP where, in contrast with the previous work [15], we attack that part of the plain-
text “shielded” by the OAEP method. In this, we use the algebraic properties of RSA,
rather than some weakness of the OAEP encoding. To prevent this attack, we need to
eliminate the parasitic leakage of information from individual operations in partial
procedures of the entire scheme. This goes well beyond the scope of the general de-
scription of the OAEP encoding method. Next we presented a new side channel attack
on the RSA-KEM. This scheme was built to prevent the parasitic leakage of informa-
tion about the plaintext, especially under the consideration of chosen ciphertext attack.
However, we managed to point out a side channel that allows the leakage of this in-
formation. Unlike previous attacks that returned the plaintext, this time the attacker
obtains the RSA private key. The attack was again made possible by the basic multi-
plicative property of RSA.

Our contribution underlines the significance of the known algebraic properties of
RSA in relation to rapidly evolving attacks based on side channels. Consequently, it is
possible to expect similar side channel attacks in other RSA schemes that may employ
different message encoding. Therefore, it is necessary to pay more attention to side
channel countermeasures in implementations of these cryptographic schemes.

As a small note in our paper, we pointed out the rule of keeping RSA keys for en-
cryption and digital signature strictly separated, which is often neglected. We assumed
that the rule is not adhered to, and described an approach to convert both Manger's
and Bleicherbacher's oracles for ciphertext decryption into oracles that can create
valid digital signatures for arbitrarily encoded messages.

References

1. Akkar, M.-L., Bevan, R., Dischamp, P. and Moyart, D.: Power Analysis, What Is Now Pos-
sible..., in Proc. of ASIACRYPT 2000, pp. 489-502, 2000.

2. Alexi, W., Chor, B., Goldreich, O. and Schnorr, C.: RSA and Rabin functions: Certain parts
are as hard as the whole, SIAM Journal on Computing, 17(2), pp. 194-209, 1988.

3. Bao, F., Deng, R.-H., Han, Y., Jeng, A., Narasimhalu, A.-D. and Ngair, T.: Breaking Public
Key Cryptosystems on Tamper Resistant Devices in the Presence of Transient Faults, in
Proc. of Security Protocols '97, pp. 115-124, 1997.

4. Bellare, M. and Rogaway, P.: Random Oracles are Practical: A Paradigm for Designing
Efficient Protocols, October 20, 1995, originally published in Proc. of the First ACM Con-
ference on Computer and Communications Security, ACM, November 1993.

5. Bleichenbacher, D.: Chosen Ciphertexts Attacks Against Protocols Based on the RSA En-
cryption Standard PKCS#1, in Proc. of CRYPTO '98, pp. 1-12, 1998.

6. Boneh, D.: Twenty Years of Attacks on the RSA Cryptosystems, Notices of the American
Mathematical Society, vol. 46, no. 2, pp. 203-213, 1999.

7. Boneh, D., DeMillo, R. A. and Lipton, R. J.: On the Importance of Checking Cryptographic
Protocols for Faults, in Proc. of EUROCRYPT '97, pp. 37-51, 1997.

8. Chari, S., Jutla, C.-S., Rao, J. and Rohatgi, P.: Towards Sound Approaches to Counteract
Power-Analysis Attacks, in Proc. of CRYPTO '99, pp. 398-411, 1999.

9. Fischlin, R. and Schnorr, C. P.: Stronger Security Proofs for RSA and Rabin Bits, in Proc. of
EUROCRYPT '97, pp. 267-279, 1997.

10. Fischlin, R. and Schnorr, C. P.: Stronger Security Proofs for RSA and Rabin Bits, Journal
of Cryptology, Vol. 13, No. 2, pp. 221-244, IACR, 2000.

11. Fujisaki, E., Okamoto, T., Pointcheval, D. and Stern, J.: RSA-OAEP Is Secure under the
RSA Assumption, in Proc. of CRYPTO 2001, pp. 260-274, 2001.

12. Gandolfi, K., Mourtel, C. and Olivier, F.: Electromagnetic Analysis: Concrete Results, in
Proc. of CHES 2001, pp. 251-261, 2001.

13. Håstad, J. and Näslund M.: The Security of Individual RSA Bits, in Proc. of FOCS '98, pp.
510-521, 1998.

14. Kocher, P., Jaffe, J. and Jun, B.: Differential Power Analysis: Leaking Secrets, in Proc. of
CRYPTO '99, pp. 388-397, 1999.

15. Manger, J.: A Chosen Ciphertext Attack on RSA Optimal Asymmetric Encryption Padding
(OAEP) as Standardized in PKCS #1, in Proc. of CRYPTO 2001, pp. 230-238, 2001.

16. Messegers, T.-S., Dabbish, E. A. and Sloan, R. H.: Investigations of Power Analysis At-
tacks on Smartcards, in Proc. of USENIX Workshop on Smartcard Technology, pp. 151-
161, 1999.

17. PKCS#1 v2.1: RSA Cryptography Standard, RSA Labs, DRAFT2, January 5 2001.
18. PKCS#5 v2.0: Password-Based Cryptography Standard, RSA Labs, March 25, 1999.
19. Pohlig S.C., Hellman M.E.: An improved algorithm for computing logarithms over GF(p)

and its cryptographic significance, IEEE Trans. Inform. Theory, 24 (1978), 106-110.
20. Rao, J.-R and Rohatgi, P.: EMpowering Side-Channel Attacks, preliminary technical report,

May 11 2001.
21. Rivest, R., L., Shamir, A. and Adleman L.: A method for obtaining digital signatures and

public-key cryptosystems, Communications of the ACM, pp. 120-126, 1978.
22. Secure Hash Standard, FIPS Pub 180-1, 1995 April 17.
23. Shoup, V.: A Proposal for an ISO Standard for Public Key Encryption (version 2.0),

September 17, 2001.
24. Shoup, V.: OAEP Reconsidered (Extended Abstract), in Proc. of CRYPTO 2001, pp. 239-

259, 2001.
25. Stinson, D., R.: Cryptography – Theory and Practice, CRC Press, 1995.

