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Further Results on Binary Convolutional Codes with an A key parameter used in the evaluation of the encoders is the 

Optimum Distance Profile column distance, which was originally defined by Costello [5]. The 
order j column distance dj is the minimum Hamming weight of 

ROLF JOHANNESSON AND ERIK PAASKE 
all codewords having a nonzero first branch and truncated after 
0’ + 1) branches. In particular, d, is called the free distance of 

Abstract-Fixed binary convolutional codes are considered 
the code. Also, in a previous paper [3], Johannesson introduced 

which are simultaneously optimal or near-optimal according to 
the distance profile as the (u + 1)-tuple d = [d&i, a - - d,] and 

three criteria: namely, distance profile d, free distance d,, and 
defined a distance profile d to be superior to d’ if dj > dj for the 

minimum number of weight d m paths. It is shown how the optimum 
smallest index j, 0 I j I v, where dj # dj. Hence an optimum 

distance profile criterion can be used to limit the search for codes 
distance profile (ODP) ensures that, for the first constraint 

with a large value of d a. We present extensive lists of such robustly 
length, the column distance “grows as rapidly as possible,” which 

optimal codes containing rate R = I,$ nonsystematic codes, several 
is not necessarily the case for the average column distance 

with d m superior to that of any previously known code of the same 
function [2]. 

rate and memory; rate R = ?$ systematic codes; and rate R = $$ 
nonsystematic codes. As a counterpart to quick-look-in (QLI) codes III. How TO FIND GOOD ENCODERS 

which are not “transparent,” we introduce rate R = ‘h easy-look- 

in-transparent (ELIT) codes with a feedforward inverse (1 + D,D). 
It is well known [6] that d m is the principal determiner of de- 

In general, ELIT codes have d, superior to that of QLI codes. 
coding error probability when Viterbi decoding or sequential 
decoding is used, and further that the number of codewords with 
a nonzero first branch and weight d m should be as small as pos- 

I. INTRODUCTION 
sible. Also it has been observed [l], [2], [3] that, for good com- 
putational performance with sequential decoding, the column 

It has been recently observed [l], [2], [3] that to obtain a good distance should “grow as rapidly as possible,” i.e., an optimum 
computational performance with sequential decoding, the col- distance profile is desirable. Since different criteria appear to be 
umn distance of the actual encoder should “grow as rapidly as of fundamental importance for the error probability and for the 
possible.” However, good computational performance does not computational performance, it seems reasonable to search for 
exclude the choice of encoders with large free distances. On the FCE’s generating codes which are simultaneously optimal or 

contrary, the criterion of good computational performance can near-optimal according to the mentioned criteria. 

be used to limit the search for encoders with large free distance. At first glance, one might believe it more difficult to search for 
In this correspondence, we report on some progress in finding FCE’s which are optimal according to several criteria, but in- 
such good binary fixed convolutional encoders (FCE’s), i.e., en- terestingly enough, a remarkable simplification in the search 
coders generating codes which are simultaneously optimal or procedure may be obtained if the criteria are carefully chosen. 
near-optimal according to several criteria. As already discussed in [7], an exhaustive search becomes prac- 

tically impossible even for rather small constraint lengths, and 

II. NOTATION AND DEFINITIONS therefore some methods are needed to limit the search for good 
encoders. One approach is to select a subset in which the possi- 

For rates R = (N - 1)/N, we can represent an FCE by the (N bility of finding good encoders is “expected to be good.” Another 
- 1) X N matrix G(D), where approach is to use rules that reject a large fraction of encoders 

G?(D) from the complete ensemble either because they cannot be good 
encoders or because the distance properties of the codes gener- 

G(D) = 
G;(D) ated equal the distance properties of some code in the remaining 

set. 

(G-,(D) G&-,(D) . . . G$-1(D) 1 
We shall use the case of rate R = l/2 nonsystematic codes to il- 

lustrate how a combination of the two approaches becomes very 
and feasible when optimizing according to several criteria. Let us start 

G;(D) = g& + g’,iD + g&D2 + * * * 
with the first limitation approach and select the subset of ODP 
encoders. The justification to expect this subset to be good with 
regard to d, lies mainly in Table V in [3], but also in the fact that, 
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- I  
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coders is also relatively small. Provided that both generator 
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v. From the results leading to [3], S(U) is known to be relatively 
small, and hence a substantial reduction in the search is obtained. 
Furthermore, the subset is easy to generate. Because of the re- 
striction of the ODP to column distances up to v, we can use 
well-known results of Bussgang [8] and Forney [9] to generate 
the subset of nonsystematic ODP encoders from the systematic 
ODP encoders in the following simple way. Let the systematic 
code with distance profile d = [d&i,. . . ,d,] have parity ma- 
trix 

TABLE I 
ODP NONSYSTEMATIC CONVOLUTIONAL CODES WITH RATE s 

1 
v 

Gl 

w~),m~) * - * HN-l(D) 1) , , 

and let * denote polynomial multiplication with truncation after 
degree u. If P(D) runs through all manic polynomials of degree 
-<v, then 

H(D) = (P(D)) * (Hl(D)JP(D) * * * HN-W),l) 

= (P(D) * Hl(D),P(D) * W(D) - - - P(D) * FIN-‘(D),P(D)) 

runs through the correspondingsetof nonsystematic encoders 
with distance profile d. 

With the properties of ODP encoders in mind, it now becomes 
evident that we obtain a great simplification in the search for 
good encoders by chasing the criteria in the following way: 

1) optimum distance profile (ODP), 
2) optimum free distance (OFD) conditioned on l), 
3) minimum number of weight d, paths conditioned on 2). 

1 6 

2 7 

3 74 

4 62 

5 75 

6 634 

7 626 

a 751 

9 7664 

10 7512 

11 6643 

12 63374 

13 45332 

14 65231 

15 517604 

16 717066 

17 506477 

18 5653664 

19 5122642 

20 6567413 

21 67520654 

22 67132702 

G: Notes 

4 ‘,2 
5 I,2 
54 132 
56 132 
55 1,2 

564 1,2 

572 ' ,2 
557 1.2 

5714 1.2 
5562 1.2 
5175 3 

47244 3 

77136 2 

43677 3 

664 134 334 

522702 3 

673711 4 

7746714 5 

7315626 5 

5322305 4 

50371444 4-5 

d 
Y 

3 

3 

4 

4 

5 

5 

6 

6 

6 

7 

7 

a 

a 

a 

a 

9 

9 

9 

10 

10 

10 

In the subset of ODP encoders, we can then use the second ap- 
proach, viz. rejection rules, to limit the search for encoders with 
optimum d,. The rules which we have used are similar to those 
mentioned in [7]. On the average, they discarded about 99 percent 
of the encoders, and hence cl, need be calculated only for the 
remaining one percent of the FCE’s in the subset of ODP en- 
coders. 

50516146 6 10 

23 55346125 75744143 5,6 11 

#paths d_ #paths 

2 3 1 

1 5 1 

3 6 1 

2 7 2 

6 a 2 

3 10 12 

11 10 1 

6 12 10 

2 12 1 

13 14 19 

5 14 1 

29 15 2 

12 16 5 

10 1-l 3 

5 la 10 

18 19 9 

7 20 12 

7 21 13 

31 22 26 

13 22 2 

4 24 40 

1 24 25 

28 25 13 

Notes: 

In Table I, we have listed the results of a computer search for 
nonsystematic rate R = $$ FCE’s. In all tables, the generators are 
given in octal form, as introduced in [3], where,the first digit 
denotes [g&,gii,g&], the second denotes [g&g&ghi] 7 etc. All the 
codes are ODP and, except for a few cases where the search would 
become unreasonably large, they are also optimum according to 
criteria 2) and 3). For comparison, we have plotted the d m of our 
codes in Fig. 1 together with d, for: the OFD codes of Odenwalder 
[lo], Larsen [ll], and Paaske [12]; the complementary codes of 
Bahl and Jelinek [13]; and an upper bound on d, calculated using 
the method given by Heller [14]. Four of the ODP codes, viz. those 
for v = 18, 19, 21, and 23 have d, superior to that of any pre- 
viously known rate R = $ code with the same constraint length. 
Furthermore, the v = 23 code has been recommended to NASA 
for use with sequential decoding on the deep-space channel [15], 
[16]. In general, a limitation of the search to the subset of ODP 
encoders seems to result in only a very small reduction in 
achievable d -, which is illustrated by the fact that encoders with 
a larger d, are known only for u = 11,12,14,15, and 16; these are 
listed in Table II for completeness. OFD encoders for v = 11 and 
12 were previously found by Larsen [II], but the encoders listed 
here have a smaller number of weight d m paths; the encoders for 
v = 14,15, and 16 were hitherto unpublished, but were previously 
found by Paaske [12]. 

1. This code was found by Johannesson (31 and is listed here for complete- 
IICSS. 

2. This code is OFD. 
3. An OFD code with the same memory is listed in Table II. 
4. The search according to criterion 3) was not exhaustive, and hence a slightly 

better code might exist. 
5. This code has a free distance superior to that of any previously known code 

with the same memory. 
6. The search according to criterion 2) was not exhaustive, and hence a better 

code might exist. 

- d, for nonsystematic ODP codes 

. . . . . . . . . d, for OFD codes of Odenwalder (2SQ56) 

Larsen 19su513) and Pooske IlLs\)s16) 

-.-w- d, tor Bahl-Jelinek codes 

Upper bound on d, 
/’ _--- 

1’ 

In Table III and Table IV, we have listed corresponding results 
for systematic and nonsystematic encoders of rate R = ?$,. Table 
V shows the parity polynomials of the codes in Table IV. For this 
rate, S(v) is much greater than the corresponding number for rate 
R = $$, implying that the subset of nonsystematic ODP encoders 
is also much greater. Therefore, even with the rejection rules in 
effect, an exhaustive search according to criterion 2) was not 
reasonable in several cases. In Fig. 2 we have compared d, and 
d, of our codes with d, of the OFD codes by Paaske [7] and with 
an upper bound on d, calculated using the method given by 
Heller [14]. 

0 ! * 
0 5 10 15 20 

Constraint lcnqth \I 

Fig. 1. Free distance d, for some rate Yj convolutional codes. 



266 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-24, NO. 2, MARCH 1978 

TABLE II 
SOME NONSYSTEMATIC CONVOLUTIONAL CODES WHICH ARE OFD 

IV. TRANSPARENTCODESWITHASIMPLEENCODER 
INVERSE 

v G; G: Note dy #paths d_ #paths 

11 7173 5261 7 6 15 14 

12 53734 72304 7 3 16 14 

14 63121 55367 1 8 12 la 29 

15 447254 627324 1 7 2 19 30 

Massey and Costello [l] introduced the class of quick-look-in 
(QLI) codes, nonsystematic codes of rate R = ?& in which the two 
generators differ only in the second position. The reason to prefer 
a QLI code rather than another nonsystematic code is the ease 
of extracting the information digits from the hard-decisioned 
received sequences, since a feedforward (FF) inverse (Pi(D), 
P2(D)) = (1,l) can be realized by a simple modulo 2 adder. Fur- 
thermore, since the FF-inverse has “weight” two, the “error 
amplification factor” A = 2 is the smallest possible for nonsys- 
tematic codes. However, if differential coding is used together 
with PSK, it is often desirable to use a “transparent” code [17], 
i.e., a code which has the all-one sequence as a codeword. Since 
the QLI codes are not transparent and since the smallest error 
amplification factor for a nonsystematic transparent code is A 
= 3, then, as a counterpart to the QLI codes, we are led to intro- 
duce easy-look-in-transparent (ELIT) codes such that 

16 716502 514576 I 8 5 20 53 

Note: 
1. The search for the code with the smallest number of weight d, paths was not 

exhaustive, and hence a slightly better code might exist. 

TABLE III 
ODP SYSTEMATIC CONVOLUTIONAL CODES WITH RATE % 

----.-- ..-. 

v G: G: %I 
1 4 6 2 

2 5 7 3 

3 54 64 3 

4 56 62 4 

5 57 63 4 

6 554 704 4 

7 664 742 5 

8 665 743 5 

9 5734 6370 5 

10 5736 6322 6 

11 5736 6323 6 

12 66414 74334 6 

13 57372 63226 6 

14 57371 63225 7 

15 664150 743314 7 

16 664072 743346 7 

17 573713 632255 7 

la 6640344 7431024 8 

19 5514632 7023726 a 

20 5514633 7023725 8 

21 57361424 63235074 0 

22 66415416 74311464 9 

23 66415417 74311465 9 

#paths 

1 

6 

3 

17 

7 

4 

30 

15 

6 

54 

26 

12 

6 

72 

31 

21 

7 

102 

39 

25 

la 

135 

68 

a* #paths 

2 1 

3 2 

4 7 

4 2 

5 6 

5 2 

6 24 

6 5 

6 1 

7 a 

0 44 

8 16 

8 3 

a 2 

a 1 

10 40 

10 15 

10 la 

10 2 

11 a 

12 74 

11 4 

12 17 

d, tor ODP codes 

. . . ., . . . . . . . . . d,. for ODF codes 

------ Upper bound on d, 

-“-x-x-x-“- d, for systematic ODP codes 

-- dG for ODP coder 25 

/- , 
18 . / / 

/ 

16 .. 

1c ‘. 

12 ‘. 

10 -- 

04 

0 

1 t 

5 10 15 20 25 

Constraint length V 

Fig. 2. Free distance d, and column distance for some rate s/s convolutional 
codes. 

1E) G](D) and G:(D) both have odd weight, and 
2E) (l+D)G;(D)+DG;(D)=l. 

Property 2E) specifies that ELIT codes have the FF-inverse 
(pl(D),Ps(D)) = (1 + D,D) with error amplification factor A = 

3. 
Although the subset of ODP QLI codes [3] is small, it contains 

FCE’s with relatively large values of d,, and therefore one could 
expect the subset of ODP ELIT codes to have the same property. 
However, this turned out not to be the case. For several constraint 
lengths, the latter subset contains only bad codes, and in some 
cases, it is even empty. To overcome this problem, it is necessary 
to enlarge the subset which can be done systematically using a 
generalized distance profile: 

4 = [do,dl,&, - - - ,&I. 

Our first optimality criterion selects the subset of codes with an 
optimum d,, but we can of course enlarge the subset by requiring 
only an optimum dl, where 1< v. For the case of ELIT codes we 
have chosen 1 = v - 2 for two reasons. 

- d, for nonsystematic ODP codes 

-I-X-U- d, for ELIT codes with optimum d,,,-2 

- d, for ODP PLI codes 

20 

8 
-0 

: 

s 15 

;; .- 
v 

:: 
L 10 
IL 

5 

0 

0 5 10 15 20 25 

Constraint length u 

Fig. 3. Free distance d, for some rate i/s convolutional codes with a simple encoder 
inverse. 
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TABLE IV 
ODP NONSYSTEMATIC CONVOLUTIONAL CODES WITH RATE 2/3 

1 
Y 

Gl 
G: G: G; G; G: Notes dv #paths d, #paths 

3 6 2 4 1 4 7 1 3 2 4 1 

4 6 3 7 1 5 5 1 4 17 5 7 

5 60 30 70 34 74 40 1 4 7 6 9 

6 50 24 54 24 70 54 4 2 6 1 

7 54 30 64 oo 46 66 5 30 7 6 

a 64 12 52 26 66 44 1 5 15 a 8 

9 54 16 66 25 71 60 5 9 8 1 

10 53 23 51 36 53 67 6 54 9 9 

11 710 260 670 320 404 714 6 29 10 29 

12 740 260 520 367 414 515 2 6 27 10 4 

13 710 260 670 140 545 533 6 5 11 9 

14 676 046 704 256 470 442 7 65 12 50 

15 722 054 642 302 457 435 2 7 38 12 25 

16 7640 2460 7560 0724 5164 4260 3 7 14 12 7 

17 5330 3250 5340 0600 7650 5434 3 7 7 13 18 

18 6734 1734 4330 1574 5140 7014 3 0 106 14 9 

19 5044 3570 4734 1024 5712 5622 3 8 43 14 ? 

20 7030 3452 7566 0012 6756 5100 3 8 23 14 ? 

21 6562 2316 4160 0431 4454 7225 3 8 11 15 ? 

22 57720 12140 63260 15244 70044 47730 3 9 144 16 * 

23 51630 25240 42050 05460 61234 44334 3 9 60 16 ? 

Notes: 
1. This code is OFD. 
2. The search according to criterion 3) was not exhaustive, and hence a slightly 

better code might exist. 
3. The search according to criterion 2) was not exhaustive, and hence a better 

code might exist. 

1) For most values of V, this subset contains codes with rea- 
sonably large values of d -. 

2) The subset is easy to generate. We denote codes with a 
FF-inverse (1 + D,D), i.e., codes satisfying condition 2E), as 
easy-look-in (ELI) codes, and we denote by C(V) the subset of 
ELI codes of constraint length v with an optimum generalized 
distance profile d,.+ Then C(u) can be easily generated from C(V 

TABLE V 
PARITY POLYNOMIALS OF THE CODES IN TABLE IV 

v Ii’ H2 H3 

3 74 54 64 

4 50 62 72 

5 65 45 53 

6 424 644 764 

7 472 752 532 

a 635 403 571 

9 5014 4634 6664 

10 7164 4136 5416 

11 5755 7767 6601 

12 70414 52464 60244 

13 56502 76346 67772 

14 71433 53241 61175 

15 660004 575734 776554 

16 461656 700006 630732 

17 544463 433501 615256 

18 4114444 5433454 7152024 

19 6171512 5475256 4301002 

20 7500021 6742327 4162245 

21 72164254 45126324 61662214 

22 55422416 42035332 60362506 

23 45416327 51203765 76300111 

- 1) since, for each generator polynomial G:(D) in C(u - I), there 
are only two candidate codes for C(u), namely Gf(D) = G:(D) $ 
Dy and G:“(D) = G:(D) @ Due1 8 D”, each of which belongs to 
C(U) if it also has optimum column distance d,-z. Finally, the 
codes are also transparent if they satisfy condition 1E). 

TABLE VI 
ELIT CODES WITH OPTIMUM &-2 

1 
v 

Gl 4 
Notes d v-1 #paths dy #paths d., 

3 54 64 1 3 1 3 1 6 

4 52 76 3 1 3 1 6 

5 51 73 I.2 4 2 5 6 8 

6 464 634 192 5 6 6 5 10 

7 576 602 5 2 5 18 

8 513 735 5 1 6 7 10 

9 5114 7324 2 6 5 6 3 10 

10 5646 6352 2 6 1 7 12 12 

11 5643 6345 6 3 7 11 12 

12 51154 73264 7 8 7 4 14 

13 51162 73226 7 4 8 22 14 

14 51101 73303 8 12 8 6 12 

15 564614 635224 8 10 8 3 14 

16 511016 733022 0 3 8 1 16 

17 511015 733027 2 9 18 9 7 16 

18 5646044 6352154 2 9 11 9 4 18 

19 5646042 6352146 2 9 3 10 31 18 

20 5110135 7330347 9 2 9 1 20 

21 - 3 

22 56460366 63520432 2 10 11 10 3 22 

23 56460365 63520437 10 3 10 2 20 
_ __-_--__I--- 

Notes: 
1. This code is also OFD. 
2. This code is also ODP. 
3. The subset of ELIT codes with optimum 6-2 is empty for v = 21. 
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TABLE VII 
SOME ELI CODESWITHFREEDISTANCESUPERIORTOTHATOF 

ELIT AND QLI CODES WITH THE SAME MEMORY 

_--.-I-- 
l 

" 
Cl 4 

Notes dv-, #paths dv #paths d_ #paths 

4 56 62 1.2 4 3 4 2 7 2 

0 511 733 2 6 11 6 6 10 2 

15 564604 635214 2 8 6 8 115 I 

16 511012 733036 8 1 a 117 3 

17 564601 635203 8 2 8 117 3 

21 56460424 63521474 2 10 18 10 8 20 4 

23 56460367 63520431 2 10 a 11 29 21 3 

Notes: 
1. This code is also OFD. 
2. This code is also ODP. 

The result of a computer search using the above mentioned 
criteria is given in.Table VI. In Fig. 3 we compare the free distance 
of the ELIT codes in Table VI with the ODP QLI codes found by 
Johannesson [3] and with the ODP nonsystematic codes in Table 
I. Finally, we remark that some nontransparent ELI codes are 
ODP and have a free distance superior to that of ODP QLI codes 
with the same memory. These ELI codes are given in Table VII, 
which also contains two ELI codes with optimum c&--s and free 
distance superior to any QLI code with optimum dy-z. 

V. CONCLUSION 

The ODP criterion seems important for two reasons. One is the 
improvement observed in the computational performance for 
sequential decoding of ODP codes. The other is that, in a search 
for “good” encoders, the ODP criterion can be used to limit the 
ensemble size without serious degradation in the attainable 
values of d _. 

111 

PI 

[31 

141 

[51 

161 

[71 

I81 

191 

WI 

WI 

t:ij 

1141 

1151 
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Addition to “A Method for Decoding of Generalized 

Goppa Codes” 

DAVID M. MANDELBAUM 

Abstract-In a previous correspondence,’ a decoding procedure 

which uses continued fractions and which is applicable to a wide 

class of algebraic codes including Goppa codes was presented. The 

efficiency of this method is significantly increased. 

The efficiency of the decoding method in the above corre- 
spondencel can be significantly increased. In the following, all 
references will be to the equations and bibliography of the orig- 
inal paper.l 

In the decoding process, the test (18) with the associated 
multiplications is not required; instead, the test for the correct 
convergent can be taken as 

deg (ri+l(x)) < k + deg (qi(x)), 

and therefore no multiplication is needed. 
This is shown as follows. From [6], we have 

(18’) 

qi-l(xh+l(x) + qib)ri(x) = 4~) 

pi-l(x)ri+l(x) + pi(x)r = u(x). 

Multiplying the above two equations by pi(x) and qi(x), re- 
spectively, and subtracting the first from the second yields 

Si(XMX) - Pibhb) 

= qi(xh-l(x)r;+l(x) + qi(x)pi(x)ri(x) 

- Pi(x)qi-l(x)ri+l(x) -Pi(x)qi(x)ri(x) 

= ri+l(x)(qi(x)Pi-l(x) - Pi(X)qi-l(X)) = ri+l(x)(-1)‘. 

Since for the correct convergent 

U(X) = U(X) - m(n)pi(x)/qi(x) ad deg (U(X)) < k, 

the rule (18’) follows. Also, U(X) can be obtained by means of u(x) 
= (-l)iri+i(x)/q;(x) when (18’) is satisfied. This is a particularly 
attractive method of obtaining u(x) for low-rate codes. 

As a result of the new test (18’), it is seen that this procedure 
is of equivalent complexity to that given in [4]. 

It can also be easily seen that the method presented in the 
above correspondence’ can be used for decoding Goppa and 
Bose-Chandhuri-Hocquenghem (BCH) codes using the standard 
syndrome S(z) as developed in [9]. That is, if S(z) = q(z)/cr(z) 
modg(z), then, if we set S’(X) = xrS(l/x) where r = deg S(z); we 
can use the syndrome S’(X) in the decoding method in the above 
correspondencei. It will be noticed that this method, like the 
Berlekamp-Massey algorithm, starts with the “end” of the 
syndrome while the method of [4] starts in the “middle” of the 
syndrome. 

Two corrections should be made in the example in the above 
correspondencel; namely, the remainders rz(x) and rg(x) should 
read r-z(x) = fi2x6 + p2x5 + x4 + xs + fi43c2 + /36x + fi andr&) 
= p5x5 + p2x4 + p4x3 + p3xz + /3% + 1, respectively. 
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