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Further Results on Event-Based PID Controller

Sylvain Durand and Nicolas Marchand

Abstract— In this paper, some improvements of the simple
event-based PID controller presented by K-E Årzén in [2] are
proposed. This controller, contrary to a time-triggered con-
troller which calculates the control signal at each sampling time,
calculates the new control signal only when the measurement
signal sufficiently changes. In the original work of Årzén, a
safety maximum period is added forcing the control to be
recomputed even if the measurement signal remains unchanged.
The contribution of this paper is to propose a scheme to avoid
this re-computation. Besides a noticeable reduction of the mean
control computation cost, the performance of the closed loop
system is also improved.

I. INTRODUCTION

The classical so-called discrete time framework of con-

trolled systems consists in sampling the system uniformly

in the time with some constant sampling period hnom

and in computing and updating the control law every time

instants t = khnom. This field, denoted the time-triggered

case (or the synchronous case in sense that all the signal

measurements are synchronous), has been widely investi-

gated [5] even in the case of sampling jitter or measure

loss that can be seen as some asynchronicity. However,

some works addressed more recently event-based sampling

where the sampling intervals are event-triggered (also called

asynchronous), for example when the output crosses a cer-

tain level. Extending the analogy between Riemann and

Lebesgues integral calculation (the first one summing the

height at each instant whereas the second sums the instants at

all height), the notion of Lebesgues sampling was introduced

to denote this sampling scheme: the measures are taken only

when variables cross some specific levels by opposition to the

Riemann sampling where the measures are taken at specific

time instants. Thus in the event-triggered sampling scheme,

the term sampling period denotes a time interval between

two consecutive level crossings of the measure, that is two

successive sampling instants, and the sampling periods are

hence not equidistant in time anymore.

Event-based notion is taking more and more importance in

the signal processing community with now various publica-

tions on this subject (see for instance [1] and the references

therein). In the control community, very few works have been

done. In [3], it is proved that such an approach reduces the

number of sampling instants for the same final performance.

In [6], it is shown that controlling a Lebesgues sampled

system or a continuous time system with quantized mea-
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surements and a constant control law over sampling periods

are equivalent problems.

Many reasons are motivating the event-triggered systems

and in particular because more and more asynchronous sys-

tems or systems with asynchronous needs are encountered.

Actually, the demand of low power electronic components

in all embedded and miniaturized applications encourages

companies to develop asynchronous versions of the exist-

ing time-triggered components, where a significant power

consumption reduction can be achieved by decreasing the

samplings and consequently the CPU utilization: about four

times less power than its synchronous counterpart for the

80C51 microcontroller of Philips Semiconductors in [12]

for example. Moreover, the absence of synchronization in

the asynchronous circuits considerably reduces the noises

and the electromagnetic emissions by improving the time

repartition of the events [11], [10]. Note that the sensors and

the actuators based on level crossing events also exist, ren-

dering a complete asynchronous control loop now possible.

But the most important contributions come from the real-

time control community. Indeed, the real-time synchronous

control tasks are often considered as hard tasks in term

of time synchronization, requiring some strong real time

constraints. Efforts are so carried on the co-design between

the controller and the task scheduler in order to soften these

constraints. The adopted approach in this field is often either

to change dynamically the sampling period related to the

load [8], [9] or to use an event-driven control where the

events are generated with a mix of level crossings and a

maximal sampling period [7], [2].

In this paper we are interested on this maximal sampling

period, firstly introduced by Karl-Erik Årzén with his simple

event-based PID controller [2], which seems to be added for

stability reasons in order to fulfill the condition of Nyquist-

Shannon sampling theorem: a new control signal is per-

formed when the time elapsed since the last sample exceeds a

certain limit. Nevertheless, we propose to remove this safety

condition because, thanks to the level detection, the Nyquist-

Shannon sampling condition is no more consistent.

The next section recalls both the conventional time-

triggered PID structure and the event-triggered PID con-

troller proposed by Årzén. Then, a small discretizetion’s

improvement is presented and the simulation test benches are

described. The main contribution of this paper is developed

in section III where several event-based PID algorithms

without safety limit condition are proposed. These new event-

based controllers are finally successfully compared (in terms

of performance and CPU need) to the conventional PID and

the Årzén’s PID controllers.



II. PID CONTROL

In order to compare our work with the existing con-

trollers we propose to recall the conventional time-based

PID controller structure and the event-based PID controller

introduced by Årzén [2].

A. Time-Based PID Controller

The textbook PID controller in frequency domain is given

as following:

U(s) = K

(

E(s) +
1

Tis
E(s) + TdsE(s)

)

This equation can be divided into a proportional, an integral

and a derivative parts, i.e. Up, Ui and Ud respectively,

which are then modified to improve performances [4]. First,

set point weighting is applied on Up and Ud for a more

flexible structure, giving the PID two dimensions of freedom.

Moreover, a low-pass filter is added in the derivative term to

avoid problems with high frequency measurement noise.

Up(s) = K (βYsp(s) − Y (s))

Ui(s) =
K

Tis
E(s)

Ud(s) =
KTds

1 + Tds/N
(γYsp(s) − Y (s))

A discrete time PID controller is finally obtained by

discretizing: the proportional part is straightforward, forward

and backward difference approximation is used for the inte-

gral part and the derivative part respectively.

The resulting code is:

% inputs

ysp = u(1);

y = u(2);

e = ysp - y;

% calculate control signal

up = K*( beta*ysp - y );

ud = Td/(N*hact + Td)*ud

- K*Td*N/(N*hact + Td)*( y - y_old );

u = up + ui + ud;

% update

ui = ui + K/Ti*hact*e;

y_old = y;

B. Årzén’s Event-Based PID Controller

The basic setup depicted in [2] consists of two parts: a

time-triggered event detector used for level crossings and an

event-triggered PID controller which calculates the control

signal. The first part runs with the sampling period hnom

(that is the same as for the corresponding conventional

time-triggered PID) whereas the second part runs with the

sampling interval hact which depends on the requests sent

by the event detector when a new control signal has to

be calculated. This is required either when the relative

measurement crosses a certain level, i.e. when the absolute

value of the difference between the measured error of the

last sampling and that of the current sampling crosses the

limit elim, or if the maximal sampling period is achieved,

i.e. hact ≥ hmax.

The resulting code is:

% inputs

ysp = u(1);

y = u(2);

e = ysp - y;

% calculate control signal

hact = hact + hnom;

if abs( e - e_old ) > elim || hact >= hmax

up = K*( beta*ysp - y );

ud = Td/(N*hact + Td)*ud

- K*Td*N/(N*hact + Td)*( y - y_old );

u = up + ui + ud;

% update

ui = ui + K/Ti*hact*e;

e_old = e;

y_old = y;

hact = 0;

end

C. Discretization Improvement

Let tk denotes the current time, tk−1 the last time where a

control signal was calculated and tk+1 the next time where

a control signal will be calculated. Furthermore, let h(tk)
denotes the current sampling period, i.e. the interval time

between the current sampling and the last one, and h(tk+1)
the next sampling period, i.e. the interval time between the

current sampling and the next one. These notations are shown

on Figure 1. Note that the sampling interval previously

depicted and used by the event-triggered PID controller is

hact = h(tk).

tk tk+1tk−1

h(tk)
h(tk+1)

elim

time

forward approximation

backward approximation
signal

Fig. 1. Forward and backward difference approximation

Currently, the forward difference approximation is used

to calculate the integral part of the Årzén’s PID controller,

which means that the integral part is precalculated during

the current interval for the next sampling, i.e. ui(tk+1) =
ui(tk) + K/Tih(tk+1)e(tk). This method can be a good

choice for time-triggered controllers (where the sampling

interval h is constant) but for event-based controllers the

next sampling period h(tk+1) varies and so has to be a

priori known. But this is not possible in practice. One could

note that in [2] the proposed algorithm is wrong because

hact and h(tk+1) are mixed up (whereas hact = h(tk)).
However, a solution could be to calculate the current integral

part from the previous error by shifting the instant times in

the equation, i.e. ui(tk) = ui(tk−1) + K/Tih(tk)e(tk−1).
Nevertheless, we propose to calculate the integral part

with a more recent value of the error by using the back-

ward difference approximation. This leads to calculate the

current integral part during the current time with the current

sampling period and the current error, as follows:

ui(tk) = ui(tk−1) + K/Tih(tk)e(tk) (1)



D. Simulation Results

The simulations are performed on a simple first order

system which is described as:

H(s) =
G

1 + τs
where G = 1 and τ = 1

This system will be controlled with different controllers:

firstly with the conventional time-triggered PI controller, then

with the Årzén’s event-based PI controller and finally with

our proposals, i.e. the event-based PI controllers without

safety limit condition (detailed in section III).

The parameter’s values of the controllers are obtained by

pole placement of the closed-loop system with the time-

triggered PI controller. The event-based controllers are then

designed with these same values and they will finally try to

be as closed as possible of the time-triggered closed-loop

shaping. K = 1.83 and Ti = 0.457, the nominal sampling

interval is chosen as hnom = 0.05s and the maximal one

as hmax = 0.5s. The system is simulated for 20s and two

different test benches are proposed:

- Test bench 1: The set point is changed from 0 to 1 at

time 1s and changed again at time 10s to achieve 2.

- Test bench 2: The set point is changed from 0 to 1 at

time 2s. A load disturbance is introduced at time 12s
with an amplitude of 0.1.

The simulation results are then plotted in order to compare

two controllers using both test benches. The top plot shows

the set point and the measured signals, the bottom plot shows

the sampling intervals (i.e. this signal changes each time

the controller calculates a new control signal). Note that the

sampling intervals for the time-triggered controller are shown

only once on Figure 2.

The first simulation results are shown on Figures 2 and 3

where the conventional time-triggered PI controller is com-

pared to the Årzén’s event-based one for different value of

elim, i.e. the event detection level. Thus, Figure 2 shows that

the Årzén’s controller permits to obtain a system response as

quick as the time-triggered one by calculating a control signal

twice less. However, whereas the event detection level elim is

increased, the results become deteriorated and the measured

signal oscillates as shown on Figure 3. These oscillations

come from the bad discretization of the integral part (see

the subsection II-C for further details). Actually, a mistake

is done with the Årzén’s algorithm and we propose two

solutions to avoid that: i) calculating the current integral

part from the previous error by shifting the instant times in

the integral part (still using the forward approximation) or

ii) using the backward approximation. The second solution

is applied and Figure 4 shows the difference between the

original Årzén’s event-based PI controller and the improved

Årzén’s controller using (1). The improvement is immediate:

the results obtained with elim = 0.01 are better than with

the original Årzén’s controller when elim = 0.001.

In the following section, we will base the new PI architec-

tures on the backward difference approximation and keep the

level detection used for the simulations equal to elim = 0.01.

Fig. 2. The conventional time-triggered PI controller (400 sampling
intervals) vs. the Årzén’s one with elim = 0.001 (195 intervals for bench1
and 158 for bench2, that is 49 and 39.5% respectively)

Fig. 3. The time-triggered PI controller (400 sampling intervals) vs. the
Årzén’s one with elim = 0.01 (126 intervals for bench1 and 97 for bench2,
that is 31.5 and 24.5% respectively)



Fig. 4. The original Årzén’s PI controller (126 sampling intervals for
bench1 and 97 for bench2) vs. the Årzén’s PI controller with improved
discretization (101 intervals for bench1 and 82 for bench2, that is 80 and
84.5% respectively) with elim = 0.01

III. EVENT-BASED PID CONTROL WITHOUT

SAFETY LIMIT CONDITION

As explained before, our idea is to remove the safety limit

condition hhact ≥ hmax introduced by Årzén, in order to

improve and simplify the event-based controller. However, by

only doing that the controller will correct the system output

too much each time the set point changes after a long steady

state interval, which leads to important overshoots as one

can see on Figure 5.

Actually, the integral part of the event-based PI controller,

i.e. ui(tk) = ui(tk−1) + K/Tihacte(tk) from (1), is respon-

sible of this problem because the value of hact becomes

huge due to the absence of event. The integral part hence

exploses when the set point changes, i.e. the error e(tk)
becomes high. In fact, the time interval between the last

sample before the steady state and the first sample of the

transient can be divided into a “real” steady state interval,

which is equal to hact−hnom, plus the detection time period

hnom (because the event detector is time-triggered with the

constant sampling period hnom). During the first part the

error is very small, i.e. lower than elim else the steady state

is not achieved, and so is the product he, i.e. lower than

(hact − hnom) elim. As regards the second part, when the

set point changes the error becomes large but only during

the event detection and therefore the product he is lower

than hnome. In fact, the product he was over-estimated until

now and so we propose to include a more precise value in

the code of our proposals. Thus we can write:

ui(tk) = ui(tk−1) + K/Tihe
where he ≤ (hact − hnom) elim + hnome(tk)

(2)

Moreover, this inequality which was built for the steady

state intervals remains true for the transients, i.e. when

hact = hnom. Several algorithms without safety limit con-

dition and based on this assumption are proposed: the first

one where nothing else is done and the others which modify

the integral part in order to reduce its impact after a long

steady state interval (the depicted approaches are somehow

similar to the antiwindup mechanism where the error induced

by the saturation has to be compensated):

1) algorithm only without safety limit condition

This algorithm corresponds to the Årzén’s one where the

safety limit condition hhact ≥ hmax is removed without

doing anything else. Results are shown on Figure 5

where important overshoots appear after the steady state

intervals because of the principle described before.

2) algorithm with saturation of the product he
This algorithm consists in bounding the product he
after a long steady state interval in order to reduce the

overshoots. Thus, when the sampling period becomes

too large, i.e. hact ≥ hmax, the product is saturated

according (2), i.e. he = (hact − hnom) elim + hnome.

Results are shown on Figure 6.

3) algorithm with exponential forgetting factor of hact

Another method consists in adding a forgetting factor

of the sampling period so that, after a long steady state

interval, the hact value is reduced enough to not impact

the control signal too much. Thus, the exponential

function hi
act = hact · exp (hnom − hact) is chosen

to decrease the sampling period impact as the elapsed

steady state time increases (with hi
act corresponding to

the new sampling interval used in the integral part). This

function leads to have a nominal sampling period during

the transients, i.e. hact = hnom ⇐⇒ hi
act = hnom, and

an exponential decreasing sampling period during the

steady state intervals. Results are shown on Figure 7.

4) hybrid algorithm

This algorithm is a mix between the previous two ones.

Indeed, the exponential algorithm does not correctly

reduce the overshoot in the transient if the steady state

interval was not long enough (as one can see at time

1s on test bench 1 or at time 2s on test bench 2 on

Figure 7). Actually, the exponential function used in the

algorithm 3 increases first and then decreases, and so

if the set point changes before the function decreasing

then the sampling period hi
act is still too high. In another

way, once the sampling interval exponentially decreases

the results are quite good. Furthermore, results obtained

with the algorithm 2 are interesting. For this reason, we

propose to use the exponential forgetting factor into the

algorithm with saturation. Thus, if hact ≥ hmax the

product he is bounded in
(

hi
act − hnom

)

elim +hnome.

Results are shown on Figure 8.



The resulting code for theses different algorithms (where

the value of choice depends on the chosen algorithm) is:

% inputs

ysp = u(1);

y = u(2);

e = ysp - y;

% calculate control signal

hact = hact + hnom;

if ( abs(e-e_old)>elim )

up = K*( beta*ysp - y );

switch choice

% only without safety limit condition

case 1

ui = ui + K/Ti*hact*e;

% saturation of h*e

case 2

if hact >= hmax

he = (hact - hnom)*elim + hnom*e;

else

he = hact*e;

end

ui = ui + K/Ti*he;

% exponential forgetting factor of hact

case 3

hact_i = hact*exp(hnom-hact);

ui = ui + K/Ti*hact_i*e;

% hybrid

case 4

if hact >= hmax

hact_i = hact*exp(hnom-hact);

he = (hact_i - hnom)*elim + hnom*e;

else

he = hact*e;

end

ui = ui + K/Ti*he;

end

ud = Td/(N*hact + Td)*ud

- K*Td*N/(N*hact + Td)*( y - y_old );

u = up + ui + ud;

% update

e_old = e;

y_old = y;

hact = 0;

end

The results obtained with the event-based PI controllers

without safety limit condition are quite interesting. Indeed,

we obtain some measured signals really similar to the

conventional time-triggered one, both in term of transients

and overshoots. Two algorithms can be highlighted: a) The

hybrid algorithm is the best one: it leads to a control without

performance degradation, by calculating a control signal 80%
of time less than with the time-triggered controller. If we

compare it with the Årzén’s controller, the gain on sampling

interval number is still about 50% and the performance

improvements are very important. A problem could be the

computational complexity of the hybrid algorithm in practice

because of the exponential function, but a look-up table with

precalculated values of the function can replace the online

calculation and thereof highly reduce the computational cost.

b) On the other hand, the algorithm with saturation of the

product he is quite simple and gives similar results.

IV. CONCLUSIONS AND FUTURE WORKS

This paper proposes some algorithms to improve the

simple event-based PID controller presented in [2]. The

Fig. 5. The time-triggered PI controller (400 sampling intervals) vs. the
event-based PI controller without safety limit condition (112 intervals for
bench1 and 96 for bench2, that is 28 and 24% respectively)

Fig. 6. The time-triggered PI controller (400 sampling intervals) vs. the
controller with saturation of the product he (77 intervals for bench1 and
51 for bench2, that is 19.5 and 13% respectively)



Fig. 7. The time-triggered PI controller (400 sampling intervals) vs. the
controller with exponential forgetting factor of hact (77 intervals for bench1
and 52 for bench2, that is 19.5 and 13% respectively)

Fig. 8. The time-triggered PI controller (400 sampling intervals) vs. the
hybrid controller (67 intervals for bench1 and 43 for bench2, that is 16.5
and 11% respectively)

improvement comes from the removing of a safety limit

condition used for stability reason by the author (maximum

sampling period without control update). To compensate

this condition, a forgetting factor is imagined in order to

reduce the sampling period impact in the integral part of

the PID controller. This approach is somehow similar to the

antiwindup one where the error induced by the saturation

has to be compensated. Based on this idea, event-based

PID controllers without safety limit condition are proposed

and compared both with the conventional time-triggered

controller and the Årzén’s event-based controller. Two of the

proposed approaches clearly give good performances with a

minimum of sampling intervals.

Next steps in this research is naturally to test these event-

based controllers in practice and develop other event-based

methods for more general types of control.
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