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Fig. 7. Output power trajectories of the two algorithms in the scenario of
Fig. 6.

curves demonstrates the much better tracking performance of the new
algorithm, despite its higher computational requirements.

In general, with an implicit assumption of a linearly changing en-
vironment, the new algorithm has a better performance when the en-
vironment changes in a nonabrupt or fairly smooth manner so that the
change is approximately linear in nature. This is demonstrated in the
results presented when the environment does not change in a strictly
linear manner all the time, but the change is smooth enough that it can
be taken to be linear over the effective number of data samples used
to update the weights. Specifically, based on the feedback factor used
in the foour-element array at 10% misadjustment above, the effective
number of data samples for updating the weights is of the order of 100.
If the array is mounted on a rotating platform with a speed of 100�/s
and the data rate is 1 Msamples/s, this corresponds to a change of about
0.1�. Clearly, in applications such as this, the environment can be taken
to be approximately linear, and the new algorithm will be quite effec-
tive.

V. CONCLUSION

A fast algorithm for the tracking of nonstationary environments in
power inversion array has been presented and studied. The algorithm
is based on the use of iterative least squares techniques and the intro-
duction of an additional gradient vector in the objective function so
that both the optimal weight vector and its rate of change are estimated
recursively. Although the algorithm is computationally more complex
than conventional least squares methods, it has better performance in
tracking moving sources as the rate of change of the optimal weight
vector is also being estimated.
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Further Results on Reconstruction Methods for Processing
Finite-Length Signals with Perfect Reconstruction Filter

Banks

Ricardo L. de Queiroz

Abstract—In a previous paper, new expressions were developed for
the perfect reconstruction (PR) of the boundary regions of a finite-length
signal after subband processing using uniform and paraunitary filter
banks (PUFB’s). The present paper points out an incorrect assertion in the
previous paper regarding the sufficiency of its solution and presents the
general existence (applicability) conditions for the method. Furthermore,
we extend the method to encompass perfect reconstruction filter banks,
i.e., not only the paraunitary case.

Index Terms—Filter banks, finite signals, transforms.

I. INTRODUCTION

In [1], a solution was presented for the perfect reconstruction (PR)
of the boundary regions of a finite-length signal after subband pro-
cessing using uniform paraunitary filter banks (PUFB’s). The solution
was based on a formulation of a linear system whose solution yields
the undistorted boundary samples of the signal. It was stated in the Ap-
pendix that said solution could always be applied, regardless of signal
extension and filter bank. Here, we show that such a statement is incor-
rect.1 In fact, PR is only conditionally assured. We will explain in detail
the conditions to be met. The FB’s for which [1] does not apply are un-
common; however, we will present a counter-example. In deriving the
existence conditions, we decided to extend the solution to also accom-
modate bi-orthogonal (PR but not PU) FIR FB’s. This will provide for
completeness of the solution.

This correspondence is, in fact, an extension of [1] from which it
inherits most of its notation and to where we send the readers for ref-
erences. As in [1],IIIn andJJJn are then � n identity and reversing
matrices, respectively.

II. TRANSFORMMATRIX

There is an analysis FIR filter bank [2] withM filtersfi(n) of max-
imum lengthLand a synthesis filter bank withM filtersgi(n) of max-
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Fig. 1. Extension and windowing in the analysis and synthesis of a
finite-length signal. (a) Overall analysis section. (b) Overall synthesis section.

imum lengthL. It is assumed thatL = KM for K integer and zeros
can be freely appended to impulse responses to meet such assumptions.
The filter coefficients are grouped into lapped transform matricesPPP
andQQQ of sizeM �L, i.e.,

PPP = fpijg; pij = fi(L� 1� j); QQQ= fqijg; qij = gi(j)

(1)

PPP = [PPP0; PPP1; � � � ; PPPK�1]; QQQ= [QQQ0; QQQ1; � � � ; QQQK�1]: (2)

wherePPP i andQQQi areM �M matrices. The PR conditions [2], [3]
establish that

K�1�m

k=0

QQQTkPPPk+m =
K�1�m

k=0

QQQT
k+mPPPk = �(m)IIIM: (3)

Here, as in [1], we assume the model of extension and windowing
described in Fig. 1. Although general at first glance, the limitations of
the proposed algorithm are linked to the limitations of the framework
in Fig. 1.

The input vectorxxx is assumed to haveNx = NM samples and
is divided into three sectionsxxxT = [xxxTl ; xxx

T
c ; xxx

T
r ], wherexxxl andxxxr

contain the first and lastS samples ofxxx, respectively. Following the
signal extension model,xxx is extended into~xxx as

~xxxT = [xxxTe; l; xxx
T ; xxxTe;r] = [(RRRlxl)

T ; xxxTl ; xxx
T
c ; xxx

T
r ; (RRRrxxxr)

T ] (4)

i.e., the extended sections are found by a linear transform of the
boundary samples ofxxx as

xxxe; l =RRRlxxxl; xxxe; r =RRRrxxxr (5)

andRRRl andRRRr are arbitraryS�S “extension” matrices. For example,
RRRl =RRRr = JJJS [1] yields a symmetric extension.

The transformation from theNx+2S samples in~xxx to vectoryyy with
NM = Nx subband samples is achieved through the block-banded
matrix ~PPP , i.e.,

~PPP =

. . .
. . . 0

PPP0 PPP1 � � � PPPN�1
PPP0 PPP1 � � � PPPN�1

PPP0 PPP1 � � � PPPN�1

0
. . .

. . .

:

(6)

Note that there areN block rows and thatS = (K� 1)M=2. Using
the same notation for~QQQwith respect toQQQi, the analysis and synthesis
systems are given by

~yyy = ~PPP~xxx (7)

~xxx= ~QQQ
T
~yyy = ~QQQ

T ~PPP~xxx= ~HHH~xxx (8)

where~xxx is the reconstructed vector in the absence of quantization. From
(3), we can easily show that the transfer matrix is

~HHH = ~QQQ
T ~PPP =

HHHL 0

IIIN �2S

0 HHHR

(9)

whereHHHl andHHHr are2S�2Smatrices. Thus, distortion is just incurred
to theS boundary samples in each side ofxxx (2S samples in each side
of ~xxx).

III. RECOVERINGDISTORTEDSAMPLES

Let it be shown in (10) and (11) at the bottom of the page that

HHHl =	
T
l �l; HHHr =	

T
r�r: (12)

If we divide ~xxx in the same manner as~xxx, i.e.,
~xxx = [xxxTe; l; xxx

T
l ; xxx

T
c ; xxx

T
r ; xxx

T
e; r], then

xxxe; l
xxxl

=HHHl
xxxe; l
xxxl

=HHHl
RRRlxxxl
xxxl

=HHHl
RRRl
IIIS

xxxl

=�lxxxl (13)

where

�l =HHHl
RRRl
IIIS

(14)

[�lj�r] =

PPP0 PPP1 � � � PPPK�2 PPPK�1 0

PPP0 PPP1 � � � PPPK�2 PPPK�1
. . .

. . .
. . .

. . .

0 PPP0 PPP1 � � � PPPK�2 PPPK�1

(10)

[	lj	r] =

QQQ0 QQQ1 � � � QQQK�2 QQQK�1 0

QQQ0 QQQ1 � � � QQQK�2 QQQK�1

. . .
. . .

. . .
. . .

0 QQQ0 QQQ1 � � � QQQK�2 QQQK�1

(11)
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is a2S�Smatrix. Iff�l has rankS, thenxxxl can be recovered through
the pseudo-inverse of�l

xxxl =�
+

l

xxxe l
xxxl

= (�Tl �l)
�1
�
T
l

xxxe; l
xxxl

: (15)

For the other (“right”) border, the identical result is trivially found to
be

xxxr =�
+
r

xxxr
xxxe; r

= (�T
r�r)

�1
�
T
r

xxxr
xxxe; r

(16)

wherein

�r =HHHr
IIIS
RRRr

(17)

is also assumed to have rankS. It is necessary that�l,�r,	l, and	r

have rankS but not sufficient since rank can be reduced by the matrix
products. It is also possible to express in more detail the conditions, but
no useful analytical solution for the filter bank could be achieved. In
this case, assuming the rank checking is to be done numerically, further
detailing the existence conditions would have little practical use.

Summarizing, the steps to achieve PR for givenRRRl andRRRr are as
follows.

• ConstructPPP andQQQ as in (1), (2).
• Find�l,�r,	l,	r from (10) and (11).
• FindHHHl andHHHr from (12).
• Find�l and�r from (14) and (17).
• Test rank of�l and�r.
• If ranks areS, obtain�+

l ,�+
r , and reconstructxxxl andxxxr.

This is the extension of [1] to non-PU (but PR) filter banks with the
particular concern to test whether the pseudo inverses exist.

IV. COUNTER EXAMPLE

In [1], it was erroneously stated that the matrices have full rank, re-
gardless of the PU filter bank and extension matrices (RRR). Indeed, the
linear system is consistent for most cases of interest. However, counter
examples can be generated. Let the polyphase transfer matrix [2] of a
PU filter bank withNc channels beFFF(z) =AAA+BBBz�1, whereAAA and
BBB areNc �Nc matrices. LetNc be less thanM=2. Consider a mem-
oryless unitary transformDDD and an FB given by

EEE(z) =
FFF(z) 0

0 IIIM�N

DDD=
FFF(z) 0

0 IIIM�N
DDD1

DDD2

=
AAADDD1+BBBDDD1z

�1

DDD2

(18)

whereDDD1 contains the topNc rows ofDDD, whereasDDD2 contains the
remaining rows. Since the FB is PU, then

�l =	l =PPP0 =QQQ0 =
AAADDD1

DDD2

�r =	r =PPP1 =QQQ1 =
BBBDDD1

0
: (19)

The filter bank has order 1, and thus,K = 2 andS = M=2. As
rank(�r) < S, xxxr cannot be recovered using�r. Note that there
would be no distortion if we first implementedDDD over the finite-length
signal and then processed the output forFFF(z) using the method given
in the previous section. However, direct implementation ofEEE(z) fails.
The reason is that different filters would require different extensions
during the analysis process; therefore, the model in Fig. 1 is not appli-
cable.

V. CONCLUSIONS

The method for boundary sample recovery was extended to encom-
pass PR (biorthogonal) systems while noting its necessary conditions.
The model in Fig. 1 and the proposed method are not applicable for sev-
eral FB’s, including those whose filters have different lengths and dif-
ferent symmetries. Examples are some two-channel biorthogonal FB’s
and composite systems, i.e., cascaded systems such as the counter ex-
ample or as in the method given in [4]. For the second example, the
proposed method can be efficiently used to implement each stage of
the cascade. The method works very well forM-channel filter banks
whose filters have same length. The phase of the filters and the exten-
sions can be arbitrary, and the method has been shown to be consistent
for all uniform-length FB’s tested.
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Nonlinear Filtering via Generalized Edgeworth Series and
Gauss–Hermite Quadrature

Subhash Challa, Yaakov Bar-Shalom, and Vikram Krishnamurthy

Abstract—In this correspondence, an approximate nonlinear filter
is presented for systems with continuous time dynamics and discrete
time measurements. The filter is based on a combination of generalized
Edgeworth series (GES) expansion of probability density functions and
Gauss–Hermite quadrature (GHQ). Application to a passive tracking
problem is also presented.

Index Terms—Fokker–Planck–Kolmogorov equation (FPKE),
Gauss–Hermite quadrature (GHQ) method, generalized Edgeworth series
(GES), nonlinear filters.

I. INTRODUCTION

The design of optimal nonlinear filters for state estimation of sto-
chastic dynamical systems has been an area of intense research [13],
[15] ever since Kalman published his celebrated work. The optimal
nonlinear filter for a general nonlinear filtering problem is usually in-
finite dimensional if one resorts to moment evolution-based methods
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