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Abstract—In a previous paper, new expressions were developed for
curves demonstrates the much better tracking performance of the fggperfect reconstruction (PR) of the boundary regions of a finite-length

; [ ; : . signal after subband processing using uniform and paraunitary filter
algorithm, despite its higher computational requirements. banks (PUFB’s). The present paper points out an incorrect assertion in the

) In general, with an imp_licit assumption of a linearly changing errevious paper regarding the sufficiency of its solution and presents the
vironment, the new algorithm has a better performance when the general existence (applicability) conditions for the method. Furthermore,

vironment changes in a nonabrupt or fairly smooth manner so that W@ extend the method to encompass perfect reconstruction filter banks,
change is approximately linear in nature. This is demonstrated in ftfe: NOt only the paraunitary case.
results presented when the environment does not change in a strictiyidex Terms—Filter banks, finite signals, transforms.
linear manner all the time, but the change is smooth enough that it can
be taken to be linear over the effective number of data samples used
to update the weights. Specifically, based on the feedback factor used
in the foour-element array at 10% misadjustment above, the effectiven [1], a solution was presented for the perfect reconstruction (PR)
number of data samples for updating the weights is of the order of 1@f.the boundary regions of a finite-length signal after subband pro-
If the array is mounted on a rotating platform with a speed of’190 cessing using uniform paraunitary filter banks (PUFB's). The solution
and the data rate is 1 Msamples/s, this corresponds to a change of ala@igt based on a formulation of a linear system whose solution yields
0.1°. Clearly, in applications such as this, the environment can be tak@® undistorted boundary samples of the signal. It was stated in the Ap-
to be approximately linear, and the new algorithm will be quite effegrendix that said solution could always be applied, regardless of signal
tive. extension and filter bank. Here, we show that such a statement is incor-
rect! In fact, PR is only conditionally assured. We will explain in detail
the conditions to be met. The FB’s for which [1] does not apply are un-
common; however, we will present a counter-example. In deriving the
A fast algorithm for the tracking of nonstationary environments iexistence conditions, we decided to extend the solution to also accom-
power inversion array has been presented and studied. The algorithodate bi-orthogonal (PR but not PU) FIR FB's. This will provide for
is based on the use of iterative least squares techniques and the irdopapleteness of the solution.
duction of an additional gradient vector in the objective function so This correspondence is, in fact, an extension of [1] from which it
that both the optimal weight vector and its rate of change are estimatelderits most of its notation and to where we send the readers for ref-
recursively. Although the algorithm is computationally more complegrences. As in [1]],, andJ, are then X n identity and reversing
than conventional least squares methods, it has better performancenatrices, respectively.
tracking moving sources as the rate of change of the optimal weight
vector is also being estimated. II. TRANSEORMMATRIX

|. INTRODUCTION

V. CONCLUSION

There is an analysis FIR filter bank [2] witH filters f;(n) of max-
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X | linear . . .Y The transformation from th&’, 4+ 25 samples irx to vectory with
lextension| | 2Ralysis —windowing—- NM = N, subband samples is achievec? through the blgck-banded
(a) matrix P, i.e.,
. exltitlallfzfon —{synthesis —+wind0wing—x> . 0
Py, Py --- Py
(b) P= Py P, Pr_
pP, P oo Py

Fig. 1. Extension and windowing in the analysis and synthesis of a
finite-length signal. (a) Overall analysis section. (b) Overall synthesis section. 0

(6)
imum lengthZ. It is assumed that = K M for K integer and zeros Note that there ar&/ block rows and thaf = (K — 1)M /2. Using
can be freely appended to impulse responses to meet such assumptinessame notation fdg with respect taQ;, the analysis and synthesis

The filter coefficients are grouped into lapped transform matri€es systems are given by
andQ of sizeM x L, i.e., L
y=Pzx @)

O e R
. . r=Q y=Q Px=Hzx 8
P={pi;}, pij=fi(L-1-j), Q={a;}. @j=09()) - Qy=Q ®)
1) wherez is the reconstructed vector in the absence of quantization. From
P=[P, P Piil, Q=[Q, Q Qre_] @) (3), we can easily show that the transfer matrix is
= Lo, £1, ", F'K-1, = Yo> W1, "7 W11

H; 0
where P; and @, are M x M matrices. The PR conditions [2], [3] H= QTP: In o5 )
establish that -
0 Hr
K—-1-m - K-1-m - whereH; andH - are2.5 x 2.5 matrices. Thus, distortion is just incurred
> QPrim= Y Qi Pr=06mIu. () totheS boundary samples in each sidemf2S samples in each side
k=0 k=0

of ).

Here, as in [1], we assume the model of extension and windowing
described in Fig. 1. Although general at first glance, the limitations of
the proposed algorithm are linked to the limitations of the framework Let it be shown in (10) and (11) at the bottom of the page that

Ill. RECOVERING DISTORTED SAMPLES

in Flg 1. T T 3T
The input vectorr is assumed to hav®’, = N M samples and H =¥ &, H =¥ %. (12)
is divided into three sections’ = [z{, zI, ], wherex; andz, If we divide  in the same manner asz, ie.,
contain the first and las samples ofe, respectively. Following the z = [#. ,, =/, z. , ., Z_ .|, then
signal extension modet; is extended int& as 5 r
|: e l:| :Hl |: 3 l:|
~T T T T T T T T T o ot
r = [xﬁ,lvx ‘/mt'i,r] = [(Rlxl) » X ,:L'D,:CT,(R,»éﬂr) ] (4) H |:lel:|
=
x
i.e., the extended sections are found by a linear transform of the R
boundary samples af as =H, {Is} x
=Nz (13)
ze,1 =Rz, .= Rrxr (5)
where
andR; and R, are arbitraryS x S “extension” matrices. For example, A=H R 14
R, = R, = Js [1] yields a symmetric extension. Lt = (14)
Py P -+ Pg o Pr 0
P, P - Prx > Pr
[P:|®)] = . . (10)
L O Py P, -+ Prx—o Pg
[Q @ - Qx_, Q1 0
QO Ql U QK—Q QK—I
(¥ ®,] = : . . : (11)
L 0 Qo Q 0 Qi Qi
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is a25 x S matrix. Iff A; has rankS, thenz; can be recovered through V. CONCLUSIONS

the pseudo-inverse df;
_fel

The method for boundary sample recovery was extended to encom-
pass PR (biorthogonal) systems while noting its necessary conditions.
L The modelin Fig. 1 and the proposed method are not applicable for sev-
For the other (“right”) border, the identical result is trivially found toeral FB’s, including those whose filters have different lengths and dif-
be ferent symmetries. Examples are some two-channel biorthogonal FB’s
and composite systems, i.e., cascaded systems such as the counter ex-
ample or as in the method given in [4]. For the second example, the
proposed method can be efficiently used to implement each stage of
the cascade. The method works very well fidrchannel filter banks
whose filters have same length. The phase of the filters and the exten-
sions can be arbitrary, and the method has been shown to be consistent
for all uniform-length FB’s tested.

r =Af (15)

} — (ATA)'AT F’}

o =AF| " (16)

L Te, r

| =@rayar| 7

e, r

wherein

7

o]

R,

is also assumed to have rafklt is necessary thab;,®,.,¥;, and ¥,

have rankS but not sufficient since rank can be reduced by the matrix REFERENCES

products. It is also possible to express in more detail the conditions, buf1]
no useful analytical solution for the filter bank could be achieved. In
this case, assuming the rank checking is to be done numerically, furthe[ ]
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Summarizing, the steps to achieve PR for givénand R,- are as
follows.

 ConstructP and@ as in (1), (2).

* Find ®;, ®,, ¥, ¥, from (10) and (11).

» Find H; andH, from (12).

* Find A; and A, from (14) and (17).

* Test rank ofA; and A

« If ranks areS, obtainA;", A}, and reconstruct; andz,..
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This is the extension of [1] to non-PU (but PR) filter banks with the

particular concern to test whether the pseudo inverses exist.

IV. COUNTER EXAMPLE

Nonlinear Filtering via Generalized Edgeworth Series and
Gauss—Hermite Quadrature

In [1], it was erroneously stated that the matrices have full rank, re-gphash Challa, Yaakov Bar-Shalom, and Vikram Krishnamurthy

gardless of the PU filter bank and extension matrid@s (ndeed, the

linear system is consistent for most cases of interest. However, counter
examples can be generated. Let the polyphase transfer matrix [2] of aAbstract—n this correspondence, an approximate nonlinear filter

PU filter bank withN,: channels bd(z) = A+ Bz~!, whereA and
BareN. x N, matrices. LetN, be less tha/ /2. Consider a mem-
oryless unitary transforn® and an FB given by

E(z) = {F(()z) 11\4?JVC:|

b= {F((;) LM(iNC:|

1| 1 1zt
D AD: 4+ BD: z
o= @

where D; contains the topV. rows of D, whereasD- contains the
remaining rows. Since the FB is PU, then

AD
@l:\lll:POZQOZ |: D21:|

BD
@:\PT:PFQF{ 01}. (19)

The filter bank has order 1, and thuk, = 2 andS = M/2. As
rank®,) < S, z, cannot be recovered usimyy.. Note that there
would be no distortion if we firstimplementda over the finite-length
signal and then processed the outputR4r) using the method given
in the previous section. However, direct implementatiod¢f) fails.

The reason is that different filters would require different extensio

is presented for systems with continuous time dynamics and discrete
time measurements. The filter is based on a combination of generalized
Edgeworth series (GES) expansion of probability density functions and
Gauss—Hermite quadrature (GHQ). Application to a passive tracking
problem is also presented.

Index  Terms—Fokker—Planck—Kolmogorov  equation  (FPKE),
Gauss—Hermite quadrature (GHQ) method, generalized Edgeworth series
(GES), nonlinear filters.

|. INTRODUCTION

The design of optimal nonlinear filters for state estimation of sto-
chastic dynamical systems has been an area of intense research [13],
[15] ever since Kalman published his celebrated work. The optimal
nonlinear filter for a general nonlinear filtering problem is usually in-
finite dimensional if one resorts to moment evolution-based methods
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