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�is paper is concernedwith the problemof stability analysis forMarkovian jump systemswith time-varying delays. By constructing
a newly augmented Lyapunov-Krasovskii functional and combining Wirtinger-based integral inequality, an improved delay-
dependent stability criterion within the framework of linear matrix inequalities (LMIs) is introduced. Based on the result of delay-
dependent stability criterion, when linear systems have fast time-varying delays, a corresponding stability condition is given. Via
three numerical examples, the improvements of the proposed criteria are shown by comparing maximum delay bounds provided
by our theorems with the recent results.

1. Introduction

Stability analysis of dynamic systems is a prerequisite and
essential job before designing a controller to achieve the
prescribed speci�cations. In particular, a great concern of
stability analysis for systems with time-delays has been
received due to the fact that time-delay naturally occurs
in many practical systems such as networked control sys-
tem, chemical processing, hot rolling mill, synchronization
between chaotic systems, neural networks, and multiagent
systems. For instance, see [1, 2] and references therein.

�e main issue in delay-dependent stability analysis
for time-delay systems with the framework of LMIs is
how to increase maximum delay bounds for guaranteeing
the asymptotic stability of systems. �us, the choosing of
Lyapunov-Krasovskii functional (LKF) and some techniques
in estimating an upper bound of time-derivative value of the
constructed LKF are themost important factors in enhancing
the stability feasible region. In the LKF aspect, quadratic
form, single integral, and double integral of quadratic form
are the most utilized functionals. Recently, since the triple
integral form of LKF was introduced in [3], this form of LKF
has been utilized in many works such as [4–6]. Moreover, in

[4, 5], it was shown that some augmented LKFs can increase
the feasible region of stability criteria. In estimating an upper
bound of time-derivative value of LKF, Jensen’s inequality
[7], free-weighting matrix technique [8], and reciprocally
convex optimization theory [9] make big impacts on the
enhancement of delay-dependent stability and stabilization.
Seuret and Gouaisbaut [10] proposed the Wirtinger-based
integral inequality which provides more tight lower bounds
than Jensen’s inequality and showed that the utilization of
Wiritinger-based integral inequality can improve maximum
delay bounds in many systems such as systems with constant
and known delay, systems with a time-varying delay, systems
with a constant distributed delay, and sampled-date systems.
Cheng and Xiong [11] reduced conservative condition of
stabilization criteria for continuous-time systems with time-
varying input by introducing a new integral inequality.
Recently, in [12, 13], for neural network with time-varying
delay, it can be con�rmed that the utilization of Wirtinger-
based integral inequality in obtaining an upper bound of
time-derivative values of some augmented LKFs can pro-
vide larger delay bounds than some other literatures. Very
recently, in [14], it was shown that the results obtained by [10]
can be further improved by choosing some new augmented
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LKFs. From the statementsmentioned above, one can see that
the choosing of LKF and some techniques play key roles to
reduce the conservatism of stability criteria.

On the other hand, increasing attention has been paid
to Markovian jumping systems (MJSs) which are a special
sort of hybrid systems and driven by Markov chain. MJSs
may undergo unexpected changes in their structure and
parameters including economic systems, aerospace systems,
power systems, and networked control system [15, 16]. Very
recently, a survey on recent developments of modeling,
analysis, and design of MJSs was reported in Shi and Li [17].

In this regard, many researchers put their times and
e�orts into stability and stabilization of Markovian jumping
systems with time-delays. In [18], the problems of robust
H∞ control and H∞ �ltering for uncertain MJSs with
time-varying delays were investigated by utilizing bounded
real lemma. In [19], some new results on stabilization of
MJSs with time-delays were proposed based on a delay-
partitioning approach.Wu et al. [20] investigated the problem
of stability and H∞ �ltering for singular Markovian jump
systems with time-delay via a delay-dependent bounded real
lemma. Li et al. [21] utilized an input-output approach to
stability and stabilization of MJSs with time-varying delays
and showed the reduction of conservatism of the concerned
criteria by a precise approximation of time-varying delay. By
constructing new LKFs having distinct Lyapunov matrices
for di�erent modes, the mean square exponential stability
and stabilization problems were studied in [22] forMJSs with
constant time-delays. In [23], improved delay-dependent
stability and H∞ control for singular Markovian jump
systems with time-delay by utilizing delay-partitioning tech-
nique with a tuning parameter. Zhu [24] derived some new
conditions for ensuring the asymptotic stability of singular
nonlinear MJSs with unknown parameters and continuously
distributed delays. Recently, some new augmented LKFs and
techniques in estimating upper bounds of time-derivative
of LKFs were introduced in [25] in studying stability and
H∞ performance analysis of MJSs with time-varying delays.
Very recently, in [26], an input-output approach to the delay-
dependent stability analysis and H∞ control for MJSs with
time-varying delays and de�cient transition descriptions.�e
problem of �nite-timeH∞ estimation for a class of discrete-
time Markov jump systems with time-varying transition
probabilities subject to average dwell time switching was
investigated in [27]. However, as mentioned in [17], the
results on stability have still some conservativeness. �us,
there are rooms for further reduction of conservativeness
caused by time-delays with the construction of a newly
augmented Lyapunov-Krasovskii functional and utilization
of a Wirtinger-based integral inequality [10].

Motivated by [17] and based on the result of [25], the
goal of this paper is to propose a further improved result of
delay-dependent stability for MJSs with time-varying delays.
In �eorem 5, a new and improved stability criterion will
be proposed based on the results of [25]. To derive less
conservative results, Wirtinger-based integral inequality is
applied to the augmented LKFs and some new techniques
are introduced. When an upper bound of time-derivative
value of time-varying delay is larger than one or unknown, a

corresponding result will be presented in Corollary 6 by con-
structing some part of LKF utilized in�eorem 5. Comparing
with the result of [25], the constructed Lyapunov-Krasovskii
functionals in�eorem 5 andCorollary 6 are simple since the
triple and quadruple integral form of Lyapunov-Krasovskii
functionalswill not be utilized.Via three numerical examples,
the advantage and e�ectiveness of the proposed results will be
explained by comparing maximum delay bounds with some
recent results presented in other literatures.

Notation. �roughout this paper, the following notations
will be used. � > 0 (� ≥ 0) means that � is a real
symmetric positive de�nitive matrix (positive semide�nite).
�e subscript “�” represents the transpose. �⊥ denotes a
basis for the null-space of �. R� denotes the �-dimensional
Euclidean space and R

�×� is the set of all � × � real
matrix. C�,ℎ = C([−ℎ, 0],R�) denotes the Banach space of
continuous functions mapping the interval [−ℎ, 0] into R

�

with the topology of uniform convergence.L2[0,∞)means
the space of square-integrable vector functions over [0,∞).
E{⋅} denotes the expectation operator with respect to some
measure P. 
�, 0�, and 0�⋅� denote � × � identity matrix
and � × � and � × � zero matrices, respectively. ‖ ⋅ ‖ refers
to the induced matrix 2-norm. diag{⋅ ⋅ ⋅ } denotes the block
diagonal matrix. �[�(	)] ∈ R

�×� means that the elements
of matrix �[�(	)] include the scalar value of (�). For any

matrix�, Sym{�}means�+�
. col{�1, �2, . . . , ��}means[�
1 , �
2 , . . . , �
� ]
.
2. Problem Statement and Preliminaries

Consider the Markovian jump system with time-varying
delays: �̇ (�) = � (� (�)) � (�) +�� (� (�)) � (� − ℎ (�)) ,� (�) = � (�) , ∀� ∈ [−ℎ�, 0] , (1)

where �(�) ∈ R
� is the state vector, �(�) which belongs

to C�,ℎ� means the initial function, �(�(�)) and ��(�(�))
are known system matrices with appropriate dimensions,
and �(�) denotes a �nite state Markovian jump process
representing the systemmode.�at is, �(�) takes values in the
�nite discrete setS = {1, 2, . . . , �}with transition probability
matrix Π = [��].

�e transition probability is described as

Pr {� (� + �) = � | � (�) = �}
= {{{��� + # (�) , � ̸= �,

1 + ��� + # (�) , � = �, (2)

where � > 0, lim�→ 0+(�(�)/�)=0, �� ≥ 0 for � ̸= � and � =−∑� ̸= ��.
�e delay in states, ℎ(�), is a time-varying and continuous

function satisfying

0 ≤ ℎ (�) ≤ ℎ�,ℎ̇ (�) ≤ ℎ�, (3)
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where ℎ� is a known positive scalar and ℎ� is any constant
one.

For simplicity, a matrix �(�(�)) of �th node is denoted
by � for each possible �(�) = �, � ∈ S in the rest of this
paper. For example, �(�(�)) and ��(�(�)) of �th node will be
represented as �  and ��, respectively. Let �	 = �(� + ') for' ∈ [−ℎ�, 0]. From [28], it should be noted that {(�	, �(�))}
is a Markov process for � ≥ 0. �en, its weak in�nitesimal
operatorL acting on a functional *(�	, �) is de�ned by

L* (�	, �)= lim
�→ 0+

1� [E {* (�	+�, � (� + �) | �	, � (�) = �)}−* (�	, �)] . (4)

In stability analysis of system (1), the following de�nition will
be utilized.

De	nition 1 (see [29]). For any �nite �(�) ∈ C�,ℎ� , and the
initial condition of the mode �0 ∈ S, the system �̇(�) =�(�(�))�(�) + ��(�(�))�(� − ℎ(�)) is said to

(a) be stochastically stable if there exists a constant�(�0, �(�)) such that

E{∫∞
0
‖� (�)‖2 | �0, � (�)} ≤ � (�0, � (�)) , (5)

(b) be mean square stable if

lim
	→∞

E ‖� (�)‖2 = 0, (6)

hold for any initial condition (�0, �(�)),
(c) be mean exponentially stable if there exist constants3 > 0 and 4 > 0 such that the following holds for any

initial condition (�0, �(�)):
E {‖� (�)‖2 | �0, � (�)} ≤ 3 7777� (�)7777 8−�	. (7)

Based on the results of [25], the objective of this paper is to
develop further improved delay-dependent stability criteria
of system (1) which will be conducted in next section.

�e following lemmas will be utilized in deriving main
results.

Lemma 2. Consider a given matrix � > 0. 
en, for all
continuous function 9 in [:, ;] → R

�, the following inequality
holds:∫�

�
9
 (')�9 (') ?' ≥ 1; − : (∫�� 9 (') ?')
⋅�(∫�

�
9 (') ?')

+ 3; − : (∫�� 9 (') ?' − 2; − : ∫�� ∫�� 9 (B) ?B ?')
⋅�(∫�
�
9 (') ?' − 2; − : ∫�� ∫�� 9 (B) ?B ?') .

(8)

Proof. From the original Wirtinger-based integral inequality
[10], since

∫�
�
9 (') ?' − 2; − : ∫�� ∫�� 9 (B) ?B ?'= ∫�

�
9 (') ?'

− 2; − : ∫�� (∫�� 9 (B) ?B −∫�� 9 (B) ?B)?'= ∫�
�
9 (') ?' − 2; − :∫�� ∫�� 9 (B) ?B ?'⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

(1/(�−�)) ∫�� �(�)��+ 2; − : ∫�� ∫�� 9 (B) ?B ?'= −∫�
�
9 (') ?' + 2; − : ∫�� ∫�� 9 (B) ?B ?',

(9)

inequality (8) holds.

Lemma 3 (see [30]). Let G ∈ R
�, Φ = Φ
 ∈ R

�×�, andI ∈ R
�×� such that rank(I) < �. 
en, the following two

statements are equivalent:

(a) G
ΦG < 0, IG = 0, G ̸= 0,

(b) (I⊥)
ΦI⊥ < 0, where I⊥ is a right orthogonal
complement of I.

Lemma 4 (see [31]). For the symmetric appropriately dimen-
sional matrices Ω > 0, Ξ, an any matrix Λ, the following two
statements are equivalent:

(a) Ξ − Λ
ΩΛ < 0,

(b) there exists a matrix of appropriate dimension Ψ such
that

[Ξ + Λ
Ψ + Ψ
Λ Ψ
Ψ −Ω] < 0. (10)

3. Main Results

In this section, improved delay-dependent stability criteria
forMJSs (1) will be proposed. To express vectors andmatrices
in simple forms, block entrymatrices 8 (� = 1, . . . , 9) ∈ R9�×�

will be used. For example, 83 means [0�⋅2�, 
�, 0�⋅6�]
. And
some of scalars, vectors, and matrices are de�ned asG (�) = col{� (�) , � (� − ℎ (�)) , � (� − ℎ�) , �̇ (�) ,

�̇ (� − ℎ�) , ∫	
	−ℎ(	)

� (') ?', ∫	−ℎ(	)
	−ℎ�

� (') ?',
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∫	
	−ℎ(	)

∫	
�
� (B) ?B ?', ∫	−ℎ(	)

	−ℎ�
∫	
�
� (B) ?B ?'} ,

9 (�) = col{� (�) , � (� − ℎ�) , ∫	
	−ℎ�

� (') ?',
∫	
	−ℎ�

∫	
�
� (B) ?B ?'} ,

3 (�, ') = col{�̇ (') , � (') , ∫	
�
�̇ (B) ?B} ,

4 (�, ') = col{� (') , ∫	
�
�̇ (B) ?B} ,

Qaug1 = Q+[[[
0� V1 0�V1 0� 0�

0� 0� 0�

]]] ,
Qaug2 = Q+[[[

0� V2 0�V2 0� 0�

0� 0� 0�

]]] ,Ξ1 = Sym {[81, 83, 86 + 87, 88 + 89]⋅R [84, 85, 81 − 83, ℎ�81 − 86 − 87]
} ,+ [81, 83, 86 + 87, 88 + 89]( �∑
�=1
��R�)[81, 83, 86 + 87, 88+ 89]
 ,Ξ2 = [84, 81, 09�⋅�]N [84, 81, 09�⋅�]
 − [85, 83, 81 − 83]⋅N [85, 83, 81 − 83]
+ Sym {[81 − 83, 86 + 87, ℎ�81 − 86 − 87]⋅N [09�⋅�, 09�⋅�, 84]
} ,Ξ3[ℎ(	)] = [81, 09�⋅�]G [81, 09�⋅�]
 − (1− ℎ�) [82, 81− 82]G [82, 81 − 82]
 + Sym {[86, ℎ (�) 81 − 86]⋅G [09�⋅�, 84]
} ,Ξ4 = [84, 81, 09�⋅�] (ℎ2�Q) [84, 81, 09�⋅�]
 + 2ℎ� [ℎ�81

− 86 − 87, 88 + 89, (ℎ2�2 ) 81 − 88 − 89]Q [09�⋅�,
09�⋅�, 84]
 ,Ξ5 = ℎ� (81V18
1 − 82V18
2 + 82V28
2 − 83V28
3 ) ,Λ 1[ℎ(	)] = [81 − 82, 86, ℎ (�) 81 − 86, ℎ (�) (−81 − 82)

+ 286, ℎ (�) 86 − 288, 288 − ℎ (�) 86]
 ,Λ 2[ℎ(	)] = [82 − 83, 87, (ℎ� − ℎ (�)) 81 − 87, (ℎ� − ℎ (�))⋅ (−82 − 83) + 287, (ℎ� − ℎ (�)) 87 − 289,− (ℎ� − ℎ (�)) (286 + 87) + 289]
 ,Λ 3[ℎ(	)] = [Λ
1[ℎ(	)], Λ
2[ℎ(	)]]
 ,Θ1 = Qaug1 −( 1ℎ�) �∑
�=1
��N� −( 1ℎ�)

⋅ [[[
0� 0�⋅2�

02�⋅�

�∑
�=1
��G� ]]] ,Θ2 = Qaug2 −( 1ℎ�) �∑

�=1
��N�,

Ω1 = [[[
Θ1 03�

03�
(3Θ1)ℎ2� ]]] ,

Ω2 = [[[
Θ2 03�

03�
(3Θ2)ℎ2� ]]] ,Ω3 = [Ω1 S

S

 Ω2

] ,Υ = [� , ��, 0�, − 
�, 0�, 0�, 0�, 0�, 0�] ,Σ[ℎ(	)] = Ξ1 +Ξ2 +Ξ3[ℎ(	)] +Ξ4 +Ξ5,Φ[ℎ(	)] = (Υ⊥ )
 (Σ[ℎ(	)]) (Υ⊥ ) + Sym {(Υ⊥ )
⋅ (Λ 3[ℎ(	)])
Ψ} .
(11)

Now, we have the following theorem.

�eorem 5. For given scalars ℎ� > 0 and ℎ�, system (1) is

stochastically stable for 0 ≤ ℎ(�) ≤ ℎ� and ℎ̇(�) ≤ ℎ� if there
exist positive de	nite matricesR ∈ R4�×4�,N ∈ R3�×3�,G ∈
R

2�×2�, and Q ∈ R
3�×3�, any matrices S ∈ R

6�×6� and Ψ ∈
R

12�×8�, and any symmetric matricesV1 ∈ R�×� andV2 ∈ R�×�
satisfying the following LMIs for all �(�) = �, � ∈ S:

[Φ,� Ψ
Ψ −Ω3
] < 0, l = 1, 2, (12)

where {Φ,�}2�=1 means the two vertices of Φ[ℎ(	)] with the
bounds of 0 ≤ ℎ(�) ≤ ℎ�. 
at is, Φ,1 = Φ[ℎ(	)=0] andΦ,2 = Φ[ℎ(	)=ℎ�].
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Proof. For each �(�) = �, � ∈ S, let us consider the Lyapunov-
Krasovskii functional candidate:

* (�	, �) = 4∑
�=1
*� (�	, �) , (13)

where *1 (�	, �) = 9
 (�)R9 (�) ,*2 (�	, �) = ∫	
	−ℎ�

3
 (�, ')N3 (�, ') ?',*3 (�	, �) = ∫	
	−ℎ(	)

4
 (�, ')G4
 (�, ') ?',*4 (�	, �) = ∫	
	−ℎ�

∫	
�
3
 (�, B)Q3 (�, B) ?B ?'.

(14)

From the following relationship:

9 (�)
= [[[[[[[[[

� (�)� (� − ℎ�)∫	
	−ℎ(	)

� (') ?' + ∫	−ℎ(	)
	−ℎ�

� (') ?'∫	
	−ℎ(	)

∫	
�
� (B) ?B ?' + ∫	−ℎ(	)

	−ℎ�
∫	
�
� (B) ?B ?'

]]]]]]]]]= [81, 83, 86 + 87, 88 + 89]
 G (�) ,
̇9 (�) = [[[[[[[[[

�̇ (�)�̇ (� − ℎ�)� (�) − � (� − ℎ�)ℎ�� (�) − ∫	
	−ℎ�

� (') ?'⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
∫��−ℎ(�) �(�)��+∫

�−ℎ(�)
�−ℎ�

�(�)��

]]]]]]]]]= [84, 85, 81 − 83, ℎ�81 − 86 − 87]
 G (�) ,

(15)

L*1(�	, �) can be represented as

L*1 (�	, �) = 29
 (�)R ̇9 (�)+ 9
 (�)( �∑
�=1
��R�)9 (�)= G
 (�) Ξ1G (�) ,

(16)

where Ξ1 is de�ned in (11).

Note that

∫	
	−ℎ�

3 (�, ') ?' = ∫	
	−ℎ�

[[[[
�̇ (')� (')∫	

�
�̇ (B) ?B]]]]?'

= [[[[[[[[
∫	
	−ℎ�

�̇ (') ?'∫	
	−ℎ�

� (') ?'∫	
	−ℎ�

∫	
�
�̇ (B) ?B

]]]]]]]]
= [[[[[[[

� (�) − � (� − ℎ�)∫	
	−ℎ(	)

� (') ?' + ∫	−ℎ(	)
	−ℎ�

� (') ?'ℎ�� (�) − ∫	
	−ℎ(	)

� (') ?' − ∫	−ℎ(	)
	−ℎ�

� (') ?'
]]]]]]]= [81 − 83, 86 + 87, ℎ�81 − 86 − 87]
 G (�) .

(17)

From (17), calculation ofL*2(�	, �) leads to
L*2 (�	, �) = 3
 (�, �)N3 (�, �) ⋅ ??� (�) − 3
 (�, �− ℎ�)N3 (�, � − ℎ�)
 ⋅ ??� (� − ℎ�)+∫	

	−ℎ�

??� (3
 (�, ')N3 (�, '))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
2��(	,�)N�(��(	,�)/�	)

?' +∫	
	−ℎ�

3
 (�, ')
⋅ ( �∑

�=1
��N�)3 (�, ') ?' = G
 (�) {[84, 81, 09�⋅�]⋅N [84, 81, 09�⋅�]
 − [85, 83, 81 − 83]N [85, 83, 81− 83]
 + Sym {[81 − 83, 86 + 87, ℎ�81 − 86 − 87]⋅N [09�⋅�, 09�⋅�, 84]
}} G (�) +∫	

	−ℎ�
3
 (�, ')

⋅ ( �∑
�=1
��N�)3 (�, ') ?' = G
 (�) Ξ2G (�)

+∫	
	−ℎ�

3
 (�, ')( �∑
�=1
��N�)3 (�, ') ?'.

(18)

An upper bound ofL*3(�	, �) can be obtained as

L*3 (�	, �) ≤ [� (�)
0�⋅1
]
G [� (�)

0�⋅1
]− (1− ℎ�)

⋅ [[[
� (� − ℎ (�))∫	
	−ℎ(	)

�̇ (') ?']]]



G
[[[
� (� − ℎ (�))∫	
	−ℎ(	)

�̇ (') ?']]]
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+ 2∫	
	−ℎ(	)

4
 (�, ')Gm4 (�, ')m� ?' +∫	
	−ℎ(	)

4
 (�, ')
⋅ ( �∑

�=1
��G�)4 (�, ') ?' = G
 (�)

⋅ {[81, 09�⋅�]G [81, 09�⋅�]
− (1− ℎ�) [82, 81 − 82]G [82, 81 − 82]
+ Sym {[86, ℎ (�) 81 − 86]G [09�⋅�, 84]
}} G (�)
+∫	

	−ℎ(	)
4
 (�, ')( �∑

�=1
��G�)4 (�, ') ?' = G
 (�)⋅ Ξ3[ℎ(	)]G (�)+∫	

	−ℎ(	)
4
 (�, ')( �∑

�=1
��G�)4 (�, ') ?'.

(19)

Inspired by the work of [32], for any symmetric matrices V ∈
R
�×� (� = 1, 2), the following two zero equalities are satis�ed:
0 = ℎ� {�
 (�) V1� (�) − �
 (� − ℎ (�)) V1� (� − ℎ (�))
− 2∫	

	−ℎ(	)
�
 (') V1�̇ (') ?'} ,

0 = ℎ�{�
 (� − ℎ (�)) V2� (� − ℎ (�))− �
 (� − ℎ�) V2� (� − ℎ�)− 2∫	−ℎ(	)
	−ℎ�

�
 (') V2�̇ (') ?'} .
(20)

By summing the two zero equalities in (20), we have

0 = G
 (�) Ξ5G (�) − 2ℎ�∫	
	−ℎ(	)

�
 (') V1�̇ (') ?'− 2ℎ�∫	−ℎ(	)
	−ℎ�

�
 (') V2�̇ (') ?'. (21)

Letn(�, ') = ∫	� 3
(�, B)Q3(�, B)?B. By using the similarmeth-

ods presented in (18) to (19), the calculation ofL*4(�	, �) can
be represented as

L*4 (�	, �) = ℎ�n (�, ')pppp�=	⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
0

− ℎ�n (�, ')pppp�=	−ℎ�
+ ℎ�∫	

	−ℎ�

mn (�, ')m� ?' = −ℎ�n (�, ')pppp�=	−ℎ�+ ℎ�∫	
	−ℎ�

{3
 (�, �)Q3 (�, �)
+ 2∫	

�
3
 (�, B)Qm3 (�, B)m� ?B} ?' = ℎ2�3
 (�, �)⋅Q3 (�, �) − ℎ�∫	

	−ℎ�
3
 (�, ')Q3 (�, ') ?'

+ 2ℎ�∫	
	−ℎ�

∫	
�
3
 (�, B)Qm3 (�, B)m� ?B ?' = G
 (�)

⋅ {[84, 81, 09�⋅�] (ℎ2�Q) [84, 81, 09�⋅�]
 + 2ℎ� [ℎ�81
− 86 − 87, 88 + 89, (ℎ2�2 ) 81 − 88 − 89]⋅Q [09�⋅�, 09�⋅�, 84]
} G (�) − ℎ�∫	

	−ℎ�
3
 (�, ')

⋅Q3 (�, ') ?' = G
 (�) Ξ4G (�) − ℎ�∫	
	−ℎ�

3
 (�, ')⋅Q3 (�, ') ?'.

(22)

Here, the following equations are utilized in (22):

2ℎ�∫	
	−ℎ�

∫	
�
3
 (�, B)Qm3 (�, B)m� ?B ?' = 2ℎ�∫	

	−ℎ�
∫	
�

[[[[
�̇ (B)� (B)∫	

�
�̇ (B) ?B]]]]




Q[[ 0�⋅1
0�⋅1�̇ (�)]]?B ?'

= 2ℎ�[[[[[[[[
∫	
	−ℎ�

∫	
�
�̇ (B) ?B ?'∫	

	−ℎ�
∫	
�
� (B) ?B ?'∫	

	−ℎ�
∫	
�
∫	
�
�̇ (V) ?V ?B ?'

]]]]]]]]



Q[[ 0�⋅1
0�⋅1�̇ (�)]]
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= 2ℎ�[[[[[[[[[
ℎ�� (�) − ∫	

	−ℎ(	)
� (') ?' − ∫	−ℎ(	)

	−ℎ�
� (') ?'∫	

	−ℎ(	)
∫	
�
� (B) ?B ?' + ∫	−ℎ(	)

	−ℎ�
∫	
�
� (B) ?B ?'(ℎ2�

2
)� (�) − ∫	

	−ℎ(	)
∫	
�
� (B) ?B ?' − ∫	−ℎ(	)

	−ℎ�
∫	
�
� (B) ?B ?'

]]]]]]]]]



Q[[ 0�⋅1
0�⋅1�̇ (�)]] .

(23)

With the consideration of ∫		−ℎ� 3
(�, ')(∑��=1 ��N�)3(�, ')?'
in (18), ∫		−ℎ(	) 4
(�, ')(∑��=1 ��G�)4(�, ')?' in (19), and

the two integral terms −2ℎ� ∫		−ℎ(	) �
(')V1�̇(')?' and−2ℎ� ∫	−ℎ(	)	−ℎ�
�
(')V2�̇(')?' in (21), the last integral term−ℎ� ∫		−ℎ� 3
2 (�, ')Q132(�, ')?' at (22) with the addition of

integral terms mentioned above can be estimated by the
use of (a) in Lemma 2 and reciprocally convex optimization
approach [9] as− ℎ�∫	

	−ℎ�
3
 (�, ')Q3 (�, ') ?' − 2ℎ�∫	

	−ℎ(	)
�
 (') V1�̇ (') ?'

− 2ℎ�∫	−ℎ(	)
	−ℎ�

�
 (') V2�̇ (') ?'
+∫	

	−ℎ�
3
 (�, ')( �∑

�=1
��N�)3 (�, ') ?'

+∫	
	−ℎ(	)

4
 (�, ')( �∑
�=1
��G�)4 (�, ') ?' = − ℎ�∫	

	−ℎ(	)
3
 (�, ')

⋅((
(

Qaug1 − ( 1ℎ�) �∑
�=1
��N� − ( 1ℎ�)[[[

0� 0�⋅2�

02�⋅�

�∑
�=1
��G� ]]]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Θ1�

))
)⋅3 (�, ') ?'

− ℎ�∫	−ℎ(	)
	−ℎ�

3
 (�, ')(Qaug2 − ( 1ℎ�) �∑
�=1
��N�⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Θ2�

)3(�, ') ?',

(24)

where

Qaug1 = Q+[[[
0� V1 0�V1 0� 0�

0� 0� 0�

]]] ,
Qaug2 = Q+[[[

0� V2 0�V2 0� 0�

0� 0� 0�

]]] ,
(25)

which were de�ned in (11).

With the use of Lemma 2, the integral term−ℎ� ∫		−ℎ(	) 3
(�, ')Θ13(�, ')?' can be bounded as

− ℎ�∫	
	−ℎ(	)

3
 (�, ') Θ13 (�, ') ?' ≤ − ℎ�ℎ (�) (∫		−ℎ(	) 3 (�, ') ?')
⋅ Θ1 (∫	
	−ℎ(	)

3 (�, ') ?')
− 3ℎ�ℎ (�) (∫		−ℎ(	) 3 (�, ') ?' − 2ℎ (�) ∫		−ℎ(	) ∫	� 3 (�, B) ?B ?')
⋅ Θ1 (∫	

	−ℎ(	)
3 (�, ') ?' − 2ℎ (�) ∫		−ℎ(	) ∫	� 3 (�, B) ?B ?')= − ℎ�ℎ (�) (∫		−ℎ(	) 3 (�, ') ?')
Θ1 (∫	

	−ℎ(	)
3 (�, ') ?')

− 3ℎ�ℎ (�) (ℎ (�) ∫		−ℎ(	) 3 (�, ') ?' − 2∫		−ℎ(	) ∫	� 3 (�, B) ?B ?')
⋅ ( Θ1ℎ2 (�))⋅ (ℎ (�) ∫	
	−ℎ(	)

3 (�, ') ?' − 2∫	
	−ℎ(	)

∫	
�
3 (�, B) ?B ?')

≤ − ℎ�ℎ (�) (∫		−ℎ(	) 3 (�, ') ?')
Θ1 (∫	
	−ℎ(	)

3 (�, ') ?')
− 3ℎ�ℎ (�) (ℎ (�) ∫		−ℎ(	) 3 (�, ') ?' − 2∫		−ℎ(	) ∫	� 3 (�, B) ?B ?')
⋅ (Θ1ℎ2� )⋅ (ℎ (�) ∫	

	−ℎ(	)
3 (�, ') ?' − 2∫	

	−ℎ(	)
∫	
�
3 (�, B) ?B ?')

= − ℎ�ℎ (�) [[[[[[
� (�) − � (� − ℎ (�))∫	

	−ℎ(	)
� (') ?'ℎ (�) � (�) − ∫	
	−ℎ(	)

� (') ?'
]]]]]]



⋅ Θ1

[[[[[[
� (�) − � (� − ℎ (�))∫	

	−ℎ(	)
� (') ?'ℎ (�) � (�) − ∫	
	−ℎ(	)

� (') ?'
]]]]]]



8 Mathematical Problems in Engineering

− 3ℎ�ℎ (�) [[[[[[[[
ℎ (�) (−� (�) − � (� − ℎ (�))) + 2∫	

	−ℎ(	)
� (') ?'ℎ (�) ∫	

	−ℎ(	)
� (') ?' − 2∫	

	−ℎ(	)
∫	
�
� (B) ?B ?'

2∫	
	−ℎ(	)

∫	
�
� (B) ?B ?' − ℎ (�) ∫	

	−ℎ(	)
� (') ?'

]]]]]]]]



⋅ (Θ1ℎ2� )[[[[[[[[
ℎ (�) (−� (�) − � (� − ℎ (�))) + 2∫	

	−ℎ(	)
� (') ?'ℎ (�) ∫	

	−ℎ(	)
� (') ?' − 2∫	

	−ℎ(	)
∫	
�
� (B) ?B ?'

2∫	
	−ℎ(	)

∫	
�
� (B) ?B ?' − ℎ (�) ∫	

	−ℎ(	)
� (') ?'

]]]]]]]]= − ℎ�ℎ (�)G
 (�) Λ
1[ℎ(	)]Ω1Λ 1[ℎ(	)]G (�) ,
(26)

whereΛ 1[ℎ(	)] = [81 − 82, 86, ℎ (�) 81 − 86, ℎ (�) (−81 − 82)+ 286, ℎ (�) 86 − 288, 288 − ℎ (�) 86]
 ,
Ω1 = [[[

Θ1 03�

03�
(3Θ1)ℎ2� ]]] .

(27)

�e other integral term −ℎ� ∫	−ℎ(	)	−ℎ�
3
(�, ')Θ13(�, ')?' can be

estimated as− ℎ�∫	−ℎ(	)
	−ℎ�

3
 (�, ') Θ23 (�, ') ?'
≤ − ℎ�ℎ� − ℎ (�) (∫	−ℎ(	)	−ℎ�

3 (�, ') ?')

⋅ Θ2 (∫	−ℎ(	)

	−ℎ�
3 (�, ') ?')

− 3ℎ�ℎU − ℎ (�) (∫	−ℎ(	)	−ℎ�
3 (�, ') ?'

− 2ℎ� − ℎ (�) ∫	−ℎ(	)	−ℎ�
∫	−ℎ(	)
�

3 (�, B) ?B ?')

⋅ Θ2 (∫	−ℎ(	)

	−ℎ�
3 (�, ') ?'

− 2ℎ� − ℎ (�) ∫	−ℎ(	)	−ℎ�
∫	−ℎ(	)
�

3 (�, B) ?B ?')
= − ℎ�ℎ� − ℎ (�) (∫	−ℎ(	)	−ℎ�

3 (�, ') ?')

⋅ Θ2 (∫	−ℎ(	)

	−ℎ�
3 (�, ') ?')

− 3ℎ�ℎ� − ℎ (�) ((ℎ� − ℎ (�)) ∫	−ℎ(	)	−ℎ�
3 (�, ') ?'

− 2∫	−ℎ(	)
	−ℎ�

∫	−ℎ(	)
�

3 (�, B) ?B ?')
( Θ2(ℎ� − ℎ (�))2)⋅((ℎ� − ℎ (�)) ∫	−ℎ(	)
	−ℎ�

3 (�, ') ?'
− 2∫	−ℎ(	)

	−ℎ�
∫	−ℎ(	)
�

3 (�, B) ?B ?')
≤ − ℎ�ℎ� − ℎ (�) (∫	−ℎ(	)	−ℎ�

3 (�, ') ?')

⋅ Θ2 (∫	−ℎ(	)

	−ℎ�
3 (�, ') ?')

− 3ℎ�ℎ� − ℎ (�) ((ℎ� − ℎ (�)) ∫	−ℎ(	)	−ℎ�
3 (�, ') ?'

− 2∫	−ℎ(	)
	−ℎ�

∫	−ℎ(	)
�

3 (�, B) ?B ?')
(Θ2ℎ2� )⋅((ℎ� − ℎ (�)) ∫	−ℎ(	)
	−ℎ�

3 (�, ') ?'
− 2∫	−ℎ(	)

	−ℎ�
∫	−ℎ(	)
�

3 (�, B) ?B ?') .
(28)

Since

∫	−ℎ(	)
	−ℎ�

3 (�, ') ?' = [[[[[[[
� (� − ℎ (�)) − � (� − ℎ�)∫	−ℎ(t)

	−ℎ�
� (') ?'∫	−ℎ(	)

	−ℎ�
∫	
�
�̇ (B) ?B ?'

]]]]]]]= [82 − 83, 87, (ℎ� − ℎ (�)) 81 − 87]
 G (�) ,
2∫	−ℎ(	)

	−ℎ�
∫	ℎ(	)
�

∫	
�
�̇ (V) ?V ?B ?'

= 2∫	−ℎ(	)
	−ℎ�

∫	−ℎ(	)
�

(� (�) − � (B)) ?B ?' = 2

⋅ (ℎ� − ℎ (�))2
2

� (�) − 2∫	−ℎ(	)
	−ℎ�

∫	−ℎ(	)
�

� (B) ?B ?'
− 2∫	−ℎ(	)

	−ℎ�
∫	
	−ℎ(	)

� (B) ?B ?' + 2∫	−ℎ(	)
	−ℎ�

∫	
	−ℎ(	)

� (B) ?B ?'⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=0= (ℎ� − ℎ (�))2 � (�) − 2∫	−ℎ(	)

	−ℎ�
∫	
s
� (B) ?B ?'

+ 2∫	−ℎ(	)
	−ℎ�

∫	
	−ℎ(	)

� (B) ?B ?'⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=2⋅(ℎ�−ℎ(	)) ∫

�
�−ℎ(�) �(�)��

,

(29)
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from (28) to (29), we have

− ℎ�∫	−ℎ(	)
	−ℎ�

3
 (�, ') Θ23 (�, ') ?' ≤ − ℎ�ℎ� − ℎ (�) [[[[[[[
� (� − ℎ (�)) − � (� − ℎ�)∫	−ℎ(	)

	−ℎ�
� (') ?'(ℎ� − ℎ (�)) � (�) − ∫	−ℎ(	)

	−ℎ�
� (') ?'

]]]]]]]



⋅ Θ2

[[[[[[[
� (� − ℎ (�)) − � (� − ℎ�)∫	−ℎ(	)

	−ℎ�
� (') ?'(ℎ� − ℎ (�)) � (�) − ∫	−ℎ(	)

	−ℎ�
� (') ?s

]]]]]]]
− 3ℎ�ℎ� − ℎ (�)

[[[[[[[[[
(ℎ� − ℎ (�)) (−� (� − ℎ (�)) − � (� − ℎ�)) + 2∫	−ℎ(	)

	−ℎ�
� (') ?'(ℎ� − ℎ (�)) ∫	−ℎ(	)

	−ℎ�
� (') ?' − 2∫	−ℎ(	)

	−ℎ�
∫	
�
� (B) ?B ?' + 2 (ℎ� − ℎ (�)) ∫	

	−ℎ(	)
� (') ?'− (ℎ� − ℎ (�)) (2∫	

	−ℎ(	)
� (') ?' + ∫	−ℎ(	)

	−ℎ�
� (') ?') + 2∫	

	−ℎ(	)
∫	
�
� (B) ?B ?'

]]]]]]]]]



(Θ2ℎ2� )

⋅[[[[[[[[[
(ℎ� − ℎ (�)) (−� (� − ℎ (�)) − � (� − ℎ�)) + 2∫	−ℎ(	)

	−ℎ�
� (') ?'(ℎ� − ℎ (�)) ∫	−ℎ(	)

	−ℎ�
� (') ?' − 2∫	−ℎ(	)

	−ℎ�
∫	
�
� (B) ?B ?' + 2 (ℎ� − ℎ (�)) ∫	

	−ℎ(	)
� (') ?'− (ℎ� − ℎ (�)) (2∫	

	−ℎ(	)
� (') ?' + ∫	−ℎ(	)

	−ℎ�
� (') ?') + 2∫	

	−ℎ(	)
∫	
s
� (B) ?B ?'

]]]]]]]]]
= − ℎ�ℎ� − ℎ (�)G
 (�)

⋅ Λ
2[ℎ(	)]Ω2Λ 2[ℎ(	)]G (�) ,

(30)

where

Λ 2[ℎ(	)] = [82 − 83, 87, (ℎ� − ℎ (�)) 81− 87, (ℎ� − ℎ (�)) (−82 − 83) + 287, (ℎ� − ℎ (�)) 87− 289, − (ℎ� − ℎ (�)) (286 + 87) + 289]
 ,
Ω2 = [[[

Θ2 03�

03�
(3Θ2)ℎ2� ]]] .

(31)

From (22) to (30), by utilizing reciprocally convex optimiza-
tion approach [9], it can be con�rmed that

L*4 (�	, �) − 2ℎ�∫	
	−ℎ(	)

�
 (') V1�̇ (') ?'− 2ℎ�∫	−ℎ(	)
	−ℎ�

�
 (') V2�̇ (') ?'

+∫	
	−ℎ�

3
 (�, ')( �∑
�=1
��N�)3 (�, ') ?'

+∫	
	−ℎ(	)

4
 (�, ')( �∑
�=1
��G�)4 (�, ') ?'

≤ G
 (�) (Ξ4 −Λ
3[ℎ(	)]Ω3Λ 3[ℎ(	)]) G (�) ,
(32)

where Λ 3[ℎ(	)] = [Λ
1[ℎ(	)], Λ
2[ℎ(	)]]
 andΩ3 = [ Ω1� S

S
� Ω2�

] > 0.

From (13) to (32), an upper bound of L*(�	, �) with the
addition of (21) can be represented as

L* (�	, �) + G
 (�) Ξ5G (�)− 2ℎ�∫	
	−ℎ(	)

�
 (') V1�̇ (') ?'
− 2ℎ�∫	−ℎ(	)

	−ℎ�
�
 (') V2�̇ (') ?' ≤ G
 (�)
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⋅ {{{{{{{Ξ1 + Ξ2 + Ξ3[ℎ(	)] + Ξ4 + Ξ5⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Σ�[ℎ(�)]

−Λ
3[ℎ(	)]Ω3Λ 3[ℎ(	)]

}}}}}}}G (�) .
(33)

By utilizing Lemma 3, the following inequalityG
 (�) (Σ[ℎ(	)] −Λ
3[ℎ(	)]Ω3Λ 3[ℎ(	)]) G (�) < 0 (34)

subject to 0 = ΥG(�) is equivalent to(Υ⊥ )
 (Σ[ℎ(	)] −Λ
3[ℎ(	)]Ω3Λ 3[ℎ(	)]) Υ⊥ < 0. (35)

By Lemma 4, condition (35) can be casted into the following
inequality with an appropriate dimension Ψ:[ (Υ⊥ )
 (Σ[ℎ(	)]) Υ⊥ + Sym {(Υ⊥ )
 (Λ 3[ℎ(	)])
Ψ} Ψ
Ψ −Ω3

]< 0. (36)

It should be noted that inequality (36) is a�nely dependent
on ℎ(�). �erefore, if inequalities (12) hold for l = 1, 2, then
inequality (36) is satis�ed for 0 ≤ ℎ(�) ≤ ℎ�. Furthermore,
one can see that Ω3 > 0 holds if inequalities (12) are
satis�ed. �erefore, if condition (12) holds, then there exists
a su�ciently small positive scalar � such that L*(�	, �) <−�‖�(�)‖2. �us, by using the similar method in [33] and
De�nition 1, system (1) is stochastically stable.�is completes
our proof.

In many cases, the information about an upper bound

of ℎ̇(�) is unknown. For this case, based on the result of
�eorem 5, the corresponding stability condition will be
presented in Corollary 6. In Corollary 6, for simplicity of
matrix notations, some of vectors and matrices are rede�ned
as Θ̃1 = Qaug1 −( 1ℎ�) �∑

�=1
��N�,

Ω̃1 = [[[[
Θ̃1 03�

03�
(3Θ̃1)ℎ2� ]]]] ,Ω̃3 = [Ω̃1 S

S

 Ω2

] ,Σ̃[ℎ(	)] = Ξ1 +Ξ2 +Ξ4 +Ξ5,Φ̃[ℎ(	)] = (Υ⊥ )
 (Σ̃[ℎ(	)]) (Υ⊥ )+ Sym {(Υ⊥ )
 (Λ 3[ℎ(	)])
Ψ} .

(37)

Except the above notations, all the notations de�ned in (11)
will be used in Corollary 6. Now, the following result is given
by Corollary 6.

Corollary 6. For a given scalar ℎ� > 0, system (1) is
stochastically stable for 0 ≤ ℎ(�) ≤ ℎ� if there exist positive
de	nite matricesR ∈ R

4�×4�,N ∈ R
3�×3�, and Q ∈ R

3�×3�,
any matricesS ∈ R6�×6� andΨ ∈ R12�×8�, and any symmetric
matrices V1 ∈ R

�×� and V2 ∈ R
�×� satisfying the following

LMIs for all �(�) = �, � ∈ S:[Φ̃,� Ψ
Ψ −Ω̃3
] < 0, l = 1, 2, (38)

where {Φ̃,�}2�=1 means the two vertices of Φ̃[ℎ(	)] with the

bounds of 0 ≤ ℎ(�) ≤ ℎ�. 
at is, Φ̃,1 = Φ̃[ℎ(	)=0] andΦ̃,2 = Φ̃[ℎ(	)=ℎ�].
Proof. Let us choose LKF as* (�	, �) = 9
 (�)R9 (�) +∫	

	−ℎ�
3
 (�, ')N3 (�, ') ?'+∫	

	−ℎ�
∫	
�
3
 (�, B)Q3 (�, B) ?B ?'. (39)

�e proof of Corollary 6 is very similar to the proof of
�eorem 5.�us, it is omitted.�is completes our proof.

Remark 7. �eorem 5 and Corollary 6 are derived based on
the result of [25]. LKFs *5(�	, �), *6(�	, �) of �eorem 1 in
[25] are not included in this paper. Instead, an upper bound
ofL*4(�	, �) is derived by utilizing Wirtinger-based integral
inequality.

Remark 8. Unlike the previous results [12–14], the inte-

gral terms ∫		−ℎ(	) �(')?', ∫	−ℎ(	)	−ℎ�
�(')?', ∫		−ℎ(	) ∫	� �(B)?B ?',

and ∫	−ℎ(	)	−ℎ�
∫	� �(B)?B ?' which were utilized as elements

of augmented vector G(�) are not multiplied by 1/ℎ(�) or
1/(ℎ� − ℎ(�)). As shown in [10], the appearance of the

terms (1/ℎ(�)) ∫		−ℎ(	) �(')?' and (1/(ℎ�−ℎ(�))) ∫		−ℎ(	) �(s)?' is
unavoidable in utilizing Wirtinger-based integral inequality.

However, with the terms (1/ℎ(�)) ∫		−ℎ(	) �(')?' and (1/(ℎ� −ℎ(�))) ∫	−ℎ(	)	−ℎ�
�(')?' as elements of augmented vector, the

derivation of L{9
(�)R9(�)} +L{∫		−ℎ� 3
(�, ')N3(�, ')?'}
is more di�cult than the case of the terms ∫		−ℎ(	) �(')?' and∫		−ℎ(	) �(')?' as elements of augmented vector. In this paper,

with the process shown in (26), the utilized integral terms
in augmented vector are not multiplied by 1/ℎ(�) or 1/(ℎ� −ℎ(�)).
4. Numerical Examples

In this section, three numerical examples are introduced to
show the improvements of the proposed methods. In the
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Table 1: Maximum delay bounds ℎ� with ℎ� = 0 and various �11
(Example 1).

Methods �11 = −0.1 �11 = −0.5 �11 = −0.8 �11 = −1
[18] 0.6797 0.5794 0.5562 0.5465

[19] (� = 5) 0.8232 0.7327 0.7039 0.6934

[22] (� = 2) 1.2550 0.8816 0.8065 0.7783

[25] 1.2132 0.9797 0.9345 0.8986

�eorem 5 1.3954 1.1138 1.0566 1.0367
∗� is delay-partitioning number.

examples, MATLAB, YALMIP, and SeDuMi 1.3 are used to
solve LMI problems.

Example 1. Consider Markovian jump system (1) with the
parameters

�1 = [−3.4888 0.8057−0.6451 −3.2684] ,�2 = [−2.4898 0.2895
1.3396 −0.0211] ,��1 = [−0.8620 −1.2919−0.6841 −2.0729] ,��2 = [−2.8306 0.4978−0.8436 −1.0115] .

(40)

In Table 1, when �22 = −0.8 and ℎ� = 0, the obtained
maximum delay bounds by �eorem 5 are compared with
some recent results and [25] under some various �11. From
Table 1, one can see that�eorem 5 signi�cantly improves the
feasible region of stability, which shows the advantages of the
proposed�eorem 5.

Example 2. Consider Markovian jump system (1) where

�1 = [−2.3 0.8
1.0 −2.9] ,�2 = [−1.9 0.2
0.6 −0.8] ,��1 = [0.8 1.2
0.7 −3.5] ,��2 = [−1.3 −2.6
0.5 −1.4] .

(41)

When ℎ� is unknown and �22 = −0.8, in Table 2, maximum
delay bounds obtained by Corollary 6 are compared with
those of [18, 21, 25]. Table 2 shows the less conservatism of
Corollary 6.

Table 2: Maximum delay bounds ℎ� with unknown ℎ� and various�11 (Example 2).

Methods �11 = −0.1 �11 = −0.5 �11 = −0.8 �11 = −1
[18] 0.271 0.271 0.271 0.271

[21] 0.500 0.496 0.493 0.492

[25] 0.6003 0.5909 0.5862 0.5836

Corollary 6 0.6209 0.6166 0.6152 0.6146

Table 3: Maximum delay bounds ℎ� with ℎ� = 0.9 and various �11
(Example 3).

Methods �11 = −0.1 �11 = −0.5 �11 = −0.8 �11 = −1
[18] 1.0224 1.0148 1.0141 1.0130

[26] 1.3671 1.3565 1.3541 1.3535

[25] 1.7858 1.7006 1.6803 1.6713

�eorem 5 1.8270 1.7320 1.7093 1.6999

Example 3. Consider Markovian jump system (1) with the
parameters �1 = [−2 0

0 −0.9] ,�2 = [−1 0−1 −1] ,��1 = [−1 0.5
0.1 −1] ,��2 = [−1 0

0.1 −1] .
(42)

In Table 3, the results of maximum delay bounds ℎ� obtained
by �eorem 5 with ℎ� = 0.9, �22 = −0.8, and various �11 are
listed and some recent results [18, 25, 26] are also listed. �e
results in Table 3 also show that �eorem 5 provides larger
delay bound than those of very recent results such as [26].

Example 4. Consider Markovian jump system (1) with the
parameters �1 = [−3.5 0.8−0.6 −3.3] ,�2 = [−2.5 0.3

1.4 −0.1] ,��1 = [−0.9 −1.3−0.7 −2.1] ,��2 = [−2.8 0.5−0.8 −1.0] .
(43)

In Table 4, when ℎ� = 0 and �22 = −0.8, maximum delay
bounds ℎ� obtained by �eorem 5 are listed and compared
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Table 4: Maximum delay bounds ℎ� with ℎ� = 0 and various �11 (Example 4).

Methods �11 = −0.4 �11 = −0.55 �11 = −0.7 �11 = −0.85 �11 = −1.00
[20] 0.6708 0.5894 0.5768 0.5675 0.5603

[23] 0.6322 0.6120 0.5981 0.5881 0.5805

[25] 1.0328 0.9933 0.9681 0.9523 0.9429

�eorem 5 1.1826 1.1335 1.1016 1.0799 1.0650

with those of [20, 23, 26] for various �11. From the result of
Table 4, the superiority of �eorem 5 can be veri�ed.

5. Conclusion

In this paper, further improved results on stability forMarko-
vian jump systems with time-varying delays were proposed
in �eorem 5 and Corollary 6. With simple LKFs comparing
with [25], it was shown that from three numerical examples,
all the results obtained by �eorem 5 and Corollary 6 are
larger than those of [25] by applyingWirtinger-based integral
inequality and some new techniques to L*4(�	, �). With
the ideas proposed in this paper, stability and stabilization
for various systems such as multiagent systems, complex
networks, and neural networks will be conducted in future
works.
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