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Abstract

We discuss an important class of problems involving the tracking of pre-
scribed trajectories in the chemostat model. We provide new tracking results
for chemostats with two species and one limiting substrate, based on Lyapunov
function methods. In particular, we use a linear feedback control of the dilution
rate and an appropriate time-varying substrate input concentration to produce
a locally exponentially stable oscillatory behavior. This means that all trajec-
tories for the nutrient and corresponding species concentrations in the closed
loop chemostat that stay near the oscillatory reference trajectory are attracted
to the reference trajectory exponentially fast. We also obtain a globally stable
oscillatory reference trajectory for the species concentrations, using a nonlinear
feedback control depending on the dilution rate and the substrate input con-
centration. This guarantees that all trajectories for the closed loop chemostat
dynamics are attracted to the reference trajectory. Finally, we construct an
explicit Lyapunov function for the corresponding global error dynamics. We
demonstrate the efficacy of our method in a simulation.

bf keywords: chemostats, tracking, stabilization, Lyapunov functions, systems bi-
ology

1 INTRODUCTION

Since the pioneering research of Monod [27] and Novick & Szilard [28], continuous
cultures of micro-organisms in chemostats (also known as continuously stirred tank
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reactors) have been a very popular way to study the growth of populations of micro-
organisms. The usual assumption about the chemostat is that it is perfectly stirred,
so each individual has equal access to the nutrients. Under this assumption, the basic
mathematical model for a chemostat containing n species with concentrations xi for
i = 1, . . . , n and one limiting nutrient with concentration s has the form











ṡ = D(sin − s) −
n

∑

i=1

µi(s)xi/γi

ẋi = xi(µi(s) −D), i = 1, . . . , n

(1.1)

where sin is the input nutrient concentration, D > 0 is the dilution rate, µi is the per
capita growth rate of species i, and ṡ and ẋi indicate time derivatives. The conversion
of nutrient into new biomass for species i happens with constant yield γi > 0. We
specify the µi’s, sin, and D below.

The natural control variables for (1.1) are the input substrate concentration sin and
the dilution rate D. The dilution rate is the ratio of the volumetric flow rate (with
units of volume over time) to the constant reactor volume. Equations (1.1) easily follow
from writing the mass-balance equations for the total amounts of the nutrient and each
of the species, assuming the reactor content is well-mixed.

The model (1.1) plays an essential role in current research in bio-engineering, ecol-
ogy, and population biology [1, 4, 12, 17, 34]. Much of the chemostat literature is
based on experiments and data analysis or intensive calculations that use mathemat-
ical models only to generate data. However, a number of ecological concepts such as
resilience or resistance of an ecosystem are closely related to the notions of stability
and robustness from dynamical systems theory. Moreover, rigorous control theory is
clearly needed to characterize systems which naturally evolve far from the equilibrium.
This has motivated a great deal of significant research at the interface of control theory
and chemostat biology [4, 6, 7, 8, 9].

One important issue related to chemostats that lends itself to rigorous control theo-
retic analysis is the stability of coexistence behaviors. In fact, the relationship between
diversity and stability has fascinated ecologists for more than five decades [26]. It is
well-known that in a classical chemostat model with N substrates, at most N microor-
ganism species can coexist. This concept is usually attributed to Hardin [15] and is
called the “competitive exclusion principle”. However, a number of natural observa-
tions seem to contradict this principle, e.g. the literature originating with the famous
“paradox of the plankton” discussed in [16].

There is a large literature aimed at trying to resolve this paradox. During the last
40 years, a number of explanations have been proposed. Among important studies,
McGehee and Armstrong noted that “coexistence at equilibrium” is not equivalent
to “coexistence in a dynamical environment” and that non-equilibrium conditions may
favor coexistence [2, 3]; see also Section 2.1 below for related results. Recent advances in
molecular biology make it possible to investigate such ecological concepts in microbial
ecosystems. Another approach to explaining coexistence, which we will not pursue
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here, involves relaxing the assumption that the reactor is perfectly stirred, i.e., allowing
spatial heterogeneity and crowding effects [29, 33, 34, 35].

In the present paper, we use feedback control (with the dilution rate and the input
substrate concentration as control variables) to force two independent species in com-
petition for one substrate to oscillate around predefined trajectories while the output
substrate concentration remains constant; see e.g. [18, 31] for the necessary control the-
ory background. This reproduces observations reported in the ecology literature (i.e.
oscillating levels of coexisting species). It also suggests a possible strategy to preserve
bio-diversity and thus improve robustness while the output substrate concentration is
kept constant under normative constraints, in the presence of fluctuating inputs.

Our work is a continuation of [22] where a prescribed oscillatory behavior for a
chemostat with one species is generated by an appropriate choice of a time-varying
dilution rate, and the global uniform asymptotic stability of the behavior is proved by
a Lyapunov approach; see Section 2.2 for details. In the present work, we generate a
periodic oscillating trajectory for the two species case. However, this trajectory has no
a priori stability. To stabilize the trajectory, we design specific time-varying functions
for the dilution rate and the input concentration, called feedbacks. We use two control
theoretic approaches. First, we provide linear stabilizing control laws whose utility
lies in their simple expressions that are independent of the nutrient concentration.
However, these control laws only exponentially stabilize the reference trajectory in a
neighborhood.

To achieve global asymptotic stability of the reference trajectory, we design non-
linear control laws using a Lyapunov approach. Our control laws depend only on the
concentrations of the species. They possess the required properties of positiveness and
boundedness of the dilution rate. See also [7, 8] for related results where feedbacks are
used to generate coexistence. While it is known that oscillatory inputs can give oscilla-
tory coexistence [5], our work differs from the earlier results because we use Lyapunov
function methods to globally feedback stabilize a predefined oscillating behavior.

2 REVIEW OF LITERATURE

2.1 Competitive Exclusion versus Coexistence

The chemostat dynamics is well understood for cases where there are two species and
one of the chemostat controllers (i.e., the dilution rate or the input concentration) is
constant while the other is periodic in time, as well as for cases were these controllers are
both constant [5, 14, 32, 34]. When the controllers are constant and there is one limiting
nutrient, the so-called “competitive exclusion principle” holds, which implies that at
most one species survives. This provides an attractive steady state for the chemostat
that attracts almost all solutions of the dynamics [34]. However, the competitive
exclusion principle is at odds with the observation that many species can coexist in
real ecological systems, even if there is only one limiting nutrient. See [11, 15] for
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related papers.
The existing results on periodically-varying chemostats attempt to explain this

paradox. They use periodic forcing of the dilution rate or input concentration con-
trollers to give coexistence in the form of a periodic solution. See also [30] which
produces an arbitrary number of coexisting periodically varying species using a peri-
odic input concentration and a fixed dilution rate. However, this earlier work does
not address the stability of the species oscillation. See also [6, 7, 8] which use state-
dependent time-invariant dilution rates to generate coexistence in two and three species
chemostats with monotone growth rates. The effects of more complicated growth rates
were studied in [12, 21, 23], including non-monotone growth rates that may depend on
both the substrate level and the species concentrations. See also [19] where coexistence
is studied via a bifurcation with the dilution rate as the control. The main purpose
of these papers is to investigate environmental conditions under which the competitive
exclusion principle fails and several species can coexist.

2.2 Tracking Prescribed Trajectories

The preceding results leave open the complementary problem of designing dilution
rates and input concentrations that stabilize prescribed chemostat trajectories e.g. so
that all of the chemostat trajectories asymptotically track a prescribed stable oscilla-
tion. Solving this problem is important since it would reproduce and explain complex
stability behaviors that are commonly observed in microbial systems.

For one species chemostats, this problem was first addressed by [22]. The main
model in [22] is therefore (1.1) with n = 1 (so we omit the subscripts) and the growth
rate was assumed to have the standard Monod form µ(s) = ms/(a + s) for suitable
constants m, a > 0 such that m > 4a + 1. The state space is then X := (0,∞)2. The
input concentration sin in [22] is taken to be a positive constant, so a simple rescaling
gives the dynamics

{

ṡ = D(1 − s) − µ(s)x

ẋ = x(µ(s) −D) .
(2.2)

The main result in [22] is that if we choose

D(t) =
sin(t)

2 + cos(t)
+
m(2 − cos(t))

4a + 2 − cos(t)
, (2.3)

then all trajectories t 7→ (s, x)(t) of (2.2) asymptotically converge to the reference
trajectory (sr(t), xr(t)) := (0.5 − 0.25 cos(t), 0.5 + 0.25 cos(t)) of (2.2) for all initial
conditions, i.e., (s(t) − sr(t), x(t) − xr(t)) → 0; see [24] for analogs for more general
reference trajectories.

Unlike the earlier results on periodically forced chemostat models, the proofs in
[22, 24] use a Lyapunov-type analysis to show the stability of the prescribed periodic
behaviors. The advantage of having a Lyapunov function is that it can be used to
investigate the robustness of the stability of the periodic solution with respect to per-
turbations [24]. However, Lyapunov functions have only rarely been used to prove
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stability in the chemostat. An exception is Theorem 4.1 on [34, p.35], and more re-
cently [13]. See also [20, 36] where weak Lyapunov functions are used in conjunction
with suitable variants of the LaSalle Invariance Principle. See also [10]. Closely related
to [22] is [9] where a single-species chemostat with a continuous and bounded (but oth-
erwise arbitrary) function sin(t) and constant dilution rate is investigated; there it is
shown that two positive solutions converge to each other. However, the proof is not
based on a Lyapunov function.

The results of [22, 24] reproduce and explain oscillating chemostat behaviors of
the type commonly observed in biotechnology applications. However, the methods
of [22, 24] are limited to cases where there is only one species competing for the
nutrient. This suggests the important and more complicated problem of explicitly
designing the controllers D and sin for two species chemostats in such a way that the
corresponding trajectories of the closed loop chemostats track a prescribed oscillating
vector of concentrations. In the present paper, we show that this design problem can
indeed be solved, provided D and sin are also allowed to depend on the current state as
well as time i.e. using time-varying feedbacks instead of simply time varying stabilizers
such as (2.3).

3 CHEMOSTAT MODEL WITH TWO SPECIES

3.1 The Model and the Basic Assumptions

Consider the chemostat model (1.1) for the two species case (i.e., n = 2). Scaling via
xi 7→ xi/γi gives the dynamics

{

ṡ = D[sin − s] −
∑2

j=1 µj(s)xj ,

ẋi = [µi(s) −D]xi , i = 1, 2
(3.4)

evolving on [0,∞) × (0,∞) × (0,∞). We specify our choices of D and sin below. We
assume the functions µi satisfy:

The functions µ1 and µ2 are zero at zero, continuously differentiable (C1), and have
positive bounded first derivatives. Also, there exists a positive constant sc such that
the function χ(s) = µ2(s) − µ1(s) satisfies

χ(sc) = 0 ; χ(s) < 0 when 0 < s < sc ;
and χ(s) > 0 when s > sc

(3.5)

and χ is such that χ′(sc) > 0.
To simplify formulas, we set Γ = µ1(sc). Also, we understand all inequalities and

equalities to hold globally unless indicated otherwise. Assumption 3.1 is frequently
satisfied e.g. by pairs of Monod functions; see e.g. Section 7 below. An immediate
consequence of (3.5) is that Γ = µ1(sc) = µ2(sc).
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3.2 New Coordinates

The change of coordinates

ξ1 = ln(x1) , ξ2 = ln(x2) , ψ = ξ2 − ξ1 . (3.6)

and the definition of χ transform the system (3.4) into

{

ṡ = D[sin − s] − µ1(s)e
ξ1 − µ2(s)e

ψ+ξ1 ,

ξ̇1 = µ1(s) −D , ψ̇ = χ(s) .
(3.7)

We denote the right-hand side of (3.7) by F(D, sin, (s, ξ1, ψ)), with the understanding
that D is to be evaluated at the third argument (s, ξ1, ψ) of F when D depends on the
state.

4 REFERENCE TRAJECTORY

We next determine a family of trajectories for (3.7) which can be generated by appro-
priate choices for the dilution rate D and the substrate input concentration sin. We
refer to these trajectories as reference trajectories. Later we specialize to a periodic
oscillatory reference trajectory, the choice of which is motivated by the importance of
oscillating trajectories in ecology. The following general result is easily checked:

Lemma 1 Let Assumption 3.1 hold. Let sr, ξ1r, and ψr be C2 functions for which the
functions

Dr(t) := −ξ̇1r(t) + µ1(sr(t))

and
sinr(t) :=

ṡr(t) + µ1(sr(t))e
ξ1r(t) + µ2(sr(t))e

ξ1r(t)+ψr(t)

−ξ̇1r(t) + µ1(sr(t))
+ sr(t)

are positive everywhere and ψ̇r(t) = χ(sr(t)) everywhere. Then (sr(t), ξ1r(t), ψr(t)) is
a solution to:

ṡr(t) = Dr(t)[sinr(t) − sr(t)]

−µ1(sr(t))e
ξ1r(t)

−µ2(sr(t))e
ξ1r(t)+ψr(t) ,

ξ̇1r(t) = µ1(sr(t)) −Dr(t) ,

ψ̇r(t) = χ(sr(t)) .

(4.8)

In particular, if sc > 0 and α ∈ [0,Γ) are both constants and

(sr(t), ξ1r(t), ψr(t)) := (sc, cos(αt), 0), (4.9)

6



then (4.8) is satisfied with the choices

Dr(t) = Γ + α sin(αt) (4.10)

and

sinr(t) = sc +
2Γecos(αt)

Γ + α sin(αt)
(4.11)

in which case Dr(t) and sinr(t) are periodic and positive.

5 LOCAL STABILIZATION OF A TRAJECTORY

We next show how to locally track some of the trajectories (sr(t), ξ1r(t), ψr(t)) from
Lemma 1, using linear feedback. Consider the two-species chemostat error dynamics

ż(t) = F(D, sin, z(t) + (sr, ξ1r, ψr)(t))
−F(D, sin, (sr, ξ1r, ψr)(t))

(5.12)

where F is the right-hand side of (3.7) as before, (sr, ξ1r, ψr)(t) is from (4.9), and the
control laws D and sin are to be specified in such a way that (5.12) is the dynamics of
the error

(s̃, ξ̃1, ψ̃) := (s− sr, ξ1 − ξ1r, ψ − ψr) (5.13)

between any trajectory (s, ξ1, ψ) of (3.7) and the reference signal (4.9). We will choose
D and sin so that (5.12) is also locally uniformly exponentially stable to the origin;
i.e. such that (4.9) is locally uniformly exponentially stable. This means that (5.13)
exponentially converges to zero when (s, ξ1, ψ) stays in a neighborhood of (4.9), hence
all chemostat trajectories of (3.7) that stay in a neighborhood of (4.9) are actually
attracted to (4.9) exponentially fast. See [18] for the standard definitions.

Let Assumption 3.1 hold and α ∈ [0,Γ) be constant. Consider the reference trajec-
tory (4.9). Then

D(t, ξ1) := Γ + α sin(αt) +
(Γ − α)2

Γ
(ξ1 − cos(αt)) (5.14)

sin(t) := sc +
2Γecos(αt)

Γ + α sin(αt)
(5.15)

render the error dynamics (5.12) locally exponentially stable to the origin. Hence
(5.14)-(5.15) render the reference trajectory (sr(t), ξ1r(t), ψr(t)) locally exponentially
stable.
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With the choices (5.14)-(5.15) of D and sin, the linearization of (5.12) around the
origin [18] is



















































ṡa = [sinr(t) − sr(t)]U1

−
[

Dr(t) + µ′
1(sr(t))e

ξ1r(t)

+µ′
2(sr(t))e

ξ1r(t)+ψr(t)
]

sa

−µ1(sr(t))e
ξ1r(t)ξ1a

−µ2(sr(t))e
ξ1r(t)+ψr(t)(ξ1a + ψa) ,

ξ̇1a = µ′
1(sr(t))sa − U1 ,

ψ̇a = χ′(sr(t))sa

(5.16)

where Dr and sinr are defined in (4.10)-(4.11) and

U1 := (Γ − α)2ξ1a/Γ. (5.17)

Formula (4.9) for the reference trajectory simplifies (5.16) to

ṡa = 2Γecos(αt)

Γ+α sin(αt)
U1

−Γecos(αt)[2ξ1a + ψa] −Br(t, sc, α)sa ,

ξ̇1a = µ′
1(sc)sa − U1 , ψ̇a = χ′(sc)sa ,

(5.18)

where

Br(t, sc, α) := Γ + α sin(αt) + ecos(αt)
2

∑

j=1

µ′
j(sc).

By Assumption 3.1, χ′(sc) > 0 and µ′
1(sc) > 0. Therefore,

V (t, sa, ξ1a, ψa) :=
1
2
e− cos(αt)s2

a + Γ
µ′1(sc)

ξ2
1a + Γ

2χ′(sc)
ψ2
a

(5.19)

is well-defined and upper and lower bounded by positive definite quadratic functions
of (sa, ξ1a, ψa). Its derivative along the trajectories of (5.18) satisfies

V̇ = sa

(

2Γ
Γ+α sin(αt)

U1 − e− cos(αt)Br(t, sc, α)sa

−Γ[2ξ1a + ψa]) + 2Γ
µ′1(sc)

ξ1a[µ
′
1(sc)sa − U1]

+1
2
e− cos(αt)α sin(αt)s2

a + Γ
χ′(sc)

ψaχ
′(sc)sa

= −
[

e− cos(αt)
(

Γ+1
2
α sin(αt)

)

+
∑2

j=1 µ
′
j(sc)

]

s2
a

+ 2Γ
Γ+α sin(αt)

saU1 − 2Γ
µ′1(sc)

ξ1aU1 .

Therefore, our choice of U1 yields

V̇ = −
[

e− cos(αt)
(

Γ+ 1
2
α sin(αt)

)

+

2
∑

j=1

µ′
j(sc)

]

s2
a

+ 2(Γ−α)2

Γ+α sin(αt)
saξ1a − 2(Γ−α)2

µ′1(sc)
ξ2
1a .
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The relation 2|pq| ≤ εp2 + 1
ε
q2 for p, q ≥ 0 and ε > 0 gives

∣

∣

∣

2(Γ−α)2

Γ+α sin(αt)
saξ1a

∣

∣

∣
≤ (Γ−α)2

Γ+α sin(αt)

[

µ′1(sc)

Γ+α sin(αt)
s2
a

+Γ+α sin(αt)
µ′1(sc)

ξ2
1a

]

,

where we chose p = sa and q = ξ1a. It follows that

V̇ ≤ −
[

e− cos(αt)
(

Γ+ 1
2
α sin(αt)

)

+
2

∑

j=1

µ′
j(sc)

]

s2
a

+
(Γ − α)2

(Γ + α sin(αt))2
µ′

1(sc)s
2
a −

(Γ − α)2

µ′
1(sc)

ξ2
1a .

Since Γ + α sin(αt) ≥ Γ − α > 0 everywhere, we obtain

V̇ ≤ −
[

e− cos(αt)
(

Γ + 1
2
α sin(αt)

)

+ µ′
2(sc)

]

s2
a

−(Γ − α)2

µ′
1(sc)

ξ2
1a ≤ 0 .

Since (5.18) in closed loop with U1 from (5.17) is linear and periodic, we deduce from
the LaSalle Invariance Principle [31, Theorem 5.26, p. 204] (which is a generalization
of a standard differential equations result for periodic systems) that (5.18) is uniformly
globally asymptotically stable, hence exponentially stable [18, Section 4.6]. This allows
us to conclude by a standard linearization principle e.g. [18, Theorem 4.13, p.161].

Note that the Lyapunov function (5.19) is time periodic. The feedback D(t, ξ1)
in (5.14) does not depend on the substrate concentration or the concentration of the
second species. The feedback sin(t) is a periodic time-varying function, and D and sin
are positive in a neighborhood of the trajectory. Our proof of Theorem 5 relies on the
LaSalle invariance principle. However, one can explicitly construct a strict Lyapunov
function for (5.12) with the choices (5.14)-(5.15).

6 GLOBAL STABILIZATION OF A TRAJECTORY

As noted above, the utility of our local feedbacks (5.14)-(5.15) lies in their simple
form (i.e., affineness in the transformed state variable ξ1) and their applicability to
local stability analysis. While local analysis suffices for many applications, it is often
important to have global convergence for all initial conditions. Therefore, we next
choose D and sin so that the error dynamics























˙̃s = D[sin − sc − s̃] − µ1(sc + s̃)eξ1

−µ2(sc + s̃)eψ+ξ1 ,
˙̃ξ1 = µ1(sc + s̃) −D − ξ̇1r(t) ,
˙̃
ψ = χ(sc + s̃) ,

(6.20)
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for the deviations (5.13) from (4.9) is globally asymptotically stable to the origin. This
means that all trajectories (s, ξ1, ψ) of the chemostat dynamics (3.7) are attracted to
the reference trajectory in the sense that the errors (5.13) converge to zero. For given
choices of D and sin, to say that the reference trajectory (4.9) is globally asymptotically
stable means [18] that (6.20) is globally asymptotically stable to the origin. We assume:

The functions µ1 and µ2 are C2 and there are two constants θ1 > 0, θ2 > 0 such
that

sup
l

|µ′′
1(l)| ≤ θ1 , sup

l
|µ′′

2(l)| ≤ θ2 . (6.21)

Under Assumption 3.1, χ′(sc) > 0 and µ′
1(sc) > 0, so we can define

c1 :=
Γ

16
min

{

sc
µ′

1(sc)
,

1

θ1

}

,

c2 :=
Γ

16
min

{

sc
µ′

2(sc) − µ′
1(sc)

,
1

θ1 + θ2

}

. (6.22)

We set 〈a〉 = a/
√

1 + a2 for all real valued functions a. Let Assumptions 3.1 and
6 hold and consider the functions (sr(t), ξ1r(t), ψr(t)) defined in (4.9) and the error
defined in (5.13). If α ∈

[

0, 1
2
Γ
)

, then the control laws

D(t, ξ̃1) = Γ + α sin(αt) + Γ
4
〈ξ̃1〉 , (6.23)

sin(t, ξ̃1, ψ̃) = sc + 1
D(t,ξ̃1)

{

Γecos(αt)
(

eξ̃1 + eψ̃+ξ̃1

)

−c1µ′
1(sc)〈ξ̃1〉 − c2[µ

′
2(sc) − µ′

1(sc)]〈ψ̃〉
}

,

(6.24)

with c1 and c2 defined in (6.22), render (6.20) globally asymptotically stable to the
origin and locally exponentially stable. Hence (4.9) is a globally asymptotically stable
trajectory.

Since s ≥ 0, the stability in Theorem 6 must be understood to be relative to the
set where s ≥ 0. We will prove that D(t, ξ̃1) and sin(t, ξ̃1, ψ̃) defined in (6.23) and
(6.24) are positive. Our proof of Theorem 6 relies on the LaSalle Invariance Principle.
However, one can explicitly construct a strict Lyapunov function for the error dynamics
(6.20) which leads to the uniform global asymptotic stability of (6.20). We discuss two
approaches to building the Lyapunov function in the appendix below.

To prove Theorem 6, we construct the control laws (6.23)-(6.24) step by step in the
next subsections.
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6.1 Changes of Feedbacks and Coordinates

To simplify our analysis, we first introduce the functions λi and χn defined by

λi(s̃)s̃ = µi(sc + s̃) − µi(sc) , s̃ 6= 0 ,

χn(s̃)s̃ = χ(sc + s̃) , s̃ 6= 0 ,

λi(0) = µ′
i(sc), χn(0) = χ′(sc) ,

Ω(t, s̃, ξ̃1, ψ̃) = D + λ1(s̃)e
ξ1 + λ2(s̃)e

ψ+ξ1 .

(6.25)

In terms of (6.25), the system (6.20) becomes































˙̃s = −Ω(t, s̃, ξ̃1, ψ̃)s̃+D[sin − sc]

−Γeξ1r(t)
(

eξ̃1 + eψ̃+ξ̃1

)

,

˙̃
ξ1 = µ1(sc + s̃) −D − ξ̇1r(t) ,

˙̃ψ = χn(s̃)s̃ .

(6.26)

By performing the changes of feedback

v = D[sin − sc] − Γeξ1r(t)
(

eξ̃1 + eψ̃+ξ̃1
)

D = µ1(sc) − ξ̇1r(t) + µ
(6.27)

with µ and v to be specified, we obtain the system







˙̃s = −Ω(t, s̃, ξ̃1, ψ̃)s̃+ v ,

˙̃ξ1 = λ1(s̃)s̃− µ , ˙̃ψ = χn(s̃)s̃ .
(6.28)

Consider the function defined (for s ≥ 0) by

V (s̃, ξ̃1, ψ̃) :=

1
2
s̃2 + c1

(

√

1 + ξ̃2
1 − 1

)

+ c2

(

√

1 + ψ̃2 − 1

) (6.29)

where c1 and c2 are defined in (6.22). In terms of the function 〈a〉 = a/
√

1 + a2, we
deduce from (6.28) that its derivative along the trajectories of (6.28) is

V̇ = −Ω(t, s̃, ξ̃1, ψ̃)s̃2

+
[

v + c1〈ξ̃1〉λ1(s̃) + c2〈ψ̃〉χn(s̃)
]

s̃− c1〈ξ̃1〉µ.

11



6.2 Globally Asymptotically Stabilizing Control Laws

Substituting the feedbacks

µ(ξ̃1) = Γ
4
〈ξ̃1〉

v(ξ̃1, ψ̃) = −c1〈ξ̃1〉λ1(0) − c2〈ψ̃〉χn(0)
(6.30)

into (6.27) produces the corresponding feedback functions sin and D in (6.23)-(6.24).
Since α ∈ [0,Γ/2), we get D(t, ξ̃1) ≥ Γ/4 for all (t, ξ̃1). The constants c1 and c2 from
(6.22) satisfy

c1 ≤
scΓ

16µ′
1(sc)

and c2 ≤
scΓ

16χ′(sc)

so sin(t, ξ̃1, ψ̃) ≥ sc

4
for all (t, ξ̃1, ψ̃). On the other hand,

V̇ = −Ω(t, s̃, ξ̃1, ψ̃)s̃2 +
[

c1〈ξ̃1〉[λ1(s̃) − λ1(0)]

+c2〈ψ̃〉[χn(s̃) − χn(0)]
]

s̃− Γ
4
c1〈ξ̃1〉2 .

(6.31)

Using Assumption 6 and the Mean Value Theorem, it follows that for each s̃, we have
|λ1(s̃)−λ1(0)| ≤ |µ′

1(ξ̂)−µ′
1(sc)| ≤ |s̃|θ1 for some ξ̂ ∈ [min{sc, s̃+ sc},max{sc, s̃+ sc}],

and similarly |χn(s̃) − χn(0)| ≤ |s̃|(θ1 + θ2). Hence, (6.31) gives

V̇ ≤ −Ω(t, s̃, ξ̃1, ψ̃)s̃2 + c1θ1s̃
2 + c2(θ1 + θ2)s̃

2

−Γ
4
c1〈ξ̃1〉2 .

(6.32)

Since the µi’s are strictly increasing, both λ1 and λ2 are positive. We deduce that
Ω ≥ D ≥ Γ/4 everywhere, so

V̇ ≤
[

−Γ

4
+ c1θ1 + c2(θ1 + θ2)

]

s̃2 − Γ

4
c1〈ξ̃1〉2 . (6.33)

The constants c1 and c2 we defined in (6.22) also satisfy

c1 ≤ Γ

16θ1
and c2 ≤ Γ

16(θ1 + θ2)
.

We deduce that

V̇ ≤ −Γ

8
s̃2 − Γ

4
c1〈ξ̃1〉2 ≤ 0 , (6.34)

and the closed-loop system given by (6.28) and (6.30) is

˙̃s = −Ωs̃− c1〈ξ̃1〉λ1(0) − c2〈ψ̃〉χn(0),

˙̃
ξ1 = λ1(s̃)s̃− Γ

4
〈ξ̃1〉, ˙̃

ψ = χn(s̃)s̃.
(6.35)
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The asymptotic stability property therefore follows as before from the LaSalle In-
variance Principle. Moreover the linearization of (6.35) around the origin is uniformly
globally asymptotically stable. This follows from the LaSalle Invariance Principle as
well, since the time derivative of ω(sa, ξ1a, ψa) := As2

a + Bξ2
1a + Cψ2

a along the tra-
jectories of the linearization of (6.35) satisfies ω̇ ≤ −Γ

4
min{A,B}[s2

a + ξ2
1a] when the

constants A,B,C > 0 are chosen so that Ac1 = B and Ac2 = C. The local exponential
stability asserted in the theorem now follows from the linearization principle as in the
proof of Theorem 5. This concludes the proof of Theorem 6.

7 ILLUSTRATION

7.1 Control Synthesis

We illustrate the globally stabilizing control laws from Theorem 6 using the system

ṡ = D[sin − s] − 10s
1+20s

x1 − s
1+s

x2 ,

ẋ1 =
[

10s
1+20s

−D
]

x1 , ẋ2 =
[

s
1+s

−D
]

x2 .
(7.36)

In terms of our earlier notation, we have

µ1(s) = 10s
1+20s

, µ2(s) = s
1+s

, sc = 9
10
, Γ = 9

19

and the function χ = µ2 − µ1 is

χ(s) =
s(−9 + 10s)

(1 + s)(1 + 20s)
. (7.37)

One can prove that Assumption 3.1 is satisfied with this χ. Moreover, Assumption 6
is satisfied with θ1 = 400 and θ2 = 2. Hence, Theorem 6 applies as long as 0 < α <
Γ/2 = 9/38.

In terms our new coordinates ξ1, ξ2, and ψ from (5.13), the chemostat dynamics
become







ṡ = D[sin − s] − 10s
1+20s

eξ1 − s
1+s

eψ+ξ1 ,

ξ̇1 = 10s
1+20s

−D , ψ̇ = s(−9+10s)
(1+s)(1+20s)

.
(7.38)

Let us consider this reference trajectory for (7.38):

(sr(t), ξ1r(t), ψr(t)) := (0.9, cos(0.075t), 0) . (7.39)

In terms of the constants (6.22) and the error variables ξ̃1, ξ̃2, and ψ̃ from (5.13),

13



Theorem 6 provides us with the control laws

D(t, ξ̃1) = 9
19

+ 0.075 sin (0.075t) + 9
76

ξ̃1√
1+ξ̃21

sin(t, ξ̃1, ψ̃) = 1
D(t,ξ̃1)

{

9
19
ecos(0.075t)

(

eξ̃1 + eψ̃+ξ̃1
)

−c1 10
192

ξ̃1√
1+ξ̃21

− c2
90
192

ψ̃√
1+ψ̃2

}

+ 9
10

(7.40)

which globally asymptotically stabilize and locally exponentially stabilize the trajectory
of (7.38) defined in (7.39).

7.2 Numerical Simulation

To validate our results, we simulated (7.36) with the control laws (7.40) over 1000 time
units for the initial value (s, x1, x2)(0) = (1, 0.9, 0.8). The corresponding plots for x1,
x2, D, and sin are in Figures 1-2 below.
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Figure 1: Species Levels x1 and x2 for Chemostat Model (7.36)
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Figure 2: Controllers D and sin for Chemostat Model (7.36)

They illustrate how the global controls (7.40) cause the trajectories of (7.36) to
track (9/10, ecos(.075t), ecos(.075t)). Moreover, while the feedback controllers D and sin
from (7.40) are more complicated than the local controllers from Theorem 5, they are
guaranteed to remain positive for all initial conditions.

8 CONCLUSION

The chemostat forms the basis for much current research in systems biology. Two
important problems in the area are (a) the search for and analysis of mechanisms that
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yield coexistence and (b) the design of feedback controllers that force the chemostat tra-
jectories to track prescribed behaviors such as oscillations. To address these problems,
we used a Lyapunov-type analysis to find explicit dilution rates and substrate input
concentrations ensuring that the species concentrations in a two species chemostat with
one limiting substrate track a prescribed stable periodic coexistence behavior.

While other methods exist for analyzing the stability of the chemostat error dy-
namics (e.g., Floquet theory for (5.18)), we believe that our approach is better suited
for control theoretic analysis. For example, we conjecture that our explicit Lyapunov
function constructions (from the appendix below) can be used to prove that the stabil-
ity is robust to small perturbations of the dilution rates and input concentrations. See
[24] where the analogous robustness analysis was done for a single species chemostat
using input-to-state stability.

APPENDIX

We provide two constructions for a global strict Lyapunov function for the error dy-
namics (6.35). The first is based on the generalized Matrosov theorem results from
[25], using the weak Lyapunov function (6.29) and the auxiliary function

V3(s̃, ξ̃1, ψ̃) := s̃〈ψ̃〉, (A.1)

where 〈a〉 := a/
√

1 + a2 for all real numbers a. The second method constructs a
positive increasing function κ so that

Va(s̃, ξ̃1, ψ̃) := s̃〈ψ̃〉 +

∫ V (s̃,ξ̃1,ψ̃)

0

κ(r)dr (A.2)

is a strict Lyapunov function for (6.35). Our Lyapunov function constructions are
significant because Lyapunov functions are useful for proving robustness of stability
[24].

A.1 First Method

Choose V3 as in (A.1). Set V2 := V as defined in (6.29) and N2 := Γ
8
s̃2 + Γ

4
c1〈ξ̃1〉2. By

(6.34), V̇2 ≤ −N2 =: Y2. Also, when α ∈ C1 is real valued,

d

dt
〈α〉 = α̇/(1 + α2)3/2.

The time derivative of V3 along the trajectories of (6.35) satisfies

V̇3 = −Ω(t, s̃, ξ̃1, ψ̃)s̃〈ψ̃〉 − c1λ1(0)〈ξ̃1〉〈ψ̃〉
−c2χn(0)〈ψ̃〉2 +

s̃2χn(s̃)

(1 + ψ̃2)3/2
.

(A.3)
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Since the µ′
is are bounded, so is χ′. Also, χn(0) = χ′(sc) > 0. It follows from the

Mean Value Theorem and the definition of χn in (6.25) that χn is bounded. Hence,
ab ≤ c2χn(0)a2/4 + b2/{c2χn(0)} with a = 〈ψ̃〉, applied to the first two terms on the
right side of (A.3), first with b = −Ω(t, s̃, ξ̃1, ψ̃)s̃ and then with −c1λ1(0)〈ξ̃1〉, provides
constants c, c̄ > 0 such that

V̇3 ≤ − c2
2
χn(0)〈ψ̃〉2 +

(Ω(t,s̃,ξ̃1,ψ̃)s̃)
2

c2χn(0)

+
(c1λ1(0)〈ξ̃1〉)

2

c2χn(0)
+ s̃2χn(s̃)

(1+ψ̃2)
3/2

≤ −c〈ψ̃〉2 + c̄N2[1 + Ω2(t, s̃, ξ̃1, ψ̃)].

Note that χ3(t, (s̃, ξ̃1, ψ̃), Y2) := c̄N2[1 + Ω2(t, s̃, ξ̃1, ψ̃)] is bounded uniformly in t in
the usual sense of [25] and is zero when Y2 = 0. Moreover, (s̃, ξ̃1, ψ̃) 7→ N2 + c〈ψ̃〉2
is positive definite. Hence, [25, Corollary 3.4] with V1 = V2, N3 = c〈ψ̃〉2, and j = 3
constructs nonnegative functions p1 and p2 for which V ♯ := p1(V )V + p2(V )V3 is the
desired Lyapunov function.

A.2 Second Method

To construct κ so that (A.2) is a Lyapunov function for (6.35), first note that the
inequality −ab ≤ 1

2
a2 + 1

2
b2 and (A.3) give

V̇3 = −
{

Ω(t,s̃,ξ̃1,ψ̃)s̃+c1λ1(0)〈ξ̃1〉√
c2χn(0)

}

{

〈ψ̃〉
√

c2χn(0)
}

−c2χn(0)〈ψ̃〉2 + s̃2χn(s̃)

(1+ψ̃2)3/2

≤ 1
2c2χn(0)

[

Ω(t, s̃, ξ̃1, ψ̃)s̃+ c1λ1(0)〈ξ̃1〉
]2

− c2χn(0)
2

〈ψ̃〉2 + s̃2χn(s̃)

(1+ψ̃2)3/2 .

The relation (a+ b)2 ≤ 2a2 + 2b2 therefore gives

V̇3 ≤ 1
c2χn(0)

[

Ω2(t, s̃, ξ̃1, ψ̃)s̃2 + c21λ
2
1(0)〈ξ̃1〉2

]

− c2χn(0)
2

〈ψ̃〉2 + χn(s̃)s̃2

(1+ψ̃2)3/2

≤
[

1
c2χn(0)

Ω2(t, s̃, ξ̃1, ψ̃) + χn(s̃)
]

s̃2

− c2χn(0)
2

〈ψ̃〉2 +
c21λ

2
1(0)

c2χn(0)
〈ξ̃1〉2 .

(A.4)

By enlarging θ1 in (6.21) without relabeling, we can assume c2 satisfies c2 < 16. Since V
is proper and positive definite and the λi’s are bounded (because the µ′

i’s are bounded),
we can find a positive strictly increasing function κ such that

κ(V (s̃, ξ̃1, ψ̃)) ≥ 4√
c2

+ 4
Γ

c1λ2
1(0)

c2χn(0)

+ 8
Γ

[

1
c2χn(0)

Ω2(t, s̃, ξ̃1, ψ̃) + χn(s̃)
]
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everywhere. Therefore, since 1 < 4/
√
c2 (because we assumed c2 < 16) and χn as

defined in (6.25) is nonnegative (by Assumption 3.1), (6.34) and (A.4) give

V̇3 ≤ − c2χn(0)
2

〈ψ̃〉2

+
[

Γ
8
s̃2 + Γ

4
c1〈ξ̃1〉2

] [

κ(V (s̃, ξ̃1, ψ̃)) − 1
]

≤ − c2χn(0)
2

〈ψ̃〉2 − V̇
[

κ(V (s̃, ξ̃1, ψ̃)) − 1
]

.

(A.5)

Let us now make the preceding choice of κ in the formula (A.2) of Va. It then follows
from (6.34) and (A.5) that the time derivative of (A.2) along the trajectories of (6.35)
satisfies

V̇a ≤ −c2χn(0)

2
〈ψ̃〉2 − Γ

8
s̃2 − Γ

4
c1〈ξ̃1〉2, (A.6)

which is negative definite. Set K = 4/
√
c2. Then κ ≥ K everywhere. It follows from

the relations

s̃〈ψ̃〉 ≥ −K
4
s̃2 − 1

K
〈ψ̃〉2,

√

1 + ψ̃2 − 1 =
ψ̃2

√

1 + ψ̃2 + 1

and the formula (6.29) for V that we also have

Va(s̃, ξ̃1, ψ̃) ≥ KV (s̃, ξ̃1, ψ̃) + s̃〈ψ̃〉

≥ K

[

1
4
s̃2 + c1

(

√

1 + ξ̃2
1 − 1

)

+c2
ψ̃2√

1+ψ̃2+1

]

− 1
K
〈ψ̃〉2

≥ K
4
s̃2 +Kc1

(

√

1 + ξ̃2
1 − 1

)

+ Kc2ψ̃2

2
“√

1+ψ̃2+1
” +Kc2

ψ̃2

4(1+ψ̃2)
− 1

K
ψ̃2

1+ψ̃2 .

Recalling our choice of K therefore gives

Va(s̃, ξ̃1, ψ̃) ≥ K
4
s̃2 +Kc1

(

√

1 + ξ̃2
1 − 1

)

+ Kc2ψ̃2

2
“√

1+ψ̃2+1
” .

(A.7)

Also, Va ≤ 1
2
s̃2 + 1

2
〈ψ̃〉2 + κ(V )V . It follows that Va is proper and positive definite. By

(A.6) and (A.7), Va is a Lyapunov function for (6.35), as claimed.
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