FURTHER RESULTS ON THE CRITICAL GALTON-WATSON PROCESS WITH IMMIGRATION

A. G. PAKES
(Received 8th December 1969)
Communicated by P. D. Finch

1. Introduction

Consider a Galton-Watson process in which each individual reproduces independently of all others and has probability $a_{j}(j=0,1, \cdots)$ of giving rise to j progeny in the following generation, and in which there is an independent immigration component where $b_{j}(j=0,1, \cdots)$ is the probability that j individuals enter the population at each generation. Defining $X_{n}(n=0,1, \cdots)$ to be the population size at the n-th generation, it is known that $\left\{X_{n}\right\}$ defines a Markov chain on the non-negative integers.

When $|x|<1$, let $A(x)=\sum_{j=0}^{\infty} a_{j} x^{j}, B(x)=\sum_{j=0}^{\infty} b_{j} x^{j}$ and $P_{i}^{(n)}(x)=\sum_{j=0}^{\infty}$ $p_{i j}^{(n)} x^{j}$ where $\left\{p_{i j}^{(n)}\right\}(i, j, n=0,1, \cdots)$ are the n-step transition probabilities of the Markov chain $\left\{X_{n}\right\}$. We shall assume that $0<a_{0}, b_{0}<1$. Denote the means of the offspring and immigration distributions by $\alpha=A^{\prime}(1-)$ and $\beta=B^{\prime}(1-)$ respectively. We always assume that $\beta<\infty$ and, unless otherwise stated, $\alpha=1$. In this case the variance of the offspring distribution is given by $2 \gamma=A^{\prime \prime}(1-)$ and we assume that $0<\gamma<\infty$. Finally, let $\sigma=\beta / \gamma$.

Pakes [6] has shown that if $\sum_{j=1}^{\infty} a_{j} j^{2} \log j, B^{\prime \prime}(1-)<\infty$ then $n^{\sigma} p_{00}^{(n)} \rightarrow \mu_{0}$, ($n \rightarrow \infty$) where $0<\mu_{0}<\infty$. For the case where $\left\{X_{n}\right\}$ is irreducible and aperiodic, this result shows it to be null-recurrent when $\sigma \leqq 1$ and transient otherwise. In section 2 we shall show that $n^{\sigma} P_{i}^{(n)}(x)$ converges to a function $U(x)$ which is regular in the open unit disc and which generates the invariant measure, $\left\{\mu_{j}\right\}$, of $\left\{X_{n}\right\}$. Seneta [9] has demonstrated the existence and uniqueness (up to a constant multiple) of an invariant measure under very weak hypotheses. A discussion of the asymptotic behaviour of $\left\{p_{i j}^{(n)}\right\}$ and $\left\{\mu_{j}\right\}$ is given in section 2 . Some results on the asymptotic behaviour of the Green's function $G_{i j}=\sum_{n=0}^{\infty} p_{i j}^{(n)}$, which exists under the conditions of theorem 1 below and if $\sigma>1$, are given in section 3.

It was shown in Pakes [6] that X_{n} / n converges weakly to a gamma distributed random variable. A related problem for $Y_{n}=\sum_{m=0}^{n} X_{m}$, the total number of individuals which have existed in the population up to the n-th generation, is considered in section 4. More specifically, we show that Y_{n} / n^{2} converges weakly
to a random variable Y, where $E\left(e^{-\theta Y}\right)=\left[\operatorname{sech}\left((\gamma \theta)^{\frac{1}{2}}\right)\right]^{\sigma}$. Finally, we briefly examine the rate of convergence of generating functions of the total population in a non-super-critical Galton-Watson process without immigration.

2. The asymptotic form of the transition probabilities

In the proof of theorem 1, we shall need the following result.
Lemma 1. Let $K(x)=\sum_{j=0}^{\infty} k_{j} x^{j}$ be a probability generating function. If $0<d_{n}<1$ and $1-d_{n} \sim a / n, 0<a<\infty$, then

$$
\sum_{n=1}^{\infty}\left(1-K\left(d_{n}\right)\right) / n<\infty \text { iff } \sum_{j=1}^{\infty} k_{j} \log j<\infty
$$

Proof. Since there exists finite positive constants c_{1} and c_{2} such that $c_{1} / n<1-d_{n}<c_{2} / n$ if $n>N$, it suffices to show that

$$
S=\sum_{n=N}^{\infty}(1-K(1-c / n)) / n<\infty \text { iff } \sum_{j=1}^{\infty} k_{j} \log j<\infty
$$

where c is a finite positive constant and N is so large that $c /(N-1)<1$. Fubini's theorem yields

$$
S=\sum_{j=0}^{\infty} k_{j} \sum_{n=N}^{\infty}\left(1-(1-c / n)^{j}\right) / n .
$$

Let $S_{j}=\sum_{n=N}^{\infty}\left(1-(1-c / n)^{j}\right) / n$. For fixed j the terms of this series are monotone decreasing and so

$$
0 \leqq S_{j}-I_{j} \leqq\left[1-(1-c /(N-1))^{j}\right] /(N-1) \leqq 1
$$

where

$$
\begin{aligned}
I_{j} & =\int_{N}^{\infty}[1-(1-c / x)] / x d x=\int_{1-c / N}^{1}\left(1-y^{j}\right) /(1-y) d y \\
& =\log j+L_{j}-M_{j}
\end{aligned}
$$

and where $L_{j}=\sum_{k=1}^{j} 1 / k-\log j$ satisfies $0<L_{j}<1$ and

$$
0 \leqq M_{j}=\sum_{k=1}^{j}(1-c / N)^{k} / k<(N / c)-1
$$

The lemma now follows on observing that

$$
0 \leqq \sum_{j=0}^{\infty} k_{j} I_{j} \leqq S \leqq \sum_{j=0}^{\infty} k_{j} I_{j}+1
$$

From the definition of the Markov chain $\left\{X_{n}\right\}$ it is easily seen that

$$
\begin{equation*}
P_{i}^{(n)}(x)=\left(A_{n}(x)\right)^{i} \prod_{m=0}^{n-1} B\left(A_{m}(x)\right) \tag{1}
\end{equation*}
$$

where $A_{0}(x)=x$ and $A_{n+1}(x)=A\left(A_{n}(x)\right)$.

Theorem 1. If, in addition to the conditions of section $1, \sum_{j=1}^{\infty} a_{j} j^{2} \log j$, $\sum_{j=1}^{\infty} b_{j} j \log j<\infty$, then the sequence of functions $\left\{n^{\sigma} P_{i}^{(n)}(x)\right\}$ converges to $U(x)$ $(|x|<1)$ where $U(x)$ satisfies the functional equation

$$
\begin{equation*}
B(x) U(A(x))=U(x) \tag{2}
\end{equation*}
$$

The convergence is uniform over compact subsets of the open unit disc. Denoting the power series representation of $U(x)$ by $\sum_{j=0}^{\infty} \mu_{j} x^{j}$, the n-step transition probabilities are given by

$$
\begin{equation*}
p_{i j}^{(n)}=n^{-\sigma}\left(\mu_{j}+r_{i j}(n)\right) \quad(i, j=0,1, \cdots) \tag{3}
\end{equation*}
$$

where $r_{i j}(n)=o(1)(n \rightarrow \infty)$.
Remark. Since completing this work, the author has found that Karlin and McGregor [4] have obtained the first part of this theorem but on assuming that $B(x)$ is regular at $x=1$ and $A^{\prime \prime \prime}(1-)<\infty$. When $x=0$, the above theorem slightly strengthens theorem 1 of Pakes [6].

Proof. It is well known that under our hypotheses $A_{n}(x) \uparrow 1(n \rightarrow \infty)$; see Harris [3]. Thus we need only consider

$$
\begin{equation*}
D_{n}(x) \equiv n^{\sigma} P_{0}^{(n)}(x)=B(x) \prod_{m=1}^{n-1}(1+1 / m)^{\sigma} B\left(A_{m}(x)\right) . \tag{4}
\end{equation*}
$$

For the present consider a fixed $x \in[0,1]$. The existence of a finite positive limit of this sequence of functions is equivalent to the convergence of the series $\sum_{m=1}^{\infty}\left(d_{m}(x)-1\right)$, where

$$
d_{m}(x)=(1+1 / m)^{\sigma} B\left(A_{m}(x)\right) .
$$

Using $(1+1 / m)^{\sigma}=1+\sigma / m+r_{m}$ where $r_{m}=0\left(1 / m^{2}\right)$ we have

$$
\begin{align*}
d_{m}(x)-1= & \sigma / m-\left(1-B\left(A_{m}(x)\right)-\sigma\left(1-B\left(A_{m}(x)\right)\right) / m+r_{m} B\left(A_{m}(x)\right)\right. \tag{5}\\
= & \sigma / m-\beta\left(1-A_{m}(x)\right)+\left(1-A_{m}(x)\right)\left(\beta-B^{\prime}\left(\eta_{m}\right)\right)-\sigma\left(1-B\left(A_{m}(x) / m\right.\right. \\
& +r_{m} B\left(A_{m}(x)\right)
\end{align*}
$$

where $A_{m}(x)<\eta_{m}<1$, and we have used the mean value theorem to obtain the second equality. Theorem 1 of Kesten et al. [5] shows that $1-A_{n}(x) \sim n / \gamma$ and so the third and fourth terms of equation (5) are $0\left(1 / m^{2}\right)$. Clearly, the second term of (5) is non-negative and is dominated by $\left(1-A_{m}(x)\right)\left(\beta-B^{\prime}\left(A_{m}(x)\right)\right.$. Application of lemma 1 with $K(x)=B^{\prime}(x) / \beta$ shows that

$$
\sum_{m=1}^{\infty}\left(1-A_{m}(x)\right)\left(\beta-B^{\prime}\left(\eta_{m}\right)\right)<\infty \text { if } \sum_{j=1}^{\infty} b_{j} j \log j<\infty .
$$

Writing

$$
1-A_{m}(x)=\left[m \gamma-h_{m}(x)+1 /(1-x)\right]^{-1}
$$

we obtain
$\sigma / m-\beta\left(1-A_{m}(x)\right)=\sigma \cdot \frac{1 /(1-x)-h_{m}(x)}{m\left(m-h_{m}(x)+1 /(1-x)\right)}=-\sigma h_{m}(x) / \gamma m^{2}+0\left(1 / m^{2}\right)$
where we have used $h_{m}(x)=o(m)$; see Kesten et al. [5]. Indeed it is shown in this reference that $h_{m}(x)=\sum_{k=0}^{m-1} \delta\left(A_{k}(x)\right)$ where $\delta(x)$ satisfies the (corrected) inequality

$$
\begin{equation*}
-\gamma^{2}(1-x) /(1-A(0)) \leqq \delta(x) \leqq \varepsilon(x) \tag{6}
\end{equation*}
$$

where $0 \leqq \varepsilon(x)=\gamma-(A(x)-x) /(1-x)^{2} \leqq \gamma$, and $\varepsilon(x)$ is monotone non-increasing on $0 \leqq x<1$ and $\varepsilon(x) \downarrow 0(x \uparrow 1)$. Thus we have

$$
\begin{equation*}
-\frac{\gamma^{2}}{1-A(0)} \sum_{m=1}^{\infty} \frac{1}{m^{2}} \sum_{k=0}^{m-1}\left(1-A_{k}(0)\right) \leqq \sum_{m=1}^{\infty} \frac{h_{m}(x)}{m^{2}} \leqq \sum_{m=1}^{\infty} \frac{1}{m^{2}} \sum_{t=0}^{m-1} \varepsilon\left(A_{k}(0)\right) . \tag{7}
\end{equation*}
$$

For sufficiently large M there exist positive constants a, b such that $a / m<1-A_{m}$ $(0)<b / m(m \geqq M)$ and so we see that the terms of the series on the left of equation (7) are $0\left[(\log m) / m^{2}\right]$ for large m.

Observing that $\varepsilon(x) \leqq \gamma-A^{\prime \prime}(x)$, use of lemma 1 with $K(x)=A^{\prime \prime}(x) / 2 \gamma$ shows that the series on the right of (7) will converge if $\sum_{j=0}^{\infty} a_{j} j^{2} \log j<\infty$. Thus $D_{n}(x) \rightarrow U(x)$, say, $(n \rightarrow \infty)$ and $0<U(x)<\infty$ when $0 \leqq x<1$.

If $0<R<1$, equation (4) and the result of the last paragraph implies $\left|n^{\sigma} P_{i}^{(n)}(x)\right| \leqq D_{n}(R)<M(R)<\infty(|x| \leqq R)$ where $M(R)$ is a constant depending on R. Vitali's theorem (Titchmarsh [10]) shows that $n^{\sigma} P_{i}^{(n)}(x)$ converges uniformly over compact subsets of the disc $|x|<R$, and thus uniformly over compact subsets of the open unit disc, to a function $\sum_{j=0}^{\infty} \mu_{j} x^{j}$ which coincides with $U(x)$ for $0 \leqq x<1$ and thus defines $U(x)$ for all $|x|<1$. It is clear that $\mu_{j} \geqq 0$. Equation (3) follows from the uniform convergence.

From equation (4) we have

$$
(1+1 / n)^{\sigma} B(x) D_{n}(A(x))=D_{n+1}(x)
$$

and this implies equation (2), thus completing the proof.
Equation (3) clearly demonstrates the absence of the geometric ergodicity property; compare with the situation when $\alpha \neq 1$ in Pakes [7].

Theorem 1 allows us to write

$$
\begin{equation*}
P_{i}^{(n)}(x)=n^{-\sigma}\left[U(x)+r_{i}^{(n)}(x)\right] \quad(0 \leqq x<1 ; \quad n=1,2, \cdots) \tag{8}
\end{equation*}
$$

where $r_{i}^{(n)}(x)=o(1)(n \rightarrow \infty)$. We can obtain some information on the asymptotic form of $r_{i}^{(n)}(x)$. Equation 1, theorem 1 and the fact that $1-A_{n}(x) \sim n / \gamma$ (Kesten et al. [5]) shows that $n^{\sigma+1}\left(P_{0}^{(n)}(x)-P_{i}^{(n)}(x)\right)=i U(x)\left(1+\zeta_{i}^{(n)}(x)\right) / \gamma$ where $\zeta_{i}^{(n)}(x)=$ $o(1)(n \rightarrow \infty)$. This yields

$$
P_{i}^{(n)}(x)=n^{-\sigma}\left(U(x)+r_{0}^{(n)}(x)\right)-i U(x) n^{-\sigma-1}\left(1+\zeta_{i}^{(n)}(x)\right) / \gamma
$$

We shall now show that, in general, $n^{-\sigma} r_{0}^{(n)}(x)$ tends to zero much less rapidly than does $n^{-\sigma-1}$. This is evident from the following:

Corollary. If we assume that $B^{\prime \prime}(1-), A^{i v}(1-)<\infty$ then

$$
r_{0}^{(n)}(x)=-(\Omega U(x) \log n) n+0(1 / n)
$$

where

$$
\Omega=\beta\left(\gamma^{2}-A^{\prime \prime \prime}(1-) / 6\right) \gamma^{3} .
$$

Proof. From theorem 1 we have

$$
r_{0}^{(n)}(x)=D_{n}(x)\left(1-\prod_{m=n}^{\infty}(1+1 / m)^{\sigma} B\left(A_{m}(x)\right)\right) .
$$

Now

$$
\begin{equation*}
V_{n}(x)=1-\prod_{m=n}^{\infty}(1+1 m)^{\sigma} B\left(A_{m}(x)=\sum_{m=n}^{\infty}\left(1-d_{m}(x)\right)+W_{n}(x)\right. \tag{9}
\end{equation*}
$$

where $W_{n}(x)$ is an error term which will be examined subsequently. The proof of theorem 1 and the finiteness of $B^{\prime \prime}(1-)$ show that

$$
1-d_{m}(x)=\sigma h_{m}(x) / \gamma m^{2}+0\left(1 / m^{2}\right)
$$

Since $A^{i v}(1-)<\infty$ it follows from lemma 10.1 and case c of the proof of theorem 11.1 in Harris [3] that

$$
\begin{equation*}
1-d_{m}(x)=-\Omega[\log (1+m \gamma(1-x))] / m^{2}+0\left(1 / m^{2}\right) \quad(0 \leqq x<1) \tag{10}
\end{equation*}
$$

If m is sufficiently large, then $[\log (1+a m)] / m^{2}(0<a<\infty)$ becomes monotone non-increasing and so

$$
\int_{n}^{\infty}[\log (1+a y)] / y^{2} d y \leqq \sum_{m=n}^{\infty}[\log (1+a m)] / m^{2} \leqq \int_{n-1}^{\infty}[\log (1+a y)] / y^{2} d y
$$

for n sufficiently large. This shows, after some manipulation, that

$$
\sum_{m=n}^{\infty}(1-d m(x))=-(\log n) / n+0(1 / n)
$$

Equation (10) shows that for $\Omega \neq 0$ and m sufficiently large, $1-d_{m}(x)$ is either positive or negative, the sign being determined by that of Ω. Use of the appropriate one of the inequalities

$$
\begin{aligned}
& \sum_{m=n}^{\infty} x_{m}-\left(\sum_{m=n}^{\infty} x_{m}\right)^{2} / 2 \leqq 1-\prod_{m=n}^{\infty}\left(1-x_{m}\right) \leqq \sum_{m=n}^{\infty} x_{m}+\sum_{m=n}^{\infty}\left[x_{m}^{2} /\left(1-x_{m}\right)\right] \quad\left(0 \leqq x_{m}<1\right) \\
& \sum_{m=n}^{\infty} x_{m}-\left(\sum_{m=n}^{\infty} x_{m}\right)^{2} / 2\left(1+\sum_{m=n}^{\infty} x_{m}\right) \leqq 1-\prod_{m=n}^{\infty}\left(1-x_{m}\right) \leqq \sum_{m=n}^{\infty} x_{m}+\left(\sum_{m=n}^{\infty} x_{m}^{2}\right) / 2
\end{aligned}
$$

$$
\left(-1<x_{m} \leqq 0\right)
$$

where $0<\prod_{m=n}^{\infty}\left(1-x_{m}\right)<\infty$, shows that $W_{n}(x)=0(1 / n)$.
If $\Omega=0$, then applying the last two inequalities to the bounds of $1-d_{m}(x)$ implied by (10) proves the corollary directly. This completes the proof.

Observe that this corollary gives the rate at which $n^{\sigma} P_{i}^{(n)}(x)$ approaches $U(x)$. We now briefly examine the asymptotic behaviour of the invariant measure.

Theorem 2. If the conditions of theorem 1 are satisfied, then

$$
\sum_{i=0}^{j} \mu_{j} \sim j^{\sigma} / \Gamma(\sigma+1) \quad(j \rightarrow \infty)
$$

where $\Gamma(\cdot)$ is the Gamma function.
Proof. From theorem 1 we have

$$
\begin{equation*}
U(x)=B(x) \prod_{m=1}^{\infty}(1+1 / m)^{\sigma} B\left(A_{m}(x)\right) \quad(0 \leqq x<1) . \tag{11}
\end{equation*}
$$

Following Kesten et al. [5] we consider

$$
\begin{aligned}
U\left(A_{n}(0)\right) & =B\left(A_{n}(0)\right) \prod_{m=1}^{\infty}(1+1 / m)^{\sigma} B\left(A_{m+n}(0)\right) \\
& =B\left(A_{n}(0)\right) \prod_{m=1}^{n}(1+1 / m)^{\sigma} \prod_{m=n+1}^{\infty}(1+1 / m)^{\sigma} B\left(A_{m}(0)\right)
\end{aligned}
$$

The convergence of the infinite product (11) implies that the second product in the last expression $\rightarrow 1(n \rightarrow \infty)$ thus giving

$$
U\left(A_{n}(0) \sim(n+1)^{\sigma} \quad(n \rightarrow \infty)\right.
$$

Since $U(x)$ is monotone on $0 \leqq x \leqq 1$, we have

$$
U(x) \sim(1-x)^{-\sigma} \quad(x \uparrow 1)
$$

and the theorem now follows from Karamata's theorem (Feller [2]).

3. Asymptotic properties of the Green's functions

We define the Green's functions by

$$
\begin{equation*}
G_{i j}=\sum_{n=0}^{\infty} p_{i j}^{(n)} \quad(i, j=0.1, \cdots) \tag{12}
\end{equation*}
$$

where, by equation (3), the series converges if $\sigma>1$. In this section we shall obtain some information on the behaviour of $G_{i j}$ when i is fixed and $j \rightarrow \infty$ and when j is fixed and $i \rightarrow \infty$. We turn now to the first case, the approach being similar to that used in the proof of theorem 2.

Theorem 3. If $\sigma>1$ and the conditions of theorem 1 are fulfilled then $\sum_{k=0}^{j} G_{i k} \sim j /(\sigma-1)(j \rightarrow \infty)$.

Proof. Equation (12) yields

$$
\begin{equation*}
G_{i}(x)=\sum_{j=0}^{\infty} G_{i j} x^{j}=\sum_{n=0}^{\infty} P_{i}^{(n)}(x) \quad(i=0,1, \cdots ; 0 \leqq x<1) . \tag{13}
\end{equation*}
$$

which implies, on using (1),

$$
G_{i}\left(A_{m}(0)\right)=\sum_{n=0}^{\infty} p_{i 0}^{(n+m)} / p_{00}^{(m)}
$$

Since $n^{\sigma} p_{i 0}^{(n)} \rightarrow \mu_{0}>0(n \rightarrow \infty ; i=0,1, \cdots)$, then for each $\varepsilon>0$ there exists $M(\varepsilon)$ such that

$$
\begin{align*}
& (1-\varepsilon)(m /(m+n))^{\sigma}<p_{i 0}^{(n+m)} / p_{00}^{(m)}<(1+\varepsilon)(m /(m+n))^{\sigma} \tag{14}\\
& \quad(m>M(\varepsilon) ; n=0,1, \cdots)
\end{align*}
$$

Observing that the terms of the series $\sum_{n=0}^{\infty}(m+n)^{-\sigma}$ are monotone decreasing, comparison with $\int_{0}^{\infty}(x+m)^{-\sigma} d x$ eventually yields

$$
1-\varepsilon \leqq(\sigma-1) G_{i}\left(A_{m}(0)\right) / m \leqq(1+\varepsilon)(m /(m-1))^{\sigma}<(1+\varepsilon)^{\sigma}
$$

when $m>\max (M(\varepsilon), 1+1 / \varepsilon)$. Thus $G_{i}\left(A_{m}(0)\right) \sim m /(\sigma-1)$ and since $G_{i}(x)$ is monotone on $0 \leqq x<1$,

$$
G_{i}(x) \sim 1 /(\sigma-1)(1-x) \quad(x \uparrow 1)
$$

and the theorem now follows on applying Karamata's theorem.
In considering the behaviour of $G_{i j}$ for large i, we need the following result generalising lemma 1 of [5] (which was stated without proof).

Lemma 2. If $0<\alpha_{n}<1, \alpha_{n} \sim c / n$ and $\beta_{n} \sim b n^{-\sigma}$ where $0<b, c<\infty$ and $\sigma>1$, then

$$
\lim _{i \rightarrow \infty} \sum_{n=1}^{\infty}\left(1-\alpha_{n}\right)^{i} i^{\sigma-1} \beta_{n}=b c^{1-\sigma} \Gamma(\sigma-1) .
$$

Proof. For each $\varepsilon>0$ we have

$$
\begin{equation*}
(b-\varepsilon) n^{-\sigma} \leqq \beta_{n} \leqq(b+\varepsilon) n^{-\sigma} \quad(n \geqq N=N(\varepsilon)) \tag{15}
\end{equation*}
$$

so that

$$
\begin{aligned}
(b-\varepsilon)\left\{(1 / i) \sum_{n=N}^{\infty}(i / n)^{\sigma} e^{-i c / n}\right\} & \leqq \sum_{n=N}^{\infty} i^{\sigma-1} \beta_{n} e^{-i c / n} \\
& \leqq(b+\varepsilon)\left\{(1 / i) \sum_{n=N}^{\infty}(i / n)^{\sigma} e^{-i c / n}\right\}
\end{aligned}
$$

The expression in curly brackets on the left and right hand side of this inequality tends to $\int_{0}^{\infty} x^{-\sigma} e^{-c / x} d x=c^{1-\sigma} \Gamma(\sigma-1)$ and since ε is arbitrary we have

$$
\begin{equation*}
\lim _{i \rightarrow \infty} \sum_{n=1}^{\infty} i^{\sigma-1} \beta_{n} e^{-i c / n}=b c^{1-\sigma} \Gamma(\sigma-1) \tag{16}
\end{equation*}
$$

Thus it suffices to show that

$$
\lim _{i \rightarrow \infty} \sum_{n=1}^{\infty}\left(e^{-i c / n}-\left(1-\alpha_{n}\right)^{i}\right) i^{\sigma-1} \beta_{n}=0
$$

For each $\varepsilon>0$ there exists $M=M(\varepsilon)$ such that both (15) and
(17) $0<1-(1+\varepsilon) c / n \leqq 1-\alpha_{n} \leqq 1-(1-\varepsilon) c / n$
hold for $n \geqq M$. The last inequality gives

$$
\begin{aligned}
e^{-i c / n}-\left(1-\alpha_{n}\right)^{i} & \leqq\left[e^{-c / n}-(1-(1+\varepsilon) c / n)\right] \sum_{k=0}^{i-1} e^{-k c / n}\left(1-\alpha_{n}\right)^{i-1-k} \\
& \leqq\left(\varepsilon c n+c^{2} / 2 n^{2}\right) \sum_{k=0}^{i-1} e^{-k c / n}(1-(1-\varepsilon) c / n)^{i-1-k} \\
& \leqq J i\left(\varepsilon c / n+c^{2} / 2 n^{2}\right) e^{-i c / n}
\end{aligned}
$$

where J is a positive constant. Thus we obtain

$$
\begin{aligned}
\lim _{i \rightarrow \infty} \sup \sum_{n=1}^{\infty} & \left(e^{-i c / n}-\left(1-\alpha_{n}\right)^{i}\right) i^{\sigma-1} \beta_{n} \\
& \leqq J(b+\varepsilon) \lim _{i \rightarrow \infty} \sum_{n=M}^{\infty}\left(\varepsilon c / n-c^{2} / 2 n^{2}\right) e^{-i c / n}(i / n)^{\sigma} \\
& =\varepsilon c^{1-\sigma} \Gamma(\sigma) J(b+\varepsilon)
\end{aligned}
$$

But since ε is arbitrary the limit superior is non-positive. Similarly, use of the left hand sides of (15) and (17) shows that the limit inferior is non-negative, thus completing the proof.

Theorem 4. Let the conditions of theorem 1 be satisfied and let $\sigma>1$. Then for each $0 \leqq x<1$,

$$
\begin{equation*}
G_{i}(x) \sim(\gamma / i)^{\sigma-1} \Gamma(\sigma-1) U(x) \quad(i \rightarrow \infty) \tag{18}
\end{equation*}
$$

and for each $j=0,1, \cdots$,

$$
\begin{equation*}
G_{i j} \sim(\gamma / i)^{\sigma-1} \Gamma(\sigma-1) \mu_{j} \quad(i \rightarrow \infty) \tag{19}
\end{equation*}
$$

Proof. Recalling that $P_{0}^{(n)}(x) \sim n^{-\sigma} U(x)$ and that $A_{n}(x)=1-\alpha_{n}$ where $\alpha_{n} \sim 1 /(n \gamma)$ we see, using equation (1), that lemma 2 can be applied to equation (13) thus yielding (18).

Setting $x=0$ in (18) gives (19) when $j=0$ and this yields $G_{i}(x) / G_{i 0} \rightarrow$ $U(x) / \mu_{0}(i \rightarrow \infty)$. Recalling that $\mu_{0}>0$,

$$
G_{i j} / G_{i 0} \leqq x^{-j} G_{i}(x) / G_{i 0}<M<\infty
$$

This enables us to apply the dominated convergence theorem to the series $G_{i}(y) / G_{i 0}$ with $0 \leqq y<x$ and obtain $G_{i j} / G_{i 0} \rightarrow \mu_{j} / \mu_{0}$ and this implies (19).

4. A limit theorem for the total number of individuals

Let $Y_{n}=\sum_{m=0}^{n} X_{m}$ be the total number of individuals that have existed up to and including the n-th generation in our Galton-Watson process with immigration. Assuming $X_{0}=i$, it is not difficult to show that

$$
\begin{equation*}
Q_{i}^{(n)}(x)=E\left(x^{Y_{n}}\right)=\left(g_{n}(x)\right)^{\left.i^{n-1} \prod_{m=0} B\left(g_{m}(x)\right), ~\right) ~} \tag{20}
\end{equation*}
$$

where $g_{n}(x)$ is the generating function of the total number of individuals up to and including the n-th generation that are descended from a single anscestor (and including this individual) in the zero-th generation of an ordinary Galton-Watson process. It is well known that

$$
\begin{equation*}
g_{n+1}(x)=x A\left(g_{n}(x)\right), g_{0}(x)=x \quad(n=0,1, \cdots) \tag{21}
\end{equation*}
$$

and that if $\alpha \leqq 1$,

$$
\begin{equation*}
g_{n}(x) \downarrow g(x)=x A(g(x)) \quad(n \rightarrow \infty) \tag{22}
\end{equation*}
$$

where $g(x)$ generates an honest probability distribution; see [3] p. 32. (Monotone convergence is not proven in [3], however see equation (32) below).

To see that (20) is true, consider a sequence $\left\{\mathscr{B}_{n}\right\}_{0}^{\infty}$, of independent GaltonWatson processes having an offspring distribution generated by $A(x)$ and initial distributions generated by x^{i} when $n=0$, and $B(x)$ when $n=1,2, \cdots$. Defining $y_{n, m}$ to be the total number of individuals that have existed up to and including the m-th generation of \mathscr{B}_{n}, it is clear that

$$
\begin{equation*}
Y_{n}=\sum_{m=0}^{n} y_{m, n-m} \tag{23}
\end{equation*}
$$

and this is equivalent to (20).
Logarithmic differentiation of (20) and use of (21) yields

$$
E\left(Y_{n}\right)=i(n+1)+\beta n(n+1) / 2
$$

which suggests considering the convergence of Y_{n} / n^{2} in some sense.
Theorem 5. Under the assumptions made in section 1, the random variable Y_{n} / n^{2} converges weakly to a random variable Y whose distribution is defined by the Laplace-Stieltjes transform

$$
\begin{equation*}
E\left(e^{-\theta \mathrm{Y}}\right)=\left[\operatorname{sech}(\gamma \theta)^{\frac{1}{2}}\right]^{\sigma} \tag{24}
\end{equation*}
$$

Remarks. When $\sigma=1$, the distribution defined by (24) arises in the context of first passage time distributions for the Wiener-Lévy process, see for example Bharucha-Reid [1] p. 152. It is clear from (23) that Y is the weak limit of a system of infinitesimal random variables and, as such, it has an infinitely divisible distribution. The Kolmogorov canonical representation of the characteristic function of Y is given by

$$
i \beta t / 2+\sigma \int_{0}^{\infty}\left(e^{i u t}-1-i u t\right) \theta_{2}\left(0, e^{i u \pi / \gamma}\right) /(2 u) d u
$$

where $\theta_{2}(\cdot, \cdot)$ is the second theta function; the example on $p .534$ of [2] is relevant to the derivation of this result.

We now obtain two results which are needed for the proof of theorem 5.
Lemma 3. Let $u \equiv u(x)=x A^{\prime}(g(x))$. Then,

$$
x-g(x) \sim[(1-x) / \gamma]^{\frac{1}{2}}
$$

and

$$
1-u(x) \sim 2[\gamma(1-x)]^{\frac{1}{2}}, \quad(x \uparrow 1) .
$$

Proof. Using a four term Taylor expansion of the right hand side of (22) we have

$$
g(x)=\frac{\gamma x(1-g(x))^{2}}{1-x}+\frac{(1-g(x))^{3}}{1-x} \frac{A^{\prime \prime \prime}(\eta)}{6}(g(x)<\eta<1) .
$$

But $g(x) \uparrow 1(x \uparrow 1)$ and so the first part of the lemma follows. The second part follows from

$$
1-A^{\prime}(g(x))=2 \gamma(1-g(x))-A^{\prime \prime}(\zeta)\left(1-g(x)^{2} / 2 \quad(g(x)<\zeta<1)\right.
$$

Lemma 4. Let $\theta_{n}=e^{-\theta / n^{2}}(\theta>0)$ and let $\phi(x) \rightarrow 1$ as $x \uparrow$. Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(1-u\left(\theta_{n}\right)\right) \sum_{m=1}^{n-1} \frac{\phi\left(\theta_{n}\right)\left(u\left(\theta_{n}\right)\right)^{m}}{1+\phi\left(\theta_{n}\right)\left(u\left(\theta_{n}\right)\right)^{m}}=-\log \left(\frac{1+e^{-2(v \theta)^{1 / 2}}}{2}\right) . \tag{25}
\end{equation*}
$$

Proof. By hypothesis we have

$$
\begin{equation*}
\phi\left(\theta_{n}\right)=1+t_{n}, \quad t_{n}=o(1) \quad(n \rightarrow \infty) \tag{26}
\end{equation*}
$$

and using the second part of lemma 3 it is easily seen that

$$
\begin{equation*}
1-u\left(\theta_{n}\right)=2(\gamma \theta)^{\frac{1}{2}} / n+r_{n} / n, \quad r_{n}=o(1) \quad(n \rightarrow \infty) . \tag{27}
\end{equation*}
$$

Writing $\delta=2(\gamma \theta)^{\frac{1}{2}}$ and $\eta_{m, n}=(1-\delta / n)^{m}$, it is not difficult to show that

$$
\left\lvert\, \begin{align*}
\left|\frac{\phi\left(\theta_{n}\right)\left(u\left(\theta_{n}\right)\right)^{m}}{1+\phi\left(\theta_{n}\right)\left(u\left(\theta_{n}\right)\right)^{m}}-\frac{\exp (-\delta m / n)}{1+\exp (-\delta m / n)}\right| \begin{aligned}
& \left|\eta_{m, n}-\left(u\left(\theta_{n}\right)\right)^{m}\right| \\
& +\left|t_{n}\right|+\left|\exp (-\delta m / n)-\eta_{m, n}\right| .
\end{aligned} \tag{28}
\end{align*}\right.
$$

Observing that (27) is equivalent to $u\left(\theta_{n}\right)=\eta_{1, n}-r_{n} / n$, we have

$$
\left|\eta_{m, n}-\left(u\left(\theta_{n}\right)\right)^{m}\right| \leqq m\left|r_{n}\right| / n
$$

Noting that $e^{-\delta / n}=\eta_{1, n}+v_{n}$ where $\left|v_{n}\right| \leqq \delta / 2 n^{2}$, yields

$$
\left|\exp (-\delta m / n)-\eta_{m, n}\right| \leqq \delta m / 2 n^{2}
$$

Summing (28) from $m=0$ to $m=n-1$, and using the last two estimates proves
the equality of the left hand side of (25) (if it exists) and

$$
\lim _{n \rightarrow \infty} \frac{\delta}{n} \sum_{m=1}^{n-1} \frac{\exp (-\delta m / n)}{1+\exp (-\delta m / n)}
$$

However this limit does exist and is clearly equal to

$$
\delta \int_{0}^{1} e^{-\delta x} /\left(1+e^{-\delta x}\right) d x
$$

thus completing the proof.
Proof of theorem 5. Recalling that $\theta_{n}=e^{-\theta / n^{2}}$ we have

$$
E\left(\exp \left(-\theta Y_{n} / n^{2}\right)\right)=Q_{i}^{(n)}\left(\theta_{n}\right)
$$

and $g_{n}\left(\theta_{n}\right) \rightarrow 1(n \rightarrow \infty)$, and so it suffices to consider the case $i=0$. We have

$$
\begin{equation*}
\log Q_{0}^{(n)}\left(\theta_{n}\right)=-\sum_{m=0}^{n-1}\left(1-B\left(g_{m}\left(\theta_{n}\right)\right)\right)-\sum_{m=0}^{n-1} R_{m, n}(\theta) \tag{29}
\end{equation*}
$$

where

$$
\begin{aligned}
0 \leqq R_{m, n}(\theta) & \leqq\left[1-B\left(g_{m}\left(\theta_{n}\right)\right)\right]^{2} / B\left(g_{m}\left(\theta_{n}\right)\right) \\
& \leqq\left[1-B\left(g\left(\theta_{n}\right)\right)\right]\left[1-B\left(g_{m}\left(\theta_{n}\right)\right)\right] / B\left(g\left(\theta_{n}\right)\right)
\end{aligned}
$$

If the first sum in (29) is bounded as $n \rightarrow \infty$, then the second sum, denoted by $R_{1}^{(n)}(\theta)$, tends to zero.

Using the expansion $B(x)=1-\beta(1-x)+(1-x) r(x)$, where $r(x)$ is monotone non-increasing on $[0,1]$ and $r(x) \downarrow 0$ as $x \uparrow 1$, we obtain

$$
\begin{equation*}
\log Q_{0}^{(n)}\left(\theta_{n}\right)=-\beta \sum_{m=0}^{n-1}\left(1-g_{m}\left(\theta_{n}\right)\right)+R_{1}^{(n)}(\theta)+R_{2}^{(n)}(\theta) \tag{30}
\end{equation*}
$$

where

$$
\begin{aligned}
0 \leqq R_{2}^{(n)}(\theta) & =\sum_{m=0}^{n-1}\left(1-g_{m}\left(\theta_{n}\right)\right) r\left(g_{m}\left(\theta_{n}\right)\right) \\
& \leqq r\left(g\left(\theta_{n}\right)\right) \sum_{m=0}^{n-1}\left(1-g_{m}\left(\theta_{n}\right)\right)
\end{aligned}
$$

and the last quantity is $o(1)$ if the sum in (30) remains bounded as $n \rightarrow \infty$. Putting the sum in (30) into the form

$$
\begin{equation*}
-\sum_{m=0}^{n-1}\left(1-g_{m}\left(\theta_{n}\right)\right)=-\sum_{m=0}^{n-1}\left(1-g\left(\theta_{n}\right)\right)+\sum_{m=0}^{n-1}\left[g_{m}\left(\theta_{n}\right)-g\left(\theta_{n}\right)\right] \tag{31}
\end{equation*}
$$

and using the first half of lemma 3 we see that the limit of the first expression on the right hand side of (31) equals $-(\theta / \gamma)^{\frac{1}{2}}$. Thus we need only find the limit of the second sum on the right hand side of (31). We shall do this by obtaining upper and lower bounds for $g_{n}(x)-g(x)$ which will enable us to invoke lemma 4. Our approach is based on that of Seneta [8].

Equation (21) and the mean value theorem yields, for $0 \leqq x<1$

$$
\begin{align*}
& 0<g_{n+1}(x)-g(x)=x\left(g_{n}(x)-g(x)\right) A^{\prime}\left(\eta_{n}\right) \tag{32}\\
& \quad\left(n=0,1, \cdots ; g(x)<\eta_{n}<g_{n}(x)\right) .
\end{align*}
$$

The left hand inequality is clearly true for $n=0$, and so for all n, by induction. The same argument shows that $g_{n+1}(x) \leqq g_{n}(x)(0 \leqq x \leqq 1)$ and thus if we let h be a fixed non-negative integer and write $b_{n}=1 /\left(g_{n}(x)-g(x)\right)$, then the following inequality obtains for $0 \leqq h \leqq n$,

$$
\begin{equation*}
u=x A^{\prime}\left(g(x) \leqq b_{n} / b_{n+1} \leqq x A^{\prime}\left(g_{h}(x)\right)\right. \tag{33}
\end{equation*}
$$

Moreover,

$$
g_{n+1}(x)=x\left[A(g(x))+\left(g_{n}(x)-g(x)\right) A^{\prime}(g(x))+\left(g_{n}(x)-g(x)\right)^{2} A^{\prime \prime}\left(\delta_{n}\right)\right]
$$

where $g(x)<\delta_{n}<g_{n}(x)$, and this yields

$$
b_{n+1}=\frac{b_{n}}{u}-\frac{x A^{\prime \prime}\left(\delta_{n}\right)}{2 u} \cdot \frac{b_{n+1}}{b_{n}} .
$$

Noting that $A^{\prime \prime}(g(x))<A^{\prime \prime}\left(\delta_{n}\right) \leqq A^{\prime \prime}\left(g_{n}(x)\right) \leqq A^{\prime \prime}\left(g_{h}(x)\right)$, and combining the last equation with (33) finally yields

$$
\frac{b_{n}}{u}-\frac{x A^{\prime \prime}\left(g_{h}(x)\right)}{2 u^{2}} \leqq b_{n+1} \leqq \frac{b_{n}}{u}-\frac{A^{\prime \prime}(g(x))}{2 u A^{\prime}\left(g_{h}(x)\right)}
$$

Proceeding us in [8], we iterate this inequality and invert the result to obtain finally,

$$
\begin{align*}
\frac{2 A^{\prime}\left(g_{h}(x)\right)(1-u)}{A^{\prime \prime}(g(x))} \cdot \frac{\phi u^{n}}{1+\phi u^{n}} & \leqq g_{h+n}(x)-g(x) \tag{34}\\
& \leqq \frac{2 u(1-u)}{x A^{\prime \prime}\left(g_{h}(x)\right)} \cdot \frac{\tau u^{n}}{1+\tau u^{n}}
\end{align*}
$$

where

$$
\begin{aligned}
\phi & =\phi(x)=\frac{A^{\prime \prime}(g(x))}{2 A^{\prime \prime}\left(g_{h}(x)\right) b_{h}(1-u)-A^{\prime \prime}(g(x))}, \\
\tau & =\tau(x)=\frac{x A^{\prime \prime}(g(x))}{2 u(1-u) b_{h}-x A^{\prime \prime}\left(g_{h}(x)\right)} .
\end{aligned}
$$

We now take $h=0$. Using lemma 3 , it is clear that $\phi(x), \tau(x) \rightarrow 1(x \uparrow 1)$, and so lemma 4 is applicable and we obtain

$$
\left.\lim _{n \rightarrow \infty} \sum_{m=0}^{n-1}\left(g_{m}\left(\theta_{n}\right)\right)-g\left(\theta_{n}\right)\right)=-\frac{1}{\gamma} \log \left(\frac{1+\exp \left[-2(\gamma \theta)^{\frac{1}{2}}\right.}{2}\right) .
$$

Thus our boundedness requirements are satisfied and the error terms in equation (30) are $o(1)$. The theorem now follows on applying the continuity theorem for Laplace-Stieltjes transforms; see Feller [2].

5. The rate of convergence of $\boldsymbol{g}_{\boldsymbol{n}}(\boldsymbol{x})$

We shall briefly look at the rate at which $g_{n}(x) \rightarrow g(x)$ in a non-supercritical Galton-Watson process, that is, $\alpha \leqq 1$. Iteration of equation (32) gives

$$
g_{n}(x)-g(x)=(x-g(x)) x^{n} \prod_{m=0}^{n-1} A^{\prime}\left(\eta_{m}\right) \leqq(x-g(x))(\alpha x)^{n}
$$

which yields

$$
\begin{equation*}
u^{-n}\left(g_{n}(x)-g(x)\right)=(x-g(x)) \prod_{m=0}^{n-1}\left[1-x\left(A^{\prime}(g(x))-A^{\prime}\left(\eta_{m}\right)\right) / u\right] \tag{35}
\end{equation*}
$$

The left hand side of this equation will have a limit iff the series $\sum_{m=0}^{\infty}\left(A^{\prime}\left(\eta_{m}\right)\right.$ $\left.-A^{\prime}(g(x))\right)$ is convergent. We have

$$
\begin{aligned}
0 \leqq A^{\prime}\left(\eta_{m}\right)-A^{\prime}(g(x)) & \leqq A^{\prime}\left(g_{m}(x)\right)-A^{\prime}(g(x)) \\
& \leqq\left(g_{m}(x)-g(x)\right) A^{\prime \prime}\left(g_{m}(x)\right) \\
& \leqq(x-g(x))(\alpha x)^{m} A^{\prime \prime}\left(g_{m}(x)\right)
\end{aligned}
$$

Thus, even if $A^{\prime \prime}(1-)=\infty$, the series converges for $0 \leqq x \leqq 1$ and uniformly so on $0 \leqq x \leqq a<1$. If $A^{\prime \prime}(1-)<\infty$ then the convergence is uniform on $[0,1]$. The same applies to the limit of the product in equation (35), and so we have

$$
\lim _{n \rightarrow \infty}\left(x A^{\prime}(g(x))\right)^{-n}\left(g_{n}(x)-g(x)\right)=G(x)
$$

where $G(x)$ is continuous and non-negative for $0 \leqq x<1$. Equation (34) yields bounds for $G(x)$ namely

$$
\frac{2 \phi(x) A^{\prime}\left(g_{h}(x)\right)(1-u)}{u^{h} A^{\prime \prime}(g(x))} \leqq G(x) \leqq \frac{2 \tau(x) u(1-u)}{x u^{h} A^{\prime \prime}\left(g_{h}(x)\right)}
$$

Acknowledgement. This work was carried out during the tenure of a Department of Supply Postgraduate Studentship.

References

[1] A. T. Bharucha-Reid, Elements of the Theory of Markov Processes and their Applications (New York, McGraw-Hill, 1960).
[2] W. Feller, An Introduction to Probability Theory and its Applications. Vol. II (New York, Wiley, 1966).
[3] T. E. Harris, The Theory of Branching Processes (Berlin, Springer-Verlag, 1963).
[4] S. Karlin and J. McGregor, 'Spectral representation of branching processes', Zeit. Wahrsch. 5 (1966), 34-54.
[5] H. Kesten, P. Ney and F. Spitzer, 'The Galton-Watson process with mean one and finite variance', Teor. Veroyatnost. i Primenen. 11 (1966), 579-611.
[6] A. G. Pakes, 'On the critical Galton-Watson process with immigration', J. Aust. Math. Soc. 12 (1971), 476-482.
Added in proof: The density function in the statement of Theorem 3 (page 480) is incorrect, substitute γ for β.
[7] A. G. Pakes, 'Branching processes with immigration', J. Appl. Prob. 8 (1971), 32-42.
[8] E. Seneta, 'On asymptotic properties of subcritical branching processes', J. Aust. Math. Soc. 8 (1968), 671-682.
[9] E. Seneta, 'Functional equations and the Galton-Watson process', Adv. Appl. Prob. 1 (1969), $1-42$.
[10] E. C. Titchmarsh, The Theory of Functions. (O.U.P., 1939).

Department of Mathematics
Monash University
Melbourne, Australia

