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We deal with a theoric question raised in connection with the application of a three-
critical points theorem, obtained by Ricceri, which has been already applied to obtain
multiplicity results for boundary value problems in several recent papers. In the set-
tings of the mentioned theorem, the typical assumption is that the following minimax
inequality supλ∈I infx∈X(Φ(x) + λΨ(x) + h(λ)) < infx∈X supλ∈I(Φ(x) + λΨ(x) + h(λ)) has
to be satisfied by some continuous and concave function h : I →R. When I = [0,+∞[, we
have already proved, in a precedent paper, that the problem of finding such function h is
equivalent to looking for a linear one. Here, we consider the question for any interval I
and prove that the same conclusion holds. It is worth noticing that our main result im-
plicitly gives the most general conditions under which the minimax inequality occurs for
some linear function. We finally want to stress out that although we employ some ideas
similar to the ones developed for the case where I = [0,+∞[, a key technical lemma needs
different methods to be proved, since the approach used for that particular case does not
work for upper-bounded intervals.

1. Introduction

Here and throughout the sequel, E is a real separable and reflexive Banach space, X is a
weakly closed unbounded subset of E, I ⊆R an interval and Φ, Ψ are two (nonconstant)
sequentially weakly lower semicontinuous functionals on X such that

lim
x∈X ,‖x‖→+∞

(
Φ(x) + λΨ(x)

)= +∞ (1.1)

for all λ∈ I .
In these settings, Ricceri showed that if there exists a continuous concave function

h : I →R such that

sup
λ∈I

inf
x∈X

(
Φ(x) + λΨ(x) +h(λ)

)
< inf

x∈X
sup
λ∈I

(
Φ(x) + λΨ(x) +h(λ)

)
, (1.2)

then there is an open interval J ⊆ I such that, for each λ ∈ J , the functional Φ+ λΨ has
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a local nonabsolute minimum in the relative weak topology of X [11, 12, 13]. Under
further assumptions, this fact leads to a three critical points theorem (see [13, Theorem
1] improving [12, Theorem 3.1]) which has been widely applied to get multiplicity results
for nonlinear boundary value problems [1, 2, 3, 5, 6, 8, 9, 10, 11, 12, 13].

A natural way to get (1.2) is by a linear function. In view of applications of [12, Theo-
rem 3.1], Ricceri gave useful conditions (see [12, Proposition 3.1]) under which (1.2),
with I = [0,+∞[, is satisfied by some linear function (see also [4]). In the same paper,
Remark 5.2, Ricceri asked if (1.2) could be satisfied by a suitable continuous concave
function also when this does not happen for linear ones. A complete and negative answer
was given in [7, Theorem 1] but when the interval I is [0,+∞[.

It is still an open and nontrivial problem if the same conclusion would hold for any
interval I ⊆R. In this paper, an answer to this question is given.

Before our main result is stated, some notations are needed to be fixed. Let α∈R and
ρ ∈]− supXΨ,− infXΨ[, we set

a(ρ,α)= inf
x∈Ψ−1(]−∞,−ρ])

(
Φ(x) +α

(
Ψ(x) + ρ

))
,

b(ρ,α)= inf
x∈Ψ−1(]−ρ,+∞[)

(
Φ(x) +α

(
Ψ(x) + ρ

))
.

(1.3)

Moreover we put a(ρ,−∞) = infx∈Ψ−1(−ρ)Φ(x) and b(ρ,+∞) = +∞. As usual, by defini-
tion, we put inf∅= +∞.

Theorem 1.1. Let α= inf I and β = supI . Under the assumptions given above, the following
assertions are equivalent:

(i) for each ρ ∈R, one has

sup
λ∈[α,β]∩R

inf
x∈X

(
Φ(x) + λ

(
Ψ(x) + ρ

))= inf
x∈X

sup
λ∈[α,β]∩R

(
Φ(x) + λ

(
Ψ(x) + ρ

))
; (1.4)

(ii) for each ρ ∈]− supXΨ,− infXΨ[, one has

sup
x∈Ψ−1(]−∞,−ρ[)

Φ(x)−min
{
a(ρ,α),b(ρ,β)

}
ρ+Ψ(x)

≤ inf
x∈Ψ−1(]−ρ,+∞[)

Φ(x)−min
{
a(ρ,α),b(ρ,β)

}
ρ+Ψ(x)

;

(1.5)

(iii) for every concave function h : I →R which is continuous in I \ {α}, one has

sup
λ∈I

inf
x∈X

(
Φ(x) + λΨ(x) +h(λ)

)= inf
x∈X

sup
λ∈I

(
Φ(x) + λΨ(x) +h(λ)

)
. (1.6)

We want to stress out that the proof of Theorem 1.1 is not a straightforward conse-
quence of the ideas developed in [7]. In fact, the proof of [7, Lemma 3] does not work
when the interval I is upper-bounded. For this reason, different arguments are needed in
order to prove Lemma 2.4 which is a key technical preliminary result.



Giuseppe Cordaro 525

2. Preliminary results

It is easily seen that a(ρ,·) is decreasingly monotone in R∪{−∞} and b(ρ,·) is increas-
ingly monotone in R∪{+∞}.
Theorem 2.1. Let α,β ∈ R∪ {−∞,+∞}, with α < β, and ρ ∈]− supXΨ,− infXΨ[. The
following assertions are equivalent:

(i′) one has

sup
λ∈[α,β]∩R

inf
x∈X

(
Φ(x) + λ

(
Ψ(x) + ρ

))= inf
x∈X

sup
λ∈[α,β]∩R

(
Φ(x) + λ

(
Ψ(x) + ρ

))
; (2.1)

(ii′) one has

sup
x∈Ψ−1(]−∞,−ρ[)

Φ(x)−min
{
a(ρ,α),b(ρ,β)

}
ρ+Ψ(x)

≤ inf
x∈Ψ−1(]−ρ,+∞[)

Φ(x)−min
{
a(ρ,α),b(ρ,β)

}
ρ+Ψ(x)

.

(2.2)

Proof. First of all, we observe that

inf
x∈X

sup
λ∈[α,β]∩R

(
Φ(x) + λ

(
Ψ(x) + ρ

))=min
{
a(ρ,α),b(ρ,β)

}
. (2.3)

(i′)⇒(ii′). Since

lim
|λ|→+∞

inf
x∈X

(
Φ(x) + λ

(
Ψ(x) + ρ)

)=−∞ (2.4)

and the upper semicontinuity of the function

λ∈ [α,β]∩R−→ inf
x∈X

(
Φ(x) + λ

(
Ψ(x) + ρ)

)
, (2.5)

there exists λ∈ [α,β]∩R such that

sup
λ∈[α,β]∩R

inf
x∈X

(
Φ(x) + λ

(
Ψ(x) + ρ

))= inf
x∈X

(
Φ(x) + λ

(
Ψ(x) + ρ

))
. (2.6)

Hence, by hypothesis (i′) and (2.3), it follows that

inf
x∈X

(
Φ(x) + λ

(
Ψ(x) + ρ

))=min
{
a(ρ,α),b(ρ,β)

}
. (2.7)

From (2.7), one has

sup
x∈Ψ−1(]−∞,−ρ[)

Φ(x)−min
{
a(ρ,α),b(ρ,β)

}
ρ+Ψ(x)

≤−λ≤ inf
x∈Ψ−1(]−ρ,+∞[)

Φ(x)−min
{
a(ρ,α),b(ρ,β)

}
ρ+Ψ(x)

.

(2.8)
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(ii′)⇒(i′). Hypothesis (ii′) implies that min{a(ρ,α),b(ρ,β)} ∈ R. Moreover we have
that

sup
x∈Ψ−1(]−∞,−ρ[)

Φ(x)−min
{
a(ρ,α),b(ρ,β)

}
ρ+Ψ(x)

≤−α, (2.9)

inf
x∈Ψ−1(]−ρ,+∞[)

Φ(x)−min
{
a(ρ,α),b(ρ,β)

}
ρ+Ψ(x)

≥−β. (2.10)

In fact, when α = −∞ (2.9) is true as strict inequality because of (ii′). So is (2.10)
when β = +∞. In the other cases, if (2.9) were not true then there would exist x ∈
Ψ−1(]−∞,−ρ[) such that

Φ(x) +α
(
Ψ(x) + ρ

)
< min

{
a(ρ,α),b(ρ,β)

}
, (2.11)

that is absurd. Inequality (2.10) can be proved in analogous way.
By (2.9) and (2.10), which we have seen to be satisfied as strict inequalities when α=

−∞ or β = +∞, we can choose λ∈ [α,β]∩R such that

sup
x∈Ψ−1(]−∞,−ρ[)

Φ(x)−min
{
a(ρ,α),b(ρ,β)

}
ρ+Ψ(x)

≤−λ≤ inf
x∈Ψ−1(]−ρ,+∞[)

Φ(x)−min
{
a(ρ,α),b(ρ,β)

}
ρ+Ψ(x)

.

(2.12)

Hence one has

inf
x∈X

(
Φ(x) + λ

(
Ψ(x) + ρ)

)≥min
{
a(ρ,α),b(ρ,β)

}
, (2.13)

which, by (2.3), implies (i′). �

Corollary 2.2. Let α,β ∈R∪{−∞,+∞}, with α < β. The following assertions are equiv-
alent:

(a) for every ρ ∈R, one has

sup
λ∈[α,β]∩R

inf
x∈X

(
Φ(x) + λ

(
Ψ(x) + ρ

))= inf
x∈X

sup
λ∈[α,β]∩R

(
Φ(x) + λ

(
Ψ(x) + ρ

))
; (2.14)

(b) for every ρ ∈]− supXΨ,− infXΨ[, one has

sup
x∈Ψ−1(]−∞,−ρ[)

Φ(x)−min
{
a(ρ,α),b(ρ,β)

}
ρ+Ψ(x)

≤ inf
x∈Ψ−1(]−ρ,+∞[)

Φ(x)−min
{
a(ρ,α),b(ρ,β)

}
ρ+Ψ(x)

.

(2.15)
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Proof. (a)⇒(b). It directly follows from Theorem 2.1.
(b)⇒(a). It is enough to show that if ρ ∈R\]− supXΨ,− infXΨ[, then

sup
λ∈[α,β]∩R

inf
x∈X

(
Φ(x) + λ

(
Ψ(x) + ρ

))= inf
x∈X

sup
λ∈[α,β]∩R

(
Φ(x) + λ

(
Ψ(x) + ρ

))
. (2.16)

Assume that ρ∈R is such that ρ ≤−supXΨ. In this case, we have that

inf
x∈X

sup
λ∈[α,β]∩R

(
Φ(x) + λ

(
Ψ(x) + ρ

))=



inf
x∈X

(
Φ(x) +α

(
Ψ(x) + ρ

))
, α∈R,

inf
x∈Ψ−1(−ρ)

Φ(x), α=−∞.
(2.17)

Hence, it is clear that (2.16) holds when α∈R. When α=−∞ we proceed by contradic-
tion. So we suppose that there exists γ ∈R such that

sup
λ∈[α,β]∩R

inf
x∈X

(
Φ(x) + λ

(
Ψ(x) + ρ

)
< γ < inf

Ψ1(−ρ)
Φ. (2.18)

Then, there exist two sequences {λn}n∈N ⊆ R−, with limn→∞ λn =−∞, and {xn}n∈N ⊆ X
such that, for every n∈N, one has

inf
x∈X

(
Φ(x) + λn

(
Ψ(x) + ρ

))=Φ
(
xn
)

+ λn
(
Ψ
(
xn
)

+ ρ
))

< γ. (2.19)

Being Ψ(xn)≤−ρ, it results that

Φ
(
xn
)
< γ. (2.20)

Taking into account the coerciveness of Φ, it follows that {xn} is bounded. By hypothesis
E is a reflexive Banach space and X is weakly closed then there exist x∗ ∈ X and a sub-
sequence {xnk} weakly convergent to x∗. By (2.19) and limn→∞ λn = −∞, it follows that
Ψ(x∗) = −ρ. This is absurd if ρ < −supXΨ. If ρ = −supXΨ, we exploit the sequentially
weakly lower semicontinuity and (2.20) to obtain the absurd Φ(x∗)≤ γ < infΨ−1(−ρ)Φ. So
(2.16) holds.

By similar arguments, (2.16) can be proved when ρ ≥− infXΨ. �

Corollary 2.3. Let α,β ∈R∪{−∞,+∞}, with α < β, and ρ∈R. Assume that

sup
λ∈[α,β]∩R

inf
x∈X

(
Φ(x) + λ

(
Ψ(x) + ρ

))= inf
x∈X

sup
λ∈[α,β]∩R

(
Φ(x) + λ

(
Ψ(x) + ρ

))
. (2.21)

Then, for every γ,δ ∈]α,β[ with γ < δ, it results that

sup
λ∈[γ,δ]∩R

inf
x∈X

(
Φ(x) + λ

(
Ψ(x) + ρ

))= inf
x∈X

sup
λ∈[γ,δ]∩R

(
Φ(x) + λ

(
Ψ(x) + ρ

))
. (2.22)
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Proof. Our end is to apply Corollary 2.2. So, supposing −supXΨ < ρ <− infXΨ, we have
to prove that

sup
x∈Ψ−1(]−∞,−ρ[)

Φ(x)−min
{
a(ρ,γ),b(ρ,δ)

}
ρ+Ψ(x)

≤ inf
x∈Ψ−1(]−ρ,+∞[)

Φ(x)−min
{
a(ρ,γ),b(ρ,δ)

}
ρ+Ψ(x)

.

(2.23)

By hypothesis and Corollary 2.2, it follows that

sup
x∈Ψ−1(]−∞,−ρ[)

Φ(x)−min
{
a(ρ,α),b(ρ,β)

}
ρ+Ψ(x)

≤ inf
x∈Ψ−1(]−ρ,+∞[)

Φ(x)−min
{
a(ρ,α),b(ρ,β)

}
ρ+Ψ(x)

.

(2.24)

Then (2.23) follows from min{a(ρ,γ),b(ρ,δ)} ≤min{a(ρ,α),b(ρ,β)}. �

Lemma 2.4. Let α,β ∈R, with α < β, and suppose that

sup
λ∈[α,β]

inf
x∈X

(
Φ(x) + λ

(
Ψ(x) + ρ

))= inf
x∈X

sup
λ∈[α,β]

(
Φ(x) + λ

(
Ψ(x) + ρ

))
, (2.25)

for every ρ ∈R. Consider a subdivision α= α1 < α2 < ···αn = β of the interval [α,β] with
n≥ 3. Define the function h : [α,β]→R,

h(λ)=
n−1∑
i=1

χ[αi,αi+1](λ)
(
ρiλ+ ai

)
for each λ∈ [α,β], (2.26)

where {ρk}1≤k≤n−1 is a nonincreasing finite sequence of real numbers and ai+1 = ai + (ρi −
ρi+1)αi+1, for 1≤ i≤ n− 2, with a1 ∈R arbitrarily chosen.

Then one has

sup
λ∈[α,β]

inf
x∈X

(
Φ(x) + λΨ(x) +h(λ)

)= inf
x∈X

sup
λ∈[α,β]

(
Φ(x) + λΨ(x) +h(λ)

)
. (2.27)

Proof. The proof is similar to that of [7, Lemma 3]. So, here we omit some passages that
can be find in the cited article. The proof is divided into four steps. We prove only the
first step and refer to [7] for the others.

By Corollary 2.3, we have

sup
λ∈[α,β]

inf
x∈X

(
Φ(x) + λΨ(x) +h(λ)

)= max
1≤i≤n−1

inf
x∈X

sup
λ∈[αi,αi+1]

(
Φ(x) + λ

(
Ψ(x) + ρi

)
+ ai

)
.

(2.28)

For convenience, denote

fi(x,λ)=Φ(x) + λ
(
Ψ(x) + ρi

)
+ ai, (2.29)

for 1≤ i≤ n− 1.
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The first step. We prove the thesis when infXΨ <−ρi < supXΨ, for every 1≤ i≤ n− 1.
Put, for 1≤ i≤ n− 2,

δi = inf
x∈Ψ−1(]−ρi,−ρi+1])

fi
(
x,αi+1

)
. (2.30)

In [7], it was proved that

inf
x∈X

sup
λ∈[α,β]

(
Φ(x) + λΨ(x) +h(λ)

)

=min
{

min
1≤i≤n−2

δi, inf
x∈Ψ−1(]−∞,−ρ1])

f1(x,α), inf
x∈Ψ−1(]−ρn−1,+∞[)

fn−1(x,β)
}
.

(2.31)

By induction on n∈N, we first prove the following inequalities:

inf
x∈Ψ−1(]−∞,−ρn−1])

fn−1
(
x,α1

)

≥min
{

inf
x∈Ψ−1(]−∞,−ρ1])

f1
(
x,α1

)
, min

1≤i≤n−2
δi

}
(2.32a)

≥ inf
x∈Ψ−1(]−∞,−ρn−1])

fn−1
(
x,αn−1

)
. (2.32b)

By definition of fi and ai, it is easily seen that

fi+1
(
x,αi+1

)= fi
(
x,αi+1

)
(2.33)

and, for 1≤ k ≤ n− 1− i,

fi(x,αi)≤ fi+k(x,αi). (2.34)

Let n= 3, one has

inf
x∈Ψ−1(]−∞,−ρ2])

f2
(
x,α2

)= inf
x∈Ψ−1(]−∞,−ρ2])

f1
(
x,α2

)

=min
{

inf
x∈Ψ−1(]−∞,−ρ1])

f1
(
x,α2

)
,δ1

}

≤min
{

inf
x∈Ψ−1(]−∞,−ρ1])

f1
(
x,α1

)
,δ1

}
.

(2.35)

The last inequality follows from a(ρ1,α2)≤ a(ρ1,α1). Moreover,

min
{

inf
x∈Ψ−1(]−∞,−ρ1])

f1
(
x,α1

)
,δ1

}

≤min
{

inf
x∈Ψ−1(]−∞,−ρ1])

f2
(
x,α1

)
, inf
x∈Ψ−1(]−ρ1,−ρ2])

f2
(
x,α1

)}

= inf
x∈Ψ−1(]−∞,−ρ2])

f2
(
x,α1

)
.

(2.36)
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Now suppose that (2.32a) and (2.32b) hold for n= k− 1. Let n= k.
We have

inf
x∈Ψ−1(]−∞,−ρk−1])

fk−1
(
x,αk−1

)= inf
x∈Ψ−1(]−∞,−ρk−1])

fk−2
(
x,αk−1

)

=min
{
δk−2, inf

x∈Ψ−1(]−∞,−ρk−2])
fk−2

(
x,αk−1

)}

≤ being a
(
ρk−2,αk−1

)≤ a
(
ρk−2,αk−2

)
,

min
{
δk−2, inf

x∈Ψ−1(]−∞,−ρk−2])
fk−2

(
x,αk−2

)}

≤min
{

inf
x∈Ψ−1(]−∞,−ρ1])

f1
(
x,α1

)
, min

1≤i≤k−2
δi

}
(by hypothesis).

(2.37)

Moreover,

inf
x∈Ψ−1(]−∞,−ρk−1])

fk−1
(
x,α1

)

≥ (by (2.34)
)

≥min
{

inf
x∈Ψ−1(]−∞,−ρk−2])

fk−2
(
x,α1

)
, inf
x∈Ψ−1(]−ρk−2,−ρk−1])

fk−1
(
x,α1

)}
.

(2.38)

Inequality (2.32a) follows from (2.38), the inductive hypothesis and the fact that

inf
x∈Ψ−1(]−ρk−2,−ρk−1])

fk−1
(
x,α1

)≥ δk−2. (2.39)

We still proceed by induction to prove (2.27).
Let n= 3. Then, owing to (2.28), one has

sup
λ∈[α,β]

inf
x∈X

(
Φ(x) + λΨ(x) +h(λ)

)

=max
{

min
{

inf
x∈Ψ−1(]−∞,−ρ1])

f1
(
x,α1

)
, inf
x∈Ψ−1(]−ρ1,+∞[)

f1
(
x,α2

)}
,

min
{

inf
x∈Ψ−1(]−∞,−ρ2])

f2
(
x,α2

)
, inf
x∈Ψ−1(]−ρ2,+∞[)

f2
(
x,α3

)}}

=max
{

min
{

inf
x∈Ψ−1(]−∞,−ρ1])

f1
(
x,α1

)
,δ1, inf

x∈Ψ−1(]−ρ2,+∞[)
f2
(
x,α2

)}
,

min
{

inf
x∈Ψ−1(]−∞,−ρ2])

f2
(
x,α2

)
, inf
x∈Ψ−1(]−ρ2,+∞[)

f2
(
x,α3

)}}
.

(2.40)

By virtue of (2.32b) and having

inf
x∈Ψ−1(]−ρ2,+∞[)

f2
(
x,α2

)≤ inf
x∈Ψ−1(]−ρ2,+∞[)

f2
(
x,α3

)
, (2.41)
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it is enough to show that

max
{

inf
x∈Ψ−1(]−∞,−ρ2])

f2
(
x,α2

)
, inf
x∈Ψ−1(]−ρ2,+∞[)

f1
(
x,α2

)}

≥min
{

inf
x∈Ψ−1(]−∞,−ρ1])

f1
(
x,α1

)
, inf
x∈Ψ−1(]−ρ2,+∞[)

f2
(
x,α3

)
,δ1

}
.

(2.42)

We argue by contradiction. So suppose that (2.42) does not hold. Then one has

inf
x∈Ψ−1(]−∞,−ρ2])

f2
(
x,α2

)
< min

{
δ1, inf

x∈Ψ−1(]−ρ2,+∞[)
f2
(
x,α3

)}
, (2.43)

inf
x∈Ψ−1(]−ρ2,+∞[)

f1
(
x,α2

)
< min

{
δ1, inf

x∈Ψ−1(]−∞,−ρ1])
f1
(
x,α1

)}
. (2.44)

If

inf
x∈Ψ−1(]−ρ2,+∞[)

f1
(
x,α2

)
< inf

x∈Ψ−1(]−∞,−ρ2])
f2
(
x,α2

)
, (2.45)

then from (2.43) and (2.33) it results that b(ρ2,α2) < a(ρ2,α2) < b(ρ2,α3).
From b(ρ2,α2) < a(ρ2,α2) it follows that

inf
x∈Ψ−1(]−ρ2,+∞[)

Φ(x)− a
(
ρ2,α2

)
ρ2 +Ψ(x)

<−α2. (2.46)

Consequently, from a(ρ2,α2) < b(ρ2,α3) and condition (ii′) of Theorem 2.1 it follows that

sup
x∈Ψ−1(]−∞,−ρ2[)

Φ(x)− a
(
ρ2,α2

)
ρ2 +Ψ(x)

<−α2. (2.47)

This is absurd. In fact it implies that a(ρ2,α2) = infΨ−1(−ρ2)Φ which contradicts (2.43)
because δ1 ≤ infΨ−1(−ρ2)Φ+ a2.

If

inf
x∈Ψ−1(]−∞,−ρ2])

f2
(
x,α2

)≤ inf
x∈Ψ−1(]−ρ2,+∞[)

f1
(
x,α2

)
, (2.48)

then, by (2.44), (2.32a), and (2.33), it follows that a(ρ2,α2) ≤ b(ρ2,α2) < a(ρ2,α1). Fur-
thermore, since (2.42) does not hold, it also results that b(ρ2,α2) < b(ρ2,α3). Conse-
quently b(ρ2,α2) < min{a(ρ2,α1),b(ρ2,α3)}. This implies that

inf
x∈Ψ−1(]−ρ2,+∞[)

Φ(x)−min
{
a
(
ρ2,α1

)
,b
(
ρ2,α3

)}
ρ2 +Ψ(x)

<−α2. (2.49)

Hence, by (ii′) of Theorem 2.1, it results that

a
(
ρ2,α2

)≥min
{
a
(
ρ2,α1

)
,b
(
ρ2,α3

)}
. (2.50)

Then, being a(ρ2,α2) < a(ρ2,α1), it follows that b(ρ2,α3) < a(ρ2,α1).
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Now, fix ε > 0 such that

a
(
ρ2,α2

)
< b
(
ρ2,α2

)
+ ε < b

(
ρ2,α3

)
. (2.51)

Then, one has

sup
x∈Ψ−1(]−∞,−ρ2[)

Φ(x)− (b(ρ2,α2
)

+ ε
)

ρ2 +Ψ(x)
>−α2. (2.52)

We exploit condition (ii′) of Theorem 2.1 to obtain

inf
x∈Ψ−1(]−ρ2,+∞[)

Φ(x)− b
(
ρ2,α3

)
ρ2 +Ψ(x)

>−α2. (2.53)

From the previous inequality it follows the absurd b(ρ2,α2) ≥ b(ρ2,α3) > b(ρ2,α2) + ε.
This completes the proof for n= 3.

Suppose that (2.27) hold for n= k− 1, then one has

sup
λ∈[α,β]

inf
x∈X

(
Φ(x) + λΨ(x) +h(λ)

)

=max
{

min
{

inf
x∈Ψ−1(]−∞,−ρ1])

f1
(
x,α1

)
, min

1≤i≤k−2
δi, inf

x∈Ψ−1(]−ρk−1,+∞[)
fk−2

(
x,αk−1

)}
,

min
{

inf
x∈Ψ−1(]−∞,−ρk−1])

fk−1
(
x,αk−1

)
, inf
x∈Ψ−1(]−ρk−1,+∞[)

fk−1
(
x,αk

)}}
.

(2.54)

So the conclusion follows since it results that

max
{

inf
x∈Ψ−1(]−∞,−ρk−1])

fk−1
(
x,αk−1

)
, inf
x∈Ψ−1(]−ρk−1,+∞[)

fk−2
(
x,αk−1

)}

≥min
{

inf
x∈Ψ−1(]−∞,−ρ1])

f1
(
x,α1

)
, min

1≤i≤k−2
δi, inf

x∈Ψ−1(]−ρk−1,+∞[)
fk−1

(
x,αk

)}
.

(2.55)

Except for obvious changes, (2.55) can be proved by same arguments used for (2.42). �

Lemma 2.5. Let α,β ∈ R, with α < β, and g : [α,β]→ R be a concave function such that
max{|g′d(α)|,|g′s (β)|} �= +∞. There exists a nonincreasing sequence of functions {gn}n∈N
pointwise convergent to g on [α,β] such that, for every n ∈N, gn is formally defined as the
function h in Theorem 2.1.

For the proof, refer to the proof of [7, Lemma 4].

3. Proof of Theorem 1.1

Proof. (i)⇔(ii). It follows from Corollary 2.3.
(i)⇒(iii). Except for obvious changes, the proof is analogous to that of its counterpart

in [7, Theorem 1].
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(iii)⇒(i). It immediately follows from the fact that

sup
λ∈I

inf
x∈X

(
Φ(x) + λΨ(x) +h(λ)

)= sup
λ∈[α,β]∩R

(
Φ(x) + λΨ(x) +h(λ)

)
,

inf
x∈X

sup
λ∈I

(
Φ(x) + λΨ(x) +h(λ)

)= inf
x∈X

sup
λ∈[α,β]∩R

(
Φ(x) + λΨ(x) +h(λ)

)
,

(3.1)

when h is linear. �
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