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Further Transient Analysis of the BMAP/G/1 Queue

David Lucantoni†

IsoQuantic Technologies

ABSTRACT

Previously, we derived the two-dimensional transforms of the emptiness function, the

transient workload and queue-length distributions in the single-server queue with general

service times and a batch Markovian arrival process (BMAP). This arrival process includes the

familiar phase-type renewal process and the Markov modulated Poisson process as special

cases, as well as superpositions of these processes, and allows correlated interarrival times and

batch sizes. 

We continue the transient analysis of this model in this paper by deriving explicit

expressions for the transforms of the queue length at the -th departure (assuming a

departure at time ), and the delay of the -th arrival (keeping track of the appropriate

phase changes). Also, the departure process is characterized by the double transform of the

probability that the -th departure occurs at time less than or equal to time .

1.  Introduction

In this paper we consider the single-server queue with unlimited waiting space, a work-

conserving service discipline and i.i.d. (independent and identically distributed) service times that are

independent of a general arrival process. In order to obtain tractable results, we assume that the arrival

process is a batch Markovian arrival process (BMAP), as in Lucantoni [1] and [2]. The BMAP is a

convenient representation of the versatile Markovian point process (Neuts [3]). The BMAP generalizes

the Markovian arrival process (MAP), which was introduced by Lucantoni, Meier-Hellstern and Neuts

[4] and the Markov-modulated Poisson process (see, e.g., Heffes and Lucantoni [5]). Indeed, stationary

MAP’s are dense in the family of all stationary point processes; see Asmussen and Koole [6].

An important property of MAP’s and BMAP’s is that superpositions of independent processes of

these types are again processes of the same type; this property is exploited in Choudhury, Lucantoni

and Whitt [7] to study the effect of statistically multiplexing a large number of bursty sources. 

In a previous paper [8] we derived the two-dimensional transforms of the emptiness function,

the transient workload and queue-length distributions in the single-server queue with general service

times and a batch Markovian arrival process. In this paper we continue the transient analysis of this

model by deriving explicit expressions for the transforms of the queue length at the n-th departure,

assuming a departure at time , and the workload at the n-th arrival (keeping track of the

appropriate phase changes). We also provide a partial characterization of the departure process by the

double transform of the probability that the -th departure occurs at time less than or equal to .

(This is similar to that derived by Saito [9]).
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These transient results along with those in [8] can be regarded as matrix generalizations of

transient results for the M/G/1 queue, which can be found in Takács [10], Abate and Whitt [11] and

references cited there. A distinctive feature of this paper and [8] in relation to previous papers on

transient behavior for these M/G/1-type queues, is that we demonstrated that our formulas are

computable. In particular, we calculated the time-dependent probability distributions by numerically

inverting the two-dimensional transforms. For this purpose, we applied the two-dimensional transform

inversion algorithms in Choudhury, Lucantoni and Whitt [12]. These algorithms are based on the

Fourier-series method [13], and are enhancements and generalizations of the Euler and Lattice-

Poisson algorithms described there. We note that the same multidimensional transform inversion

algorithms can be used to obtain numerical results from the expressions in this paper. 

The remainder of this paper is organized as follows. In Section 2 we review the definition and

basic properties of the Batch Markovian Arrival Process and the single server queue with this arrival

process. In Section 3, we review the transform of the duration of a busy period and the number of

customers served during a busy period which plays a fundamental role in the transient solution of this

model. Sections 4, 5 and 6 contain the main results on the transient distributions discussed in this

paper. Some numerical examples are presented in Section 7. All of the proofs are given in Section 8.   

2. The BMAP/G/1 Queue 

The Batch Markovian Arrival Process

The BMAP is a natural generalization of the Poisson process (see Lucantoni [1], [2]). It is

constructed by considering a two-dimensional Markov process  on the state space

 with an infinitesimal generator Q having the structure

(1)

where , are  matrices;  has negative diagonal elements and nonnegative off-

diagonal elements; are nonnegative and D, defined by

, (2)

is an irreducible infinitesimal generator. We also assume that , which assures that arrivals will

occur. 

N t( ) J t( ),{ }
i j,( ) i 0 1 j m≤ ≤,≥;{ }

Q

D0 D1 D2 D3 …
0 D0 D1 D2 …

0 0 D0 D1 …

0 0 0 D0 …
0 0 0 0 …

=

Dk k 0≥, m m× D0

Dk k 1,≥,

D Dk

k 0=

∞

∑=

D D0≠
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The variable  counts the number of arrivals in the interval , and the variable

represents an auxiliary state or phase. Transitions from a state (i,j) to a state (i+k,n), ,

, correspond to batch arrivals of size k, and thus the batch size can depend on j and n.

The matrix  is a stable matrix (see e.g., pg. 251 of Bellman [14]), which implies that it is

nonsingular and the sojourn time in the set of states  is finite with probability

one, for all i; see Lemma 2.2.1 of Neuts [15]. This implies that the arrival process does not terminate. 

Let π be the stationary probability vector of the Markov process with generator D, i.e., π satisfies

, (3)

where e is a column vector of 1's. Then the component  is the stationary probability that the arrival

process is in state j. The arrival rate of the process is then

, (4)

where . 

Intuitively, we think of  as governing transitions in the phase process which do not generate

arrivals and  as the rate of arrivals of size k (with the appropriate phase change). For other

examples and further properties of the BMAP see [1] and [2]. 

A key quantity used in the analysis of the BMAP/G/1 queue is the matrix generating function 

. 

Let  be the element of a matrix

. That is, represents the probability of n arrivals in  including the phase

transition. Then the matrix generating function  defined by

,

is given explicitly by

, (5)

N t( ) 0( t, ]
J t( ) k 1≥
1 j n, m≤ ≤

D0

i j,( ) 1 j m≤ ≤;{ }

πD 0= πe, 1=

πj

λ π kDke

k 1=

∞

∑ πη= =

η kDke∑=

D0

Dk

D z( ) Dk

k 0=

∞

∑= z
k

z 1≤,

Pij n t,( ) P N t( ) n J t( ),= j N 0( ) 0 J 0( ), i= = =( )= i j,( )

P n t,( ) P n t,( ) 0( t],

P
*

z t,( )

P
*

z t,( ) P n t,( )zn

n 0=

∞

∑= z 1≤,

P
*

z t,( ) e
D z( )t

= z 1≤ t 0≥, ,
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where  is an exponential matrix (see e.g., pg. 169 of Bellman, [14]). Note that for Poisson

arrivals, we have m=1, , , and , , so that (5) reduces to

which is the familiar generating function of the Poisson counting process.   

The Queueing Model 

Consider a single-server queue with a BMAP arrival process specified by the sequence

. Let the service times be i.i.d. and independent of the arrival process; let the service time

have an arbitrary distribution function H with Laplace-Stieltjes transform (LST) h and -th moment

. We assume that the mean  is finite.   Let the traffic intensity, .   

The Embedded Markov Renewal Process at Departures 

The embedded Markov renewal process at departure epochs is defined as follows. Let and

 be the number of customers in the system (including customers in service, if any) and the phase

of the arrival process at time , respectively. Let  be the epoch of the -th departure from the

queue, with .   (We understand that the sample paths of these processes are right continuous

and that there is a departure at ). Define  and  to be the number in the

system and the phase of the arrival process immediately following the n-th departure. Then the triple

, for , is a semi-Markov process on the state space

. The semi-Markov process is positive recurrent when ; however, the

transient results derived here are valid for any value of . The transition probability matrix of the

semi-Markov process is given by 

(6)

where, for ,  and  are the  matrices of mass functions with elements

defined by

An embedded Markov renewal process with a transition probability matrix having the structure

in (6) is called “M/G/1-type” (Neuts [3]) since it has matrix generalizations of the skip-free-to-the-left

and spatial homogeneity properties of the ordinary M/G/1 queue. 

e
D z( )t

D0 λ–= D1 λ= Dk 0= k 2≥

P
*

z t,( ) e
λ 1 z–( )t–

=

Dk k 0≥,{ }

n

αn α α 1≡ ρ λα≡

X t( )
J t( )

t τk k

τ0 0=

τ0 0= ξk X τk

+
( )≡ Jk J τk

+
( )≡

ξk Jk τk 1+ τk–, ,( ) k 0≥

i j,( ) i 0 1 j m≤ ≤,≥;{ } ρ 1<
ρ

Q x( )

B̂0 x( ) B̂1 x( ) B̂2 x( ) …

Â0 x( ) Â1 x( ) Â2 x( ) …

0 Â0 x( ) Â1 x( ) …

0 0 Â0 x( ) …
0 0 0 …

= x 0  ,≥,

n 0≥ Ân x( ) B̂n x( ) m m×
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We introduce the transform matrices

where  and . It was shown in Lucantoni [1] that

(7)

and

(8)

The definition in (7) above is consistent with the usual definition of a scalar function evaluated

at a matrix argument (see Theorem 2, pg. 113 of Gantmacher, [16]). In particular, since h is analytic

in the right half-plane, the above function is defined by using the matrix argument in the power series

expansion of h. This is well defined as long as the spectrum of the matrix argument also lies in the

right half plane. Note that from (7) we see that  is a power series in . Thus, 

and  commute. This property is often exploited in the proofs. 

3. The Busy Period 

= P(Given a departure at time 0, which left at least one customer in the system and 

the arrival process in phase , the next departure occurs no later than time 

with the arrival process in phase , and during that service there were  

arrivals),

= P(Given a departure at time 0, which left the system empty and the arrival 

process in phase , the next departure occurs no later than time with the 

arrival process in phase , leaving customers in the system).

, , ,

, , ,

Ân x( )
ij

i

x j n

B̂n x( )
ij i x

j n

Ãn s( ) e
sx–

Ân x( )d

0

∞

∫= A z s,( ) Ãn s( )z
n

n 0=

∞

∑= A z( ) A z 0,( )=

B̃n s( ) e
sx–

B̂n x( )d

0

∞

∫= B z s,( ) B̃n s( )z
n

n 0=

∞

∑= B z( ) B z 0,( )=

Re s( ) 0≥ z 1≤

A z s,( ) e
sx–

e
D z( )x

H x( )d

0

∞

∫ h sI D z( )–( )= =

B z s,( ) z
1– sI D0–[ ]

1–

D z( ) D0–[ ] A z s,( )=

A z s,( ) D z( ) A z s,( )
D z( )
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Following the general treatment of Markov chains of M/G/1-type in [3], we define ,

, as the probability that the first passage from the state  to the state ( ),

, occurs in exactly transitions and no later than time , and that ( ) is

the first state visited in the set .  is the matrix with elements

.

By a first passage argument, it was shown in Neuts [17] that the joint transform matrix ,

defined by 

,

satisfies the nonlinear matrix equation

. (9)

In the context of the BMAP/G/1 queue, governs the number served during, and the duration

of, the busy period. It can be shown that the joint transform matrix governing the number served

during and the duration of a busy period starting with r customers, is given by . Equation

(9) is the key equation in the matrix analytic solution to queues of the M/G/1 paradigm. 

It was shown in Lucantoni [1] that is also the solution to 

, (10)

where . Equation  (10) is the matrix analogue of Takács’

equation for the busy period in the ordinary M/G/1 queue [10]. 

We also define the transform of the number of customers served during a busy period,

.

4. The Queue Length at the n-th Departure

In this section, we derive the transform of the number of customers in the system at the -th

departure. We first derive it for the general class of M/G/1-type models, i.e., models which have an

embedded Markov-renewal process with a transition matrix having the structure displayed in  (6),

G̃ j j '
r[ ]

k x;( )
k 1≥ x 0≥, i r j,+( ) i j',
i 1 1 j j' m r 1≥,≤,≤,≥ k x i j',

i j,( )1 j m≤ ≤{ } G̃
r[ ]

k x;( )

G̃ j j '

r[ ]
k x;( )

G z s,( )

G z s,( ) e
sx–

G̃
1[ ]

k x;( )z
k

d

0

∞

∫
k 1=

∞

∑= for, z 1 Re s( ) 0≥,≤

G z s,( ) z An s( )G z s,( )n

n 0=

∞

∑=

G z s,( )

G z s,( )r

G z s,( )

G z s,( ) z e
sx–

e
D G z s,( )[ ] x

H x( ) zh sI D G z s,( )[ ]–( )≡d

0

∞

∫=

D G z s,( )[ ] DkG z s,( )k

k 0=

∞∑≡

G z( ) G z 0,( )≡

n
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and then we present a simpler expression by particularizing the result for the BMAP/G/1 queue. 

The -step transition probability matrices  are defined to have  elements

If we define the transform matrix

,

then we have the following

Theorem 1: For general models of M/G/1-type, the matrices  are given by

where .

For the BMAP/G/1 queue, it has been shown (see, e.g., Lucantoni [1]) that

(11)

and 

(12)

so we immediately have the following

Theorem 2: For the BMAP/G/1 queue the matrices  are given by 

(13)

Corollary 2.1: For the M/G/1 queue, Equation  (13) simplifies to

(14)

n Pij

n( )
k l,( )

Pij

n( )
[ ] kl P ξn j= Jn, l= ξ0 i= J0, k=( )=

Pi z w,( ) Pij

n

j 0=

∞

∑ z
j
w

n

n 0=

∞

∑≡ z 1 w 1<,<,

Pi z w,( )

Pi z w,( ) z
i 1+

I wG w( )i
I K w( )–[ ] 1–

zB z( ) A z( )–[ ]+[ ] zI wA z( )–[ ]
1–

=

K w( ) w BnG w( )n

n 0=

∞∑≡

zB z( ) A z( )– D0

1–
– D z( )A z( )=

K w( ) I D0

1–
– D G w( )[ ]=

Pi z w,( )

Pi z w,( ) z
i 1+

I w– G w( )i
D G w( )[ ] 1–

D z( )A z( )[ ] zI wA z( )–[ ] 1–
=

Pi z w,( ) 1

z wA z( )–
-----------------------= z

i 1+ wG w( )i
1 z–( )A z( )

1 G w( )–
-----------------------------------------------–
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which is Equation (59) on page 70 of Takács [10].

5. The Delay of n-th Arrival in the MAP/G/1 Queue

In this section we give the transform for the delay of the -th arrival of the MAP/G/1 queue.

That is, for this section, we only allow single arrivals so that  for . (A similar result can

be obtained for the general batch-arrival case but that will be left for future work). Let the

matrix  have ( )-entry  which is the probability that the delay of the -th

arrival is less than or equal to , and that the phase immediately following that arrival is , given that

the phase at time is . We assume that the work in the system at the arrival of the first

customer is . (Note that this is completely general; if an arbitrary time is picked as the origin,

then  would represent the total work in the system at the time of the first arrival after the origin.

Let the LST of  be .

Define . Then is a stochastic matrix which keeps track of the phase at

successive arrivals. We see that the probability that the next arrival after time 0 occurs at a time 

and that the phase immediately following that arrival is  given that the phase was at time , is

given by the -entry of the matrix

.

We then have

Theorem 3: The joint transform , is given explicitly by

(15)

Corollary 3.1: For the M/G/1 queue, Equation (15) reduces to

, (16)

n

Dk 0= k 2≥

Wn x( ) i j, Wn x( )[ ] ij n

x j

t 0= i

W1 u( )

W1

Wn x( ) wn s( )

U D0–( ) 1–
D1≡ U

 x≤
j i t 0=

i j,( )

e
D0u

D1 ud

0

x

∫ I e
D0x

–( )U=

w̃ z s,( ) wn s( )z
n

n 1=

∞

∑≡

w̃ z s,( ) z w1 s( ) s W1 u( )e
D G z( )[ ] u

G z( )D G z( )[ ]
1–
D1 sI D0+( ) 1–

Ud

0

∞

∫–=

 sI D0 zh s( )D1+ +[ ]× 1–
sI D+ 0( )

w̃ z s,( ) z
1 G z( )–( ) λ s–( )w1 s( ) sλG z( )w1 λ 1 G z( )–( )( )–

1 G z( )–( )λ s– λzh s( )–
--------------------------------------------------------------------------------------------------------------------------=
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which agrees with Equation (23) on page 57 of Takács [10]. 

6. The Departure Process 

In this section we derive the transform of the distribution of the time till the -th departure in

the BMAP/G/1 queue. Let the matrix  have -entry

.

Then 

where is a diagonal matrix with the elements of  along the diagonal, and

 is the initial condition at the departure at time zero.

We next define the transforms

(since ), for , and 

.

We then have the following expression for the joint transform of the time of the -th departure

and the number in the system at that time.   

Theorem 4: The matrix is given explicitly by 

(17)

n

Ũn k x,( ) i j,( )

Ũn k x,( )[ ] ij P ξn k= τn x J,≤
n

, j= J0 i=( )=

Ũ0 k x,( )
∆ rk( ) x, 0  ,=

0 x 0  ,>,



=

∆ rk( ) rk

rkj P ξ0 k J0,= j=( )=

Ûn z x,( ) z
k
Ũn k x,( )

k 0=

∞

∑= for   n 0   ,≥,

Un z s,( ) e
sx–

dxÛn z x,( )
0

∞

∫ se
sx–

Ûn z x,( ) xd

0

∞

∫= = for   n 0   ,≥,

Ûn z 0,( ) 0= n 1≥

U z s w, ,( ) Un z s,( )wn

n 0=

∞

∑=

n

U z s w, ,( )

U z s w, ,( ) zU 0 z s,( ) wU 0 G w s,( ) s,( ) sI D G w s,( )[ ]–( )
1–

sI D z( )–( )A z s,( )–=

 zI wA z s,( )–[ ]× 1–
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where (with a slight abuse of notation)  is defined by

.

Note that for the M/G/1 queue, (17) reduces to

(18)

which is Equation (69) in Takács [10]

Corollary 4.1:  The joint transform of the probability that the -th departure occurs at a time less

than or equal to , is

(19)

Corollary 4.2:The Laplace transform of the expected number of departures up till time is

.

7. Examples

In this section we present several numerical examples demonstrating the computability of our

results. The results are obtained by numerically inverting the multi-dimensional transforms directly

using the algorithms presented in [12]. The details of those algorithms will not be described here. We

consider  bursty sources as shown in Figure 1 where each source is an interrupted Poisson process

(see, e.g., Kuczura [18]). That is, the process alternates between on and off periods where the

durations of the on and off periods are exponentially distributed and there are Poisson arrivals during

the on periods.

For the examples considered here, we fix . Each source has a mean arrival rate of 1/8 per

unit time. The peak-to-mean ratio is 10:1 and the mean burst length is 0.1 time units; that is, the

arrival rate in the on period is ten times the mean arrival rate and the mean on time is 0.1 time units.

Thus the average arrival rate into the queue is one arrival per unit time. We approximate a

deterministic service time by a high order Erlang distribution . We adjust the mean service

time to achieve the desired traffic intensity.

The first example has a traffic intensity of  and the density function of the queue length

U0 G w s,( ) s,( )

U0 G w s,( ) s,( ) Û0 j s,( )G w s,( ) j

j 0=

∞

∑≡

U z s w, ,( ) 1

z wA z s,( )–
----------------------------- zU 0 z s,( )

wA z s,( )U0 G w s,( ) s,( ) s λ 1 z–( )+( )
s λ 1 G w s,( )–( )+

-------------------------------------------------------------------------------------------–=

n

x

U 1 s w, ,( ) U0 1 s,( ) wU 0 G w s,( ) s,( ) sI D G w s,( )[ ]– 
 

1–

sI D–( )A 1 s,( )–=

 zI wA 1 s,( )–[ ]×
1–

x

U 1 s 1, ,( )e

N

N 8=

E1024( )

ρ 0.8=
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at departures is shown in Figure 2. The solid line is the stationary density of the number in the system

immediately following departures. The other curves display the density of the number in the system

following the 1-st, 5-th and 10-th departure, respectively, assuming that the number of customers in

the system at time  was 10. We see that these distributions are converging to the stationary

distribution but if we are interested in predicting performance on time scales on the order of tens of

service times then the stationary distribution would be a poor predictor.

Figure  1: N Bursty Sources

Figure  2: Queue Length at Departures for 

1
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The next example is for a traffic intensity of . Note that this system is not stable and

stationary distributions do not exist. The transient results are well defined, however, and this would

be a useful model to determine how bad things can get during temporary overloads. The results are

shown in Figure 3. Once again, we show the probability density function of the number of customers

left behind by the 1-st, 5-th and 10-th departure, respectively, assuming that the number of

customers in the system at time  was 10. While these curves eventually converge to a straight

line at probability equal to one, for small time scales the queue might be fairly well behaved. Such

results will be useful in designing overload control algorithms.

8. Proofs of the Theorems 

Proof of Theorem 1: Clearly,

By conditioning on the number left behind by the -st departure, we have, for , 

Figure  3: Queue Length at Departures for 

ρ 1.5=
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, (20)

where  and . Define the transform matrices

.

Then from (20) we have 

(21)

and

. (22)

Now, , and by conditioning on the end of the busy period starting with i customers,

we have

(23)

and therefore,

. (24)

The matrix generating function K(z) can be written as , where  is the

probability that there are j transitions (i.e., departures) between successive returns to an empty system

(keeping track of the appropriate phase changes). We can then write

and

Pij

n( )
Pi0

n 1–( )
B j Pik

n 1–( )
A j 1 k–+

k 1=

j 1+

∑+=

B j B j 0( )≡ A j A j 0( )≡

P̂ij w( ) Pij

n( )
w

n
Pi

n( )
z( ), Pij

n( )
z

j

j 0=
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∑≡
n 0=

∞

∑≡

Pi

n( )
z( ) z

1–
Pi

n 1–( )
z( )= P̂i0

n 1–( )
B z( ) z

1–
A z( )–( )+

Pi z w,( ) Pi

0( )
z( )–

w

z
----Pi z w,( )A z( ) wP̂ i0 w( ) B z( ) z

1–
A z( )–( )+=

Pi

0( )
z( ) z

i
I=

Pi0

n( )
G̃

i( )
k( )P00

n k–( )

k 1=

n

∑=

P̂i0 w( ) G w( )i
P̂00 w( )=

K z( ) K̃ j( )z
j

j 0=

∞∑= K̃ j( )

P00

n( )
K̃ j( )z

j
P00

n j–( )

j 1=

n

∑=
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. (25)

Substituting (24) and (25) into (22) and simplifying yields Theorem 1. 

Proof of Theorem 3: To simplify our analysis we define

so that the -entry of  is the probability that the work in the system and the phase

immediately following the -th arrival are less than or equal to and , respectively, given an arrival

phase of at . Let  and  be the Laplace-Stieltjes transforms of  and

, respectively. Then, .

Clearly, the -st arrival will see an empty system if and only if there are no arrivals during

the time it takes to work off the total amount of work present immediately following the -th arrival.

Therefore, 

Let the matrix  have -entry  which is the probability that the delay of -th

arrival is greater than x, and the arrival phase immediately following that arrival is j, given that the

phase at time t=0 is i. Then we have

that is, disregarding the time till the -th arrival,  keeps track of the phase change during the

arrivals. Therefore, we can write

(26)

But then

P̂00 w( ) I K w( )P̂00 w( )+ I K w( )–( ) 1–
= =

Rn x( ) Wn u( )H x u–( ),d

0

x

∫=

i j,( ) Rn x( )

n x j

i t 0= rn s( ) wn s( ) Rn x( )

Wn x( ) rn s( ) wn s( )h s( )=

n 1+( )
n

Wn 1+ 0( ) Rn u( )e
D0u

.d

0

∞

∫=

Wn

c
x( ) i j,( ) Wn

c
x( )[ ] ij n

Wn x( ) Wn

c
x( )+ U

n
 ;=

n W W
c

+

n

wn 1+ s( ) U
n 1+

se
sx–

Wn 1+

c
x( ) x.d

0

∞

∫–=
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(27)

Substituting (27) into (26), simplifying, and using the fact that , leads to

(28)

Note that for the M/G/1 queue, Equation (28) reduces to Equation (25) on page 57 of Takács [10]. 

From (28), we obtain the generating function  explicitly as 

(29)

Now, in order to obtain an expression for  where  is the probability that

the -th arrival finds the system empty, we note that for this to occur, the -st arrival must

leave the system empty at its departure. Therefore, given , let  be

the total work in the system immediately following the first arrival. (Note that we may arbitrarily

select a customer as the first arrival and that there may in fact be previous work in the system at the

arrival of this first customer.) Then for , we have

(30)

Equation (30) is obtained by noting that there were  arrivals during time  at which point the

first customer departs. Now, with customers in the system, , the -nd departure

leaves the system empty (with probability ). At this point, the -th arrival will be the next

arrival and the system will still be empty. The matrix U keeps track of the arrival phase during the

time between the -st departure and the -th arrival. 

Wn 1+

c
x( ) Rn u( ) I e

D0 u x–( )
–( )U .d

x

∞

∫=

Rn u( )d

0

∞

∫ U
n

=
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n
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 
 
 

sI D0 zh s( )D1+ +( ) 1–
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n
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∞

∑ Wn 0( )

n n 1–( )
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0

t

∫=

n 2≥
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U .
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j u

j 0 j n 2–≤ ≤ n 2–( )

P j0
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n
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Multiplying (30) by , summing over and simplifying leads to

(31)

For the M/G/1 queue, this reduces to Equation (27) on page 57 of Takács [10]. We use a purely

probabilistic argument which avoids the discussion of the roots of a transcendental equation. Finally,

substituting (31) into (29) leads to (15). 

Proof of Theorem 4: By conditioning on the previous departure we have 

(32)

where the first term corresponds to the case where the -th departure left the system empty and the

second term corresponds to the case where the -th departure left  customers in the system. Using

the fact that

,

we have 

(33)

Since  for  and , we have

z
n

n

Wn 0( )z
n

n 2=

∞

∑ z W1 u( )e
D G z( )[ ] u
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∞
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0
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∫
0

x
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0
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0

x

∫
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k 1+

∑

n

n l
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(34)

Note that for M/G/1, Equation (34) reduces to the equation between Equations (73) and (74) on

page 73 of Takács [10]. 

We then easily obtain

(35)

where we still need to determine . To that end, we condition on the last departure before

the n-th which left the system empty (if any) and write

(36)

Taking the Laplace-Stieltjes transform in (36), multiplying by , summing over , and simplifying

leads to

(37)

where . Substituting (37) into (35) yields the result in

(17).
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