
Further Twenty Six Open Problems in Membrane
Computing

Gheorghe Păun

Institute of Mathematics of the Romanian Academy
PO Box 1-764, 014700 Bucureşti, Romania
and
Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence
University of Sevilla
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
E-mail: george.paun@imar.ro, gpaun@us.es

Summary. This is a sort of personal list of problems and research topics, compiled with
the occasion of the Third Brainstorming Week on Membrane Computing, Sevilla, 2005.

1 Introduction

These notes follow the tradition of [16] and [18] – also combining their titles. . . –
having as the simple aim to challenge the reader – if not to address these problems,
at least to produce his/her own list of problems and circulate it. Being a (more
or less) personal list, the statements are somewhat elliptical and the references
pretty scarce – and, of course, the selection is subjective. For technical and/or
bibliographical details, one may consult the monograph [17], the recent volume
[6], and, especially, the web page from http://psystems.disco.unimib.it. A
very useful idea is to contact the people who have already worked about/around
the problems, in order to get recent information and, the ultimate aim of these
notes, to start collaborating1.

The last warning: the ordering of the problems has no significance (the labelling
is only used for an easy reference), while including a problem in the present list does
not mean that it is more important/interesting/challenging than any problem not
1 During the Sevilla Brainstorming several of the problems which follow were addressed

and partially solved, or related results were reported. This is the case with problems
F, G, K, N, S, W – see the related papers in the present volume or in the compan-
ion volume M.A. Gutiérrez–Naranjo, Gh. Păun, M.J. Pérez–Jiménez, eds., Cellular
Computing. Complexity Aspects, Fenix Editora, Sevilla, 2005. In turn, O.H. Ibarra
has recently announced that the results from [11] were extended to P systems with
symport/antiport rules, thus solving problem O.

250 Gh. Păun

considered here. This does not even mean that the problem is difficult or properly
formulated; some of the research topics are mere intuitions and they directly ask
for a more precise statement.

2 Problems, Problems, Problems. . .

A Let us start with some problems already “classic” in membrane computing,
related to complexity classes, especially concerning the class of problems which
can be solved in polynomial time by (recognizing) P systems of a given type. Let us
denote it by PMCtype. Up to now, mainly P systems with membrane division were
considered, hence already we have a problem here: consider separately membrane
division for elementary membranes (div-e), membrane division allowed also for
non-elementary membranes (div-ne), membrane creation (cre), string replication
(sre), and compare the four classes PMCtype , for type ∈ {div-e, div-ne, cre, sre}.
How do they compare to each other?

B All the previous classes include NP, while from [26] (see also [4]) we know that
PSPACE ⊆ PMCdiv−ne. Which is the relation of PSPACE with the other three
classes? It seems that PSPACE ⊆ PMCcre, [23], too. It is an intriguing question
here whether also PSPACE ⊆ PMCdiv−e holds (the conjecture was formulated
– P. Sosik, M.J. Pérez–Jiménez – that this is not true; if confirmed, this will be a
very interesting result, indeed, showing the need for the division of non-elementary
membranes in order to cover PSPACE).

C The membrane computing complexity classes are defined in a way similar to
the usual way of defining classes P, NP in standard complexity theory: one starts
from the problem to solve and one constructs a family of P systems solving the
instances of the problem (after introducing encodings of the instances in the initial
configurations of the respective systems); the construction is done in polynomial
time by a Turing machine. This is the so–called uniform way to proceed.

A more relaxed possibility is to construct a P system associated with a given
instance of the problem – this is called the semi–uniform way. This problem was
formulated also in other contexts but it deserves to be repeated, maybe it will
be sometime settled: do the complexity classes defined in the uniform and the
semi–uniform ways differ?

The interest of this question lies in the fact that in molecular computing (see,
e.g., the famous Adleman’s experiment) one proceeds in the semi–uniform manner
– from a practical point of view, it would be a great achievement to have solutions
to real life problems, even if dealing with instances of them (the fact that we
construct the system solving the problem in a polynomial time makes sure that
the problem itself cannot be solved, in a general (algorithmic) way, during this
pre–computation time).

Further Twenty Six Open Problems in Membrane Computing 251

D A related and similar problem: the functioning of a P system solving a decision
problem can be deterministic, strongly confluent, or weakly confluent. In the last
two cases, the system can behave non-deterministically, but the computation must
finish in a confluent manner. Strong confluence means that irrespective how the
system evolves, at some time it will reach a unique configuration and, after that,
the computation continues in a deterministic manner. In the case of the weak con-
fluence the system may evolve non-deterministically the whole computation, but
irrespective which is the path followed in the computation tree, the answer the
system gives to the problem it has to solve is always the same (we deal with decid-
ability problems, hence either all computations answer YES or all computations
answer NO). While most of the polynomial solutions to NP–complete problems
were given in terms of deterministic computations, still the problem remains to
compare the three possibilities. For instance, it would be of interest to find classes
of P systems for which systems working in the weakly confluent manner can be
simulated by systems working in strongly confluent manner, and, similarly, to find
classes of systems for which it is possible to pass from a strongly confluent system
to a deterministic one – in all cases, hopefully, with a linear or at most a polyno-
mial slow–down. A positive answer to this problem is again of a practical interest:
instead of constructing a restricted type of systems (presumably, this is a more
difficult task, as the time complexity of the construction and/or in what concerns
the descriptional complexity of the system), it is enough to construct a system
of a more relaxed type, and, if needed, we transform it into a system of a more
restricted type.

E An “inverse” problem: instead of starting with membrane computing complexity
classes defined in a way which imitates the standard classes in complexity theory,
and then compare them with Turing complexity classes, try to characterize Turing
complexity classes in terms of P systems. For instance, NP ⊆ PMCtype for many
types of P systems – see above. What kind of restrictions should be imposed
on the form (type of rules? type of membrane structure? size parameters?) of P
systems of a given type and/or on the way of using them (bounding the parallelism?
bounding/consuming some resources?) in order to get equalities? This reminds of
the characterization of the P 6= NP conjecture in terms of P systems (see [25]
and the references therein) – without having up to now any characterization of
the classes P and NP themselves in this framework.

F Let us consider now some more technical questions, from the same area, of
complexity classes. My favorite question (favorite because it is intriguing, even an-
noying, and related to the very interesting issue of the borderline between efficiency
– the possibility of solving Turing hard problems in a feasible membrane comput-
ing time – and non-efficiency) is that about the number of “electrical charges”,
whether or not polarizations are necessary. Initially, P systems with active mem-
branes were introduced with membranes having three possible charges, +,−, 0,
like in physics. During the previous brainstorming, [3], it was shown that (both
for universality and) for solving NP–complete problems two charges are enough.

252 Gh. Păun

Can the polarizations be completely avoided? (This means to have all mem-
branes, always, of the same polarization, which amounts to say that this parameter
will play no role in the system functioning.) The feeling is that this is not possible
– and such a result would be rather sound: passing from no polarization (which, in
fact, means one polarization) to two polarizations amounts to passing from non-
efficiency to efficiency. (This would also raise the question of characterizing the
complexity class PMCdiv−e1, where by div-e1 we have denoted the family of P
systems with active membrane, using the division of elementary membranes, and
no polarization.)

G In all previous problems, when dealing with membrane division and mem-
brane creation, one works with cell–like systems, with symbol–objects processed by
multiset–rewriting rules – and never symport/antiport systems were considered.
The possibility of solving SAT in polynomial time by means of tissue–like P systems
with cell division was shown in [21]; it seems that also cell–like systems with sym-
port/antiport rules can be used in this aim, [2]. However, the use of (cell–like) sys-
tems with symport/antiport rules deserves a systematic investigation: using both
membrane division and membrane creation, with the case of membrane division
considered in the two cases – dividing or not also elementary membranes; com-
paring the obtained complexity classes with complexity classes based on multiset–
rewriting rules; Milano theorems (are membrane division and membrane creation
necessary in order to get efficiency in the case of symport/antiport systems?).

H Comparing two complexity classes could mean either proving a strict inclusion or
even incomparability, which supposes the (hard) task of finding counterexamples,
or separation by means of known complexity classes already separated, or proving
the inclusion/equality, and this asks for the simulation of a system of a given type
by a system of another type, without losing the polynomial behavior.

This suggests a more general research issue: proving simulation results. Start
with a system of a given type A and find an equivalent system of another type, B. If
the systems of type A are known to be computationally universal, this will give “for
free” the universality of systems of type B. When dealing with solving problems
(hence with complexity matters), in order to be of interest, the simulation should
have some basic properties: (i) to preserve the determinism/confluency (strong or
weak), and (ii) to have at most a polynomial slow–down. A strategy of this type
is of a particular interest when introducing a new class of P systems; instead of
proving the universality or the efficiency in a direct manner, returning again and
again to matrix grammars or register machines, and, respectively, to SAT or HPP,
it would be more interesting to prove that the new systems can simulate systems
from an old class, with known properties, thus importing these properties to the
new class. A strategy of this type was recently followed in [13].

I Let us now consider a more general question, not very clearly formulated. The
“polynomial solutions” to NP–complete problems were obtained up to now sys-
tematically by making use of a time–space trade–off, based on the (biologically

Further Twenty Six Open Problems in Membrane Computing 253

inspired) possibility of creating an exponential workspace in a polynomial (actu-
ally, in most cases, linear) time, e.g., by membrane division. However, the mem-
brane computing framework contains many ingredients which, at the first sight,
can be used for building “efficient computers”. For instance, the maximal paral-
lelism ensures the fact that all objects from a compartment of a P system are
simultaneously processed, in one time unit, irrespective how many they are. Sim-
ilarly, by means of rules with promoters or with inhibitors we can check, again
in one time unit, whether a multiset contains or not a given object, irrespective
of the size of the multiset. (In some sense, this resemble the use of superposition
in quantum computing, when a register of length n contains 2n data, which are
processed simultaneously.) If these ingredients are not sufficient for an essential
speed–up, what about considering other possibilities?

Here are a few suggestions. Use rules with promoters/inhibitors which check
the presence/absence of the condition objects in the whole system, not only in the
region where the rule is applied. In [19] one proposes an operation with membranes
opposite to division: remove one copy of a membrane i if there are two copies of
this membrane, adjacent, with the same contents, except for one object a in the
first copy and an object b in the second copy; after eliminating, say, the first copy,
the object b becomes c (that is, the rule is of the form [i a] i[i b] i → [i c] i, applied
only if the two copies of the membrane i have the same contents, excepting the
objects a, b). Any usefulness of this powerful operation? Then, in [12] one proposes
communication indications of the forms in∗ and out∗, with the meaning that an
object a having associated the target indication in∗ will immediately go to one of
the elementary membranes internal to the region where (a, in∗) was introduced,
while (a, out∗) means that a will immediately go to the skin region – in all cases,
irrespective which is the distance from the starting region to the target region.
Can this kind of “teleportation” be useful for speeding–up computations?

If none of these ideas works, what else can be imagined (not directly leading
to a time–space trade–off)?

J In the end of this series of problems dealing with complexity matters, let us recall
the important recent proposal from [14] (see also [15]), of using membrane com-
puting ideas in devising approximate algorithms for addressing optimization hard
problems. The strategy is similar to that from distributed evolutionary comput-
ing (the family of candidate solutions is separated in subsets which are processed
separately), with a series of novel ingredients specific to cell–like and tissue–like P
systems: hierarchical arrangement of compartments, where a small number of can-
didate solutions are placed (this is essentially different from evolutionary comput-
ing, where large populations of candidate solutions are handled), communication
among compartments, dynamic membrane structure (in so–called shrink mem-
brane algorithms, the number of membranes decreases during the computation),
etc. This strategy was proved in [14], [15] to be rather useful (better in many cases
than simulated annealing, e.g., converging very rapidly to good enough solutions,
giving good enough solutions also in worst and average cases – hence the method
is trustful, we can save trials without essentially losing the quality of the solution,

254 Gh. Păun

in many cases also giving almost optimal solutions) for the travelling salesman
problem.

Two important research areas are open here: (i) address in the same way other
optimization problems, (ii) consider other membrane computing ingredients, that
is, devise a variety of membrane algorithms and check their efficiency in various
contexts (this is very much the same as the strategy of evolutionary computing). As
possible further features, we only mention a few ideas: create or dissolve membrane
during computation (when the solution does not improve fast enough, whatever
that means, create new membranes); allow (bad) solutions to exit the systems,
so that a stop condition can be to reach a state when only one solution is still
present; use membrane structures which are not linear (the non-determinism in
moving solutions to lower membranes can be useful in avoiding local minima); use
multisets (of given size) of solutions, with more copies for better solutions (Nishida
uses only two solutions in each compartment).

The fact that approximate solutions to hard optimization problems are looked
for in many practical applications makes this approach very appealing – not to
speak about the encouraging results from [14], [15].

The so–called compound membrane algorithms from the cited papers start
with a phase when separate algorithms are performed, producing the candidate
solutions for a second phase, when a usual (cell–like) membrane algorithm is per-
formed. What about implementing the first phase on a distributed computer, or
on a cluster/net of computers? This seems to significantly save time, making the
approach still more attractive practically.

K Recently, [20], it was proved that cell–like symport/antiport P systems us-
ing only three objects are computationally complete. Four membranes were used.
Thus, there appear here several natural questions: are systems with less than four
membranes (and three objects) universal? (Conjecture: no.) Are systems with only
two objects universal? (Conjecture: no.) What can we compute with systems us-
ing only one object? Can such systems generate non-semi–linear sets of numbers?
(Conjecture: no.) The size of rules used in the proof from [20] is not bounded; can
a bound be imposed?

L The result from [20] was extended in [10] to tissue–like P systems, and the
universality was obtained for only one object, but using 7 cells. For membrane
computing, 7 is a big number. . . Can the universality be obtained with a smaller
number of cells? Characterize the families of numbers computed by tissue–like P
systems with only one object, using 1, 2, 3, 4, 5, 6 cells. Like in the previous
question, can a bound be imposed on the size of symport/antiport rules without
losing the universality?

M Extend the results from [20] and [10] to other classes of P systems. In the case
of multiset–rewriting systems, the price to pay for bounding the number of objects
seems to be the use of cooperating rules. Still the question seems of interest: how
many objects we need for universality? Then, what about P systems with active

Further Twenty Six Open Problems in Membrane Computing 255

membranes, with communicative rules in the sense of Sosik, with boundary rules
in the sense of Bernardini–Manca, with mobile membranes as in [13], etc.

N Staying closer to symport/antiport systems, let us recall the question con-
cerning the power of systems with only two membranes and minimal symport or
minimal antiport (three membranes are known to ensure the universality for P
systems with with rules of the form (a, out; b, in), (a, out), (a, in) or of the form
(ab, out), (ab, in)). This is an interesting technical problem, related to the bor-
derline between universality and non-universality. From time to time, rumors are
spread about solving this problem in one way or the other, but up to now no proof
was circulated and validated.

O There are a series of sound results by O.H. Ibarra dealing with P systems with
communicative rules, in the sense of Sosik: a → atar, ab → atar1btar2 , ab →
atar1btar2ccome, with a, b, c objects and tar, tar1, tar1 ∈ {here, out, in}, with rules
of the third type only used in the skin region (such a rule brings an object c from
the environment). One of the most interesting results dealing with such systems
is that from [11], where a class of P systems is found for which the deterministic
systems are strictly less powerful than the non-deterministic systems. Can these
results be extended to symport/antiport systems? Note that the question does not
have a direct answer, based on simulating communicative rules by means of sym-
port/antiport rules: for instance, a rule ab → aoutbin does not have a counterpart
in terms of antiport rules.

P Concerning the deterministic proofs of universality (of course, for P systems
working in the accepting mode, which accept a number introduced in the initial
configuration, or for P automata, where we accept the sequence of symbols brought
into the system during a computation), this was possible for most types of systems,
with a major exception: catalytic systems with multiset–rewriting rules (known to
be universal even when using only two catalysts, [9]). Filling in this gap would
be a nice result. Proving that deterministic catalytic systems (working in the
recognizing mode) are not universal would be a still nicer result.

Q What about universality results for deterministic cell-like systems with three
objects or tissue–like systems with only one object? If necessary, increase the
number of objects. The same question should be asked for all possible classes of P
systems for which problem M would be solved.

R One more (possible) technical problem related to symport/antiport systems. Let
us relate the idea of catalysts with that of symport/antiport rules and consider
certain distinguished objects C ⊆ O, such that some rules contain an object from
C. If the catalysts are not available in the environment, this can lead to an easy way
to inhibit the parallelism. Any usefulness of this idea? (For instance, are P systems
with two membranes universal when using minimal catalytic symport/antiport
rules – without counting the catalysts in the size of rules)? What about purely

256 Gh. Păun

catalytic systems, where each rule must contain a catalyst (is this an essential
restriction)?

S Let us now start a series of problems – actually, research topics – of a general
type, with not–too–precise formulations, with the formulation itself being part of
the problem.

First, let us remark the fact that a Turing machine works with a tape which is
divided into “cells”, but the notion is used in a very restricted and local manner.
What about considering that these cells are “real cells”, that is, membranes con-
taining multisets of symbols, arranged in a linear manner. In some sense, we have
a tissue–like system, but we consider an “infinite tape”, hence an infinite string of
membranes, and no interaction with the environment.

A possible formal definition would be like the following one: consider a construct
(we call it cell Turing machine)

Π = (O, k, w1, . . . , wk, w, R),

where:

1. O is an alphabet (of objects),
2. k ≥ 1 is the degree of the machine,
3. w1, . . . , wk are strings over O, representing the initial contents of cells

1, 2, . . . , k of the machine,
4. w is the contents of cells k + 1, k + 2, . . . (the same for all cells from cell k + 1

to infinity),
5. R is a finite set of rules of the following two types:

(a) (i, x; y, i + 1), for 1 ≤ i ≤ k, x, y ∈ O∗ (usual antiport rules),
(b) (∗, x; y, ∗+ 1), for x, y ∈ O∗ (antiport rules without labels of cells).

The intuition is that the tape of the machine has the first k cells (the tape is
finite to the left and infinite to the right) “differentiated”, with different contents
and different rules, and all other cells are “non-differentiated”, they have the same
contents and rules which can be applied irrespective which is the cell (that is, any
rule (∗, x; y, ∗+1) can be applied for exchanging the multisets x, y among any two
neighboring cells j, j + 1, with j > k).

The machine recognizes a string w = a1a2 . . . an ∈ O+ of length n as follows:
we introduce ai in cell i, for 1 ≤ i ≤ n (irrespective which is the relation between
k and n) – possibly also a marker $ in cell n + 1 (that is, these symbols are added
to the corresponding multisets wi, w, respectively); the rules are used in the non-
deterministic maximally parallel manner; the string is recognized if and only if the
computation halts.

The technical details concerning a more precise definition of the computation
in such a device are left to the reader. Maybe also the structure of the machine
should be changed.

Now, the list of questions to address in this framework is very large. Which
is the power of such a machine? Do the parameter k induces an infinite hierar-
chy? What about the size of “axioms” w1, . . . , wk and w? (Note that, because we

Further Twenty Six Open Problems in Membrane Computing 257

do not communicate with the environment, we need the symbols from the non-
differentiated cells in order to compute, but they must be brought to the left step
by step, cell by cell.) Which is the influence of the size of antiport rules on the com-
puting power? What about considering deterministic cell Turing machines? What
does correspond to a linearly bounded automaton? (A possibility is to consider
two types of non-differentiated cells, first with a multiset w inside, then, to the
right of them to the infinity, empty.) What a push–down automaton could mean
in this framework?

T The previous question can be extended to cellular automata, which also have
“cells” which . . . are not cells. How a cellular automaton with cell–membranes
arranged on a grid, containing multisets and exchanging objects (horizontally or
vertically) by using antiport rules, can be defined remains to be found. Because
we do not create or destroy objects, we either have to confine ourselves to playing
a purely combinatorial game, or we need a supply of objects (for instance, by
considering the neighborhood of a finite region as non-differentiated, like in a cell
Turing machine, but non-empty).

U The mentioning of cellular automata suggests a question famous in this area:
reproduction. In general, the question is how can we produce “automatically” a
P system identical to a given system, or similar to it, whatever that means. The
motivation is not only related to the reproduction question in cellular automata,
but also to complexity issues: when solving a hard problem, we have to construct a
system or a family of systems, in polynomial time, by means of a Turing machine,
and the question was formulated whether this task can be accomplished by a P
system, so that the whole process would become uniform (with all phases based
on using P systems).

As formulated here, the problem is very general, so let us try to be more specific.
Consider a set R of rules handling multisets and membranes. Starting from a given
configuration and using the rules from R we get a family of configurations. Adding
to them rules for objects evolution and for handling the membranes, we get a
family of P systems. For certain sets of rules R, we can start from very simple
configurations and, as above, we can produce the whole family of P systems of a
certain type – details can be found in [7].

Now, this suggests a specific problem related to the reproduction general is-
sue: start from a “seed” system/configuration, C0, and apply the rules from a
given set R, until obtaining a system/configuration C; is it possible to continue
the computation (the use of rules from R) in such a way to obtain one more
system/configuration C? The idea is to produce (maybe non-deterministically)
the first copy of C, but to continue by producing copies of the same configura-
tion/system C. To this aim either the seed C0 and the rules should be arranged
in such a way that the process is deterministic, or we have to remember somehow
the way C was produced (its “genome”) and to use this information from now on
in order to obtain further copies of C.

258 Gh. Păun

Of course, a counter can be introduced in C0, such that only a limited number
of copies of C are produced. A relaxed version of this problem is to look not for
identical copies of C but for similar copies, a case where a similarity relation should
be first considered.

V The idea of starting from a set of configurations and to use a set of rules
in order to produce a family of configurations directly reminds the style of the
AFL (Abstract Families of Languages) theory, which can be imitated also in our
context. Some steps in this direction were done in [7], but this research area is so
large that it deserves to be mentioned here even without giving details, just to call
the reader’s attention about it.

X There is a warm debate in modelling biological systems, whether or not the used
models should use continuous or discrete mathematics. Continuous mathematics
means in general (systems of) differential equations. There are many pros and
cons for both types of mathematics, and, as usual, probably the truth is placed
in media res. Still, the multiset rewriting in terms of P systems seems to be a
very useful tool, at least because it is easily understandable, easily scalable, eas-
ily programmable – three features which cannot be claimed also for systems of
differential equations. On the other hand, there are situations where the reality
seems to be better described by continuous parameters (this is the case for con-
centrations/gradients, probabilities, etc). Bringing some continuous mathematics
inside membrane computing was attempted several times – a recent example is [24]
(where a solid application related to cancer investigations can be found). Still, this
topic of developing a ‘theory” of non-discrete P systems requests (and deserves)
further investigations.

There are both theoretical and practical issues here. Working with real numbers
raises problems concerning the computability of the system components. Then,
how much continuum should be introduced? Multisets with real multiplicities – in
regions and/or in the rules, using each rule a real number of times (like in [24])?
What else? Can we work with a continuous system as it is, or we have to approxi-
mate it by a discrete one? With what degree of approximation? A trade–off should
exist here between the degree of approximation and the difficulty of handling the
system (in particular, of programming and simulating it on a computer). These
problems seem to be closely related to handling fuzzy P systems – see approaches
(and further references) to this topic in [1]. In particular, one can find in [1] a list
of specific research topics, [8].

Y Related to the previous question: can a direct passage be found between sys-
tems of differential equations and multiset–rewriting P systems? Of course, a price
should be paid, maybe in terms of losing some information, or some accuracy of
handling the information. However, the possible gain seems to be worth consider-
ing: understandability, scalability, programmability. If the problem does not have a
solution in general, are there particular classes of systems of differential equations

Further Twenty Six Open Problems in Membrane Computing 259

which can be faithfully reformulated as sets of multiset–rewriting rules? (Are there
real life problems which can be described by such equations?)

This kind of approach can have several motivations. For instance, because there
are many models based on differential equations, if an associated P system can
describe in a similar way the considered piece of reality, then we can continue by
using the P system; this means, for instance, that we can use the same type of
systems for describing other real phenomena, or we can extend the system, adding
new parameters and new rules (which is not an easy task in terms of differential
equations).

W One more general issue, related to the way of defining the output of compu-
tations in a (symbol–objects) P system. Up to now there were used several ideas:
counting the objects from a specified region or leaving (entering, in the case of
P automata) the system, considering the sequence of objects leaving (entering)
the system, taking the trace of a specified object, or the tree itself describing the
configuration in the end of a computation. What else? Here are a few proposals,
without knowing which of them make sense and which not.

The main idea is not to use a support for information, such as the multiplicity
of objects, but to take events – much like in the case of trace languages. (The traces
have the drawback that we need at least as many membranes as the cardinality of
the alphabet of the language we want to describe.) For instance, let us distinguish
some special objects and count the number of times when they meet each other
in any membrane of the system. Precise pairs of objects can be given in advance.
We can also consider the sequence of events of this type (as usual, accepting all
permutations when several events take place simultaneously). Actually, we have
two possibilities: to count only the moment when two distinguished objects come
together in a region (hence not also the subsequent steps when they remain both
in the same region), or to count all moments when the two objects are together,
even if they do not move in the meantime.

Then, we can consider as events the use of certain rules – which leads to a sort
of control word, or Szilard word, associated with a computation.

Another idea is not to count the events themselves, but to look for some param-
eters (related to events). One possibility is to count the number of steps elapsed in
between two specified events. For instance, the very length of a computation (the
number of steps from an initial configuration to a halting one) can be taken as the
number computed by the system. Or, we can consider a copy of a special object
d, and take as the result of the computation the number of steps elapsed from
the beginning of the computation until sending the object d to the environment.
Similarly, we can take two copies of d and count the number of steps between
sending out the two objects. Of course, any type of event can be considered, but
the definition should be carefully adapted (a difficulty appears, for instance, when
the event is repetitive; which interval should be considered? the first, the last, all,
none?).

260 Gh. Păun

Z Let us end with another general topic, related to control theory. Consider a
P system describing a real system; we start from an initial configuration C0 and
evolve non-deterministically. Assume that we can distinguish (how? this can be
done in an easy way from a computational point of view, for instance, by using a
finite state multiset automaton) two classes of configurations, “bad” and “good”
(their sets are supposed disjoint), and that C0 is a good configuration. Asking
whether or not the system will ever reach a bad configuration is a reachability
problem. The configurations (reachable from C0) can be of several types, depending
on the configurations which can be immediately reached from them: (i) leading
to only good configurations, (ii) leading to only bad configurations, (iii) leading
to both good and bad configurations. This can happen both for good and bad
configurations. In case (iii) we have a branching which looks dramatic for the “fate”
of the system. Similarly bad are the moments when the system passes from good
to bad configurations. Can the sequence of such important moments be described
(by a string)? Which is the language of these crucial steps? If any trajectory which
reaches a bad configuration remains forever in the bad region (think to the case of
a serious illness), then it is important to find the moments when the system passes
from a good configuration to a bad one. Which is the first/last moment when we
can predict the evolution of the system?

Then, we can ask for “healing” possibilities. If from a configuration C there
is a continuation to a bad configuration, is it possible to inject certain objects in
the system so that all continuations will lead to good configurations? Which is the
first/last moment when this can be done, which is the smallest multiset to insert?
Can these questions be answered algorithmically? (Not for universal systems, so
that we have to look for restricted classes.)

On the same lines, let us call a system curable if there is a finite multiset M
such that, adding to the system in each time unit a sub-multiset of M (maybe the
empty one), then the trajectory passes always through good configurations. Given
a system Π, can we decide whether it is curable? If a system is curable, can a
(minimal) multiset M as above be effectively found? Which can be a sequence of
sub-multisets of M which cures the system?

The medical interpretation is obvious here. When a check should be made,
when and what “injection” should be provided? A general cost of these actions
could be considered. Further related questions are possible – but the first step
should be a more precise formulation of the problem. We feel that there is a lot of
work to be done in this respect, both from a theoretical and a practical point of
view.

No more letters, no more problems. . . Not in this list, but there are numerous
open problems, in many cases explicitly formulated, in the membrane computing
literature, hence the reader can easily complete this list up to one with one hundred
twenty–six entries. Or, on the contrary, can shorten the list, by providing answers
to some problems. Either of these reactions is much welcome.

Further Twenty Six Open Problems in Membrane Computing 261

Acknowledgements

Several of the previous problems, or related issues, have appeared in papers by
or were discussed with A. Alhazov, D. Besozzi, G. Ciobanu, E. Csuhaj-Varju,
A. Di Nola, R. Freund, M. Gheorghe, M.A. Guttiérez–Naranjo, O.H. Ibarra, N.
Krasnogor, S.N. Krishna, M. Margenstern, T.Y. Nishida, L. Pan, A. Păun, M.J.
Peréz-Jiménez, G. Rozenberg, D. Sburlan, P. Sosik, G. Vaszil, S. Verlan, and oth-
ers, to whom I am very much indebted, and who might have already answers to
some of these problems (this is a suggestion to the reader to contact them for
details, leaving to me the role of a catalyst. . .).

References

1. R. Alberich, J. Casasnovas, M. Llabrés, J. Miró–Juliá, J. Rocha, F. Rosselló, eds.:
Brainstorming Workshop on Uncertainty in Membrane Computing. Universitat de
les Illes Baleares, Palma de Mallorca, November 2004.

2. A. Alhazov: Personal communication, 2005.
3. A. Alhazov, R. Freund, Gh. Păun: P systems with active membranes and two polar-

izations. In [22], 20–36.
4. A. Alhazov, C. Mart́ın-Vide, L. Pan: Solving a PSPACE-complete problem by P

systems with restricted active membranes. Fundamenta Informaticae, 58, 2 (2003),
67–77.

5. M. Cavaliere, C. Mart́ın-Vide, Gh. Păun, eds.: Proceedings of the Brainstorming
Week on Membrane Computing; Tarragona, February 2003. Technical Report 26/03,
Rovira i Virgili University, Tarragona, 2003.

6. G. Ciobanu, Gh. Păun, M.J. Pérez-Jiménez, eds.: Applications of Membrane Com-
puting. Springer-Verlag, Berlin, 2005.

7. E. Csuhaj-Varju, A. Di Nola, Gh. Păun, M.J. Pérez-Jiménez, G. Vaszil: Editing
configurations of P systems. In the present volume, 131–154.

8. A. Di Nola, Gh. Păun, M.J. Pérez-Jiménez, F. Rossello: (Imprecise topics about)
Handling imprecision in P systems. In [1], 1–10.

9. R. Freund, L. Kari, M. Oswald, P. Sosik: Computationally universal P systems with-
out priorities: two catalysts are sufficient. Theoretical Computer Sci., 330, 2 (2005),
251–266.

10. R. Freund, M. Oswald: Tissue P systems with symport/antiport rules of one symbol
are computationally universal. In Cellular Computing. Complexity Aspects (M.A.
Gutiérrez–Naranjo, Gh. Păun, M.J. Pérez–Jiménez, eds.), Fénix Editora, Sevilla,
2005, 187–200.

11. O.H. Ibarra: On determinism versus nondeterminism in P systems. Theoretical Com-
puter Science, to appear (available at http://psystems.disco.unimib.it).

12. N. Jonoska, M. Margenstern: Tree operations in P systems and λ-calculus. Funda-
menta Informaticae, 59, 1 (2004), 67–90.

13. S.N. Krishna, Gh. Păun: P systems with mobile membranes. Natural Computing, to
appear.

14. T.Y. Nishida: An application of P systems: A new algorithm for NP-complete op-
timization problems. In Proceedings of the 8th World Multi-Conference on Systems,
Cybernetics and Informatics (N. Callaos, et. al., eds.), vol. V, 2004, 109–112.

262 Gh. Păun

15. T.Y. Nishida: Membrane algorithms: Approximate algorithms for NP-complete op-
timization problems. In [6], 301–312.

16. Gh. Păun: Computing with membranes (P systems): Twenty six research top-
ics. CDMTCS Research Report 119, Febr. 2000, Auckland Univ., New Zealand
(www.cs.auckland.ac.nz/CDMTCS).

17. Gh. Păun: Membrane Computing. An Introduction. Springer-Verlag, Berlin, 2002.
18. Gh. Păun: Further open problems in membrane computing. Brainstorming Week

on Membrane Computing, Sevilla, February 2004, TR 01/04 of Research Group on
Natural Computing, Sevilla University, 2004 (BWMC2004), 354–365.

19. Gh. Păun: Membrane computing: Some non-standard ideas. In Aspects of Molecular
Computing (N. Jonoska, Gh. Păun, G. Rozenberg, eds.), LNCS 2950, Springer-Verlag,
Berlin, 2004, 322–337.

20. Gh. Păun, J. Pazos, M.J. Pérez-Jiménez, A. Rodriguez-Paton: Symport/antiport P
systems with three objects are universal. Fundamenta Informaticae, 64, 1-4 (2005),
353–367.

21. Gh. Păun, M.J. Pérez-Jiménez, A. Riscos-Núnẽz: Tissue P systems with cell division.
In [22], 380–386.

22. Gh. Păun, A. Riscos-Núñez, A. Romero-Jiménez, F. Sancho-Caparrini, eds.: Proceed-
ings of the Second Brainstorming Week on Membrane Computing, Sevilla, February
2004. Technical Report 01/04 of Research Group on Natural Computing, Sevilla
University, Spain, 2004.

23. M.J. Pérez-Jiménez: Personal communication, 2005.
24. M.J. Pérez–Jiménez, F.J. Romero–Campero: Modelling EGFR signalling network

using continuous membrane systems. Third Workshop on Computational Methods in
Systems Biology, Edinburgh, 2005.

25. M.J. Pérez–Jiménez, A. Romero–Jiménez, F. Sancho–Caparrini: Computationally
hard problems addressed through P systems. In [6].

26. P. Sosik: The computational power of cell division in P systems: Beating down parallel
computers? Natural Computing, 2, 3 (2003), 287–298.

