
Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2010, Article ID 742894, 29 pages
doi:10.1155/2010/742894

Review Article

Furuta’s Pendulum: A Conservative Nonlinear
Model for Theory and Practise
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Furuta’s pendulum has been an excellent benchmark for the automatic control community in the
last years, providing, among others, a better understanding of model-based Nonlinear Control
Techniques. Since most of these techniques are based on invariants and/or integrals of motion
then, the dynamic model plays an important role. This paper describes, in detail, the successful
dynamical model developed for the available laboratory pendulum. The success relies on a basic
dynamical model derived from Classical Mechanics which has been augmented to compensate
the non-conservative torques. Thus, the quasi-conservative “practical” model developed allows to
design all the controllers as if the system was strictly conservative. A survey of all the nonlinear
controllers designed and experimentally tested on the available laboratory pendulum is also
reported.

1. Introduction

The control of underactuated mechanical systems has attracted the interest of the control
engineering community for many years. Underactuated mechanical systems are control
systems with fewer control inputs than degrees of freedom. This lack of inputs is, precisely,
the main difficulty to control them. Moreover, the control of underactuated mechanical
systems is currently an active field of research due to their broad applications in Robotics,
Aerospace, and Marine Vehicles. Some examples of underactuated mechanical systems
include flexible-link robots, mobile robots, walking robots, robots on mobile platforms, cars,
locomotive systems, snake-type and swimming robots, acrobatic robots, aircraft, spacecraft,
helicopters, satellites, surface vessels, and underwater vehicles.

One of the most well-known underactuated mechanical systems is the pendulum
which is an excellent benchmark for many control problems, attracting the attention of many
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Figure 1: Available Furuta’s pendulum.

researchers during years. The available version of the pendulum is the rotary pendulum
shown in Figure 1, and this survey is focused on that laboratory pendulum where many
control strategies have been designed and successfully tested. The rotary pendulum is one
of the most complex two-degrees-of-freedom pendulum since its configuration provides
centrifugal torques, which are quadratic in velocities, giving rise to many interesting and
difficult control problems.

The rotary pendulum is also known as Furuta’s pendulum. Furuta was the inventor,
and has been studied by many authors such as Furuta himself [1] (see also [2–4] among
others). It is a non-linear underactuated mechanical system that is unstable at the desired
upright position. In fact, it shows, mainly, two different and very interesting control
problems. The first one is to swing the pendulum up from the rest (down) to the upright
(up) position, which is commonly solved with energy control strategies. Once the pendulum
is close to the desired upright position, at low speed, a stabilization or balancing strategy
“catches” it there. Other control problems are also quite interesting as the stabilisation of
autonomous oscillations and control through bifurcation analysis. All of them are briefly
commented in the survey focusing on all the designed and experimentally tested in the
available laboratory pendulum.

The paper is organized as follows. In Section 2 the non-linear model for the available
pendulum is derived in detail, including a dynamical-friction model. In Section 3, a survey
of the non-linear strategies designed and tested on the available pendulum is given. A
literature review showing the relations with other approaches are also briefly commented.
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Finally, a conclusion section and two appendices, one describing the whole experimental
control system and another with the MATLAB codes used for the non-trivial identification
of parameters of the dynamical-friction model.

Notation and Definitions

Throughout the paper it is assumed that all functions and vector functions are sufficiently
smooth. Moreover, concerning functions, vector functions, and matrices which are functions
of some variables, we will write explicitly this dependence the first time they are defined.
The norm of a vector x ∈ R

n will be denoted by ‖x‖ and the square of the Euclidean norm by
‖x‖22 = x⊤x. Acronyms used: w.r.t. means “with respect to”; i.e. means “that is.”

Consider a dynamical system affine in control as ẋ(t) = f(x(t)) + g(x(t))u, where
x ∈ R

n is the state space vector, u ∈ R
m is the control input vector and where we assume that

the origin is at x = 0 with f(0) = 0 and g(0)/= 0. Thus,

(i) the open-loop system means the unforced system, that is, with u = 0;

(ii) a (smooth) static state-feedback means a control input of the form u = φ(x),
also called controller, control law and stabiliser when a stabilisation problem is
considered;

(iii) the closed-loop system means the system with a specified static state-feedback, i.e.
ẋ = f(x) + g(x)φ(x);

(iv) linearisation means a non-linear static state-feedback that linearises fully or partially
the dynamics;

(v) the Jacobian linearisation means the first approximation of the system dynamics
through the Jacobian at the origin.

2. The Conservative Mechanical Model

The schematic of Furuta’s pendulum is described in Figure 2, where the two degrees of
freedom are shown: the angular positions of the arm (ϕ) and the pendulum (θ). The arm
shaft (corresponding to the angle ϕ referred to the x-axis) is subject to a torque, while no
torque is applied directly to the pendulum shaft (angle θ of pendulum referred to the z-axis).
Thus, it is an underactuated mechanical system because it has only one control input and two
degrees of freedom. Rigorously, the configuration space is a 2-torus, that is, (θ, ϕ) ∈ S1 × S1

and the corresponding tangent space is (θ, ϕ, θ̇, ϕ̇) ∈ S1 × S1 × R
2.

We define the physical parameters of the system as

m: mass of the pendulum,

2l: total length of the pendulum,

r: length of the arm (radius),

g: acceleration of gravity,

J: moment of inertia of the pendulum w.r.t. the pivot,

Ja: moment of inertia of the arm and the motor,

K: constant torque,

u: control input,

τ : control torque (τ := Ku).



4 Mathematical Problems in Engineering

z

θ

ρ

x
2l

dm

m

r

y

ϕ

x

Figure 2: Reference frame of coordinates.

In what follows, energy methods of Classical Mechanics are used to derive the dynamical
equations of motion. So, defining the reference frame of coordinates as in Figure 2 and
assuming a linear distribution of the mass of the pendulum then, the coordinates of a
differential mass element, namely ρ-mass element (see Figure 2), of the pendulum referred
to that reference frame read

xρ = r cosϕ − ρ sin θ sinϕ,

yρ = r sinϕ + ρ sin θ cosϕ,

zρ = ρ cos θ.

(2.1)
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Since it is a simple mechanical system the total energy is composed by the sum of the kinetic
and the potential energies. Thus, on the one hand the instantaneous kinetic energy of the
system is composed by the kinetic energies of the pendulum and the arm (including the
motor) and becomes

T
(

θ, θ̇, ϕ̇
)

=
1

2

∫2l

0

v2
ρ

(

ρ
)

dm +
1

2
Jaϕ̇

2, (2.2)

where vρ is the module of the velocity of the ρ-mass element of the pendulum, which is
obtained differentiating (2.1)w.r.t. the time and adding the squares. Thus, it becomes

v2
ρ

(

ρ
)

= r2ϕ̇2 + ρ2ϕ̇2sin2θ + 2rρθ̇ϕ̇ cos θ + ρ2θ̇2. (2.3)

Since by assumption dm = m/2l dρ then, the kinetic energy from (2.2) and (2.3) becomes

T
(

θ, θ̇, ϕ̇
)

=
1

2

[

θ̇

ϕ̇

]⊤[
J mrl cos θ

mrl cos θ Ja +mr2 + Jsin2θ

][

θ̇

ϕ̇

]

. (2.4)

On the other hand, the potential energy of the system w.r.t. the given reference frame is only
the one of the pendulum and, integrating for the ρ-mass element, becomes

V(θ) = mgl (cos θ − 1), (2.5)

which is zero at the upright position of the pendulum. Now, with the energy of the whole
system completely defined we use both standard and well-known energetic approaches,
Euler-Lagrange and Hamilton, to derive the dynamical equations.

2.1. Euler-Lagrange Equations

Let define the vectors q := (θ, ϕ)⊤ ∈ S1 × S1 and q̇ := (θ̇, ϕ̇)⊤ ∈ R
2 and, just for compactness,

another different set of physical parameters as

α :=
mrl

J
, β :=

Ja +mr2

J
, γ :=

K

mgl
, ω2

0 :=
mgl

J
. (2.6)
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Thus, to derive the Euler-Lagrange equations we calculate the Lagrangian of the system as
the difference between the kinetic and potential energies of the whole system from equations
(2.4) and (2.5), respectively. Then, the Lagrangian can be written as

L
(

q, q̇
)

=
1

2
q̇⊤M

(

q
)

q̇ − V
(

q
)

, (2.7)

where we have introduced the inertia matrix M(q) that from (2.4) and with the new set of
parameters (2.6) becomes

M
(

q
)

= J

[

1 α cos q1

α cos q1 β + sin2q1

]

. (2.8)

The well-known Euler-Lagrange equations [5] for this system take the form

d

dt

(

∂L

∂q̇1

)

−
∂L

∂q1
= 0,

d

dt

(

∂L

∂q̇2

)

−
∂L

∂q2
= τ,

(2.9)

which can be rewritten as

M
(

q
)

q̈ + C
(

q, q̇
)

q̇ +
∂V

∂q

(

q
)

=

[

0

τ

]

, (2.10)

where C(q, q̇) is the matrix of Coriolis and gyroscopic torques. Thus, the matrices defined in
(2.10) are given by

C
(

q, q̇
)

= J

[

0 −q̇2 sin q1 cos q1

−αq̇1 sin q1 + q̇2 sin q1 cos q1 q̇1 sin q1 cos q1

]

,

∂V

∂q

(

q
)

= J

[

−ω2
0 sin q1

0

]

,

(2.11)

and so (2.10) reads

q̈1 + α cos q1q̈2 −
1

2
sin 2q1q̇

2
2 −ω2

0 sin q1 = 0, (2.12)

α cos θq̈1 +
(

β + sin2q1
)

q̈2 − α sin q1q̇
2
1 + sin 2q1q̇1q̇2 = γω2

0u. (2.13)

Notice that, if the matrix C(q, q̇) is derived through Christoffel symbols [5, 6] (which is the
case), then the matrix Ṁ(q) − 2C(q, q̇) is skew-symmetric.
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Since, the inertia matrix M(q) is positive definite and so invertible, then these
equations can be rewritten as an affine-in-control system, just isolating the accelerations from
(2.10) as

q̈ = −M
(

q
)−1

(

C
(

q, q̇
)

q̇ +
∂V

∂q

(

q
)

)

+M
(

q
)−1

[

0

τ

]

. (2.14)

Denoting the determinant of the inertia matrix as Δ(q), then (2.14) becomes

Δq̈1 =
(

−α2q̇21 +
(

β + sin2q1
)

q̇22 + 2α cos q1q̇1q̇2
)

sin q1 cos q1

+ βω2
0 sin q1 +ω2

0sin
3q1 − αγω2

0 cos q1u,

(2.15)

Δq̈2 = α
(

q̇21 − cos2q1q̇
2
2

)

sin q1 −
1

2

(

2q̇1q̇2 + αω2
0

)

sin 2q1 +ω2
0γu, (2.16)

with Δ(q1) = J(β + sin2q1 − α2cos2q1). Notice that (2.15)-(2.16) is a fourth-order non-linear
system strongly coupled and the coordinate q2 is cyclic. Remind that, a coordinate is said
to be cyclic when it does not appear in the Lagrangian [7], and therefore the corresponding
momentum is a constant of motion for the unforced system (u = 0). The latter means that
the system is completely integrable. Roughly speaking, a completely integrable system is a
system with the same number of integrals of motion and degrees of freedom.

2.1.1. Partial Linearisation

A common practise in control design, in order to reduce the complexity of the equations of
motion, is to introduce a (non-linear) change in the control input to linearise the actuated
equation (2.13), or (2.16), in the acceleration of the q2-coordinate. Thus, from (2.16) and
defining

ω2
0γu := Δu − α

(

q̇21 − cos2q1q̇
2
2

)

sin q1 +
1

2

(

2q̇1q̇2 + αω2
0

)

sin 2q1, (2.17)

system (2.12)-(2.13) becomes

q̈1 −
1

2
sin 2q1q̇

2
2 − a sin q1 = −b cos q1u,

q̈2 = u,

(2.18)

where a := ω2
0, b := α, and u is the new control input. Notice that (q, q̇, u) � (q, q̇, u) is a

globally defined change of coordinates and control. The system in (q, q̇, u)-coordinates can be
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seen as an Euler-Lagrange system where, through the Routh transformation [7], the energy
is an integral of motion of the unforced system (u = 0) and reads

E
(

q, q̇
)

=
1

2

∥

∥q̇
∥

∥

2

2
+
1

4
cos 2q1q̇

2
2 + a

(

cos q1 − 1
)

. (2.19)

Notice that the effective potential has been added because q̇2 is the another integral of motion.
Therefore (2.18) it is a new conservative system, completely integrable [5].

2.2. Hamilton Equations

Formally the Hamilton equations can be derived through the Legendre transformation [5]
defining the conjugate momenta as p := ∂L/∂q̇. Thus, the Hamilton function becomes

H
(

q, p
)

:= q̇⊤p − L
(

q, p
)

. (2.20)

Notice that for a Lagrangian given by (2.7) then p = M(q)q̇ with L(q, p) being the Lagrange
function in the Hamiltonian set of coordinates (q, p) ∈ S1 × S1 × R

2. Nevertheless, since the
system is autonomous then the Hamiltonian function coincides with the internal energy of
the system, and so it can be easily computed as

H
(

q, p
)

=
1

2
p⊤M

(

q
)−1

p + V
(

q
)

. (2.21)

The Hamilton equations [5] are

q̇ =
∂H

∂p
,

ṗ = −
∂H

∂q
+

[

0

τ

]

,

(2.22)

and for Furuta’s pendulum become

q̇1 =
1

Δ

[(

β + sin2q1
)

p1 − αp2 cos q1
]

, (2.23)

q̇2 =
1

Δ

[

p2 − αp1 cos q1
]

, (2.24)

ṗ1 =
1

2Δ2
J
[(

β + sin2q1
)

p21 + p22 − 2αp1p2 cos q1
]

·
[(

1 + α2
)

sin 2q1
]

+ Jω2
0 sin q1 −

1

2Δ

[

p21 sin 2q1 + 2αp1p2 sin q1
]

,

(2.25)

ṗ2 = Jγω2
0u, (2.26)

with Δ(q1) = J(β + sin2q1 − α2cos2q1).
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Table 1: Physical parameter values of the laboratory pendulum.

Parameter Value Unit

Mass of the pendulum 0.0679 Kg

Length of the pendulum 0.14 m

Length of the arm 0.235 m

Mass of the arm 0.2869 Kg

Inertia of the motor 0.0012 Kg m2

Constant torque 7.4 N m/v

2.3. Non-Conservative Friction Torques

In the previous sections a conservative mechanical model was derived using Classical
Mechanics. In this section, we add the non-conservative torques due to friction in the real
system. To this end, we focus the analysis in our available laboratory Furuta’s pendulum,
which was shown in Figure 1. The physical values of the parameters of this pendulum are
shown in Table 1 (see [8] for details).

The friction phenomena in this pendulum come up in the joints. The pendulum joint
is composed by a small ball bearing in which friction can be well modelled by a damping
constant. Otherwise, in the arm joint a DC-motor and a slip ring are directly coupled (see
Appendix A), and therefore the friction is not a damping-like torque, moreover it is strongly
non-linear. In what follows of this section we derive the friction models designed in both
joints.

Pendulum Joint

The non-conservative torques due to a natural damping is introduced through Rayleigh’s
dissipation function, namely D(q). So, calling cp to the damping constant then, the non-
conservative torque, namely τd, becomes

τd =
dD

(

q̇1
)

dq̇1
=

d

dq̇1

(

1

2
cpq̇

2
1

)

= cpq̇1. (2.27)

This constant is easily estimated measuring the damping of a free-motion experiment
yielding cp = 0.0000226. The small value is due to the small ball bearing and so it could
be neglected.

Arm Joint

A carefully experimental study reveals that the friction torque in the motor shaft is not only a
natural damping [8]. In fact, static and dynamic friction torques have to be taken into account
in order to have a good estimation of the friction torque in this joint. To this end, a dynamic
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friction model, called LuGre ( from Lund Institute and Grenoble Laboratory) model [9–11],
is used. The dynamical equations of this model are

dz

dt
= v −

σ0

g(v)
z|v|, (2.28)

g(v) = τc + (τs − τc)e
−(v/vs)

2

, (2.29)

τr = σ0z + σ1
dz

dt
+ σ2v, (2.30)

where the parameters are defined as

τr : estimated friction torque,

τc: Coulomb friction torque,

τs: static friction torque,

σ0,1: internal model parameters,

σ2: dynamic friction constant,

vs: Stribeck’s velocity,

z: internal state of the model,

v: velocity (q̇2 = ϕ̇).

Next, we give all the necessary steps to identify the parameters of themodel (2.28)–(2.30). The
physical meaning of these parameters is thoroughly described in [9]. Other kind of dynamical
models for friction compensation can be also considered as in [12, 13]. Nevertheless, as we
will show further, this model gave us a precise estimation. This good estimation allows to
compensate the friction in this joint and, therefore, it gives us the chance of designing control
strategies as if it was a conservative system. To this end, in [9] some identification methods
are suggested but, with the base given in [9] and our experience we have designed our own
identification methodology. Thus, the identification of these parameters can be made in four
steps corresponding to four different experiments, respectively. Obviously, to identify all the
parameters the pendulum is decoupled from the system, i.e. it only remains the arm plus
motor. We briefly comment the four experiments designed.

Step 1 (identification of τc and σ2). We use here a standard least-square algorithm to identify
τc and σ2. We consider the first-order system given by

Ja
dv

dt
= τ − τc sgn(v) − σ2v. (2.31)

A side-effect parameter Ja can also be estimated with this experiment. Notice that, (2.31)
becomes linear in the parameters. Thus, we introduce in the input τ a square signal (open-
loop) and then we measure the angular position of the arm, as shown in Figure 3 (top-left).
The results after applying a least-square algorithm to (2.31) are shown in Table 2. Notice,
from Table 2, the asymmetry which means that the identification is different for positive
and negatives velocities. The MATLAB code for the positive case of v := q̇2 is given in
Appendix B.1.
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Figure 3: Experiments for Steps 1–4.

Step 2 (identification of τs). The static friction is identified forcing a limit cycle in the system.
To this end, we feedback the angle of the motor with a slight proportional integral (PI) action,

of the form u = k1e+k2
∫ t

0
e(τ)dτ , with k1,2 gains andwhere e is the error between themeasured

state and the desired reference. The values are directly identified from Figure 3 (top-right)
and the results are in Table 2. Notice again the asymmetric behaviour of the system. The
MATLAB code is given in Appendix B.2.

Step 3 (identification of vs). To identify Stribeck’s velocity we first need to know the
parameters Ja, τc, and τs, which are known after steps above. The experiment consists in
forcing a very low speed in the motor shaft (open-loop). Thus, the fictitious state z can be
approximated, from (2.28), by

dz

dt
≈ 0 =⇒ z ≈

g(v)

σ0

v

|v|
, (2.32)
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Table 2: Parameters of the LuGre model identified.

Experiment Parameter (+) (−)

Step 1

Ja 0.0003 0.0004

τc/K 0.2238 0.2308

σ2 0.0022 0.0020

Step 2 τs/K 0.3960 0.3789

Step 3 vs 0.9297 0.9725

Step 4
σ0 30

σ1 0.2389

and then, from (2.30) the torque can be approximated by

τr ≈
(

τc + (τs − τc)e
−(v/vs)

2
)

sgn(v), (2.33)

which additionally allows to linearise the equation

Ja
dv

dt
= τ − τr , (2.34)

as

v2(t) = v2
s ln γ(t), (2.35)

where γ is given by

γ =
τs − τc

(τ − Ja(dv/dt)) sgn(v) − τc
. (2.36)

The approximation is only valid if τs > τc and γ � 1. A sinusoidal input torque (open-
loop) allows us to estimate the value of γ and so vs. The experiment is shown on Figure 3
(bottom-left) and the results are shown in Table 2 yielding, again, an asymmetric behaviour.
The MATLAB code for positive values of v := q̇2 is given in Appendix B.3.

Step 4 (identification of σ0 and σ1). The parameter σ0 is estimated forcing a ramp in the input
(open-loop) such that the angle cross by zero. The maximal and minimal values of the ramp
should be around ±0.8 τs and the slope small enough. The value of σ0 can be estimated with
σ0 ≈ Δτ/Δϕ. The experiment is shown in Figure 3 (bottom-right).

To estimate σ1 we assume small displacements and |z| ≪ g(v). Thus, ż = v = q̇2 from
(2.28), and then we use a linear second-order model given by

Jaq̈2 + (σ1 + σ2)q̇2 + σ0

(

q2 + q2(0)
)

= τ. (2.37)
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d

dt

(

∂L

∂q̇2

)

−
∂L

∂q2
+ τr

τ + τ + τr

+

τr
LuGre model

q2 = ϕ

q̇2 = ϕ̇

Figure 4: Friction compensation loop.

Therefore, since it is a second-order linear system the value of σ1 is easily estimated imposing

σ1 = 2ζ
√

σ0Ja − σ2, (2.38)

where ζ is the damping constant of the linear model and σ2 and Ja are known from Step 1.
The MATLAB code is given in Appendix B.4.

2.4. The Complete Model

Once the friction torques have been estimated we add them to the model in the Lagrangian
framework, being dual for the Hamiltonian case. Thus, the Euler-Lagrange equations with
the non-conservative torques included become

d

dt

(

∂L

∂q̇1

)

−
∂L

∂q1
+ τd = 0, (2.39)

d

dt

(

∂L

∂q̇2

)

−
∂L

∂q2
+ τr = τ, (2.40)

where again we normalise dividing by J with cp := cp/J. Then, the differences from (2.10)
are, on one hand, the matrix C(q, q̇) which turns into

C
(

q, q̇
)

= J

[

cp −q̇2 sin q1 cos q1

−αq̇1 sin q1 + q̇2 sin q1 cos q1 q̇1 sin q1 cos q1

]

, (2.41)

and on the other hand the torque is reduced in τr = Kur , where τr is estimated by equations
(2.28)–(2.30)with v := q̇2.

After adding the non-conservative friction torques the model is a better approximation
of reality. Nevertheless, to easy the computations of the non-linear control laws, we use the
friction models to compensate the friction instead of modelling it. In fact, this is the success
of our model in practise. However, remind that the system has two degrees of freedoms and
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just one actuation torque, which means that we can compensate the friction torques only in
the actuated coordinate q2. This can be easily seen in (2.39)-(2.40). Thus, in (2.40) the friction
torque τr can be compensated adding it to the input torque (positive feedback). Otherwise,
in the unactuated equation (2.39) we cannot compensate anything at all, since we do not
have an independent input. Recall that our objective was to approximate in practise as well
as possible to the conservative model given by the equations (2.9), or equivalently (2.22). In
Figure 4 we show how the added torque compensates the friction. In the pendulum joint,
as commented above, we cannot compensate τd in (2.39). Nevertheless, by construction the
friction torque can be neglected, i.e. τd ≈ 0, because we use a small enough ball bearing for
the joint (recall that cp ≈ 2.26 × 10−5).

Finally, after compensating the non-conservative torque then, the completed model is a
good approximation to the conservativemodel given by (2.9). The reader will realise this good
approximation in the next section, where most of all the non-linear controllers were designed
with (2.9), or equivalently (2.22). Moreover, in most of the controllers conservative quantities
were used for the design stage.

3. A Survey of Non-Linear Control Strategies

In this section we survey all of non-linear strategies designed and experimentally tested in
the available laboratory pendulum shown in Figure 1. We recall that the paper is focused on
the design and experimental results on our available Furuta’s pendulum. Thus, other results
will be referenced and briefly discussed because they were not experimentally tested on our
pendulum.

3.1. Swing-Up Strategies

As commented in the introduction by swing-up we mean the non-linear control problem to
swing the pendulum up from the rest to the upright position, the so-called inverted position.
The control strategy proposed in [14–16] was based on the Speed-Gradient method, in fact
just the finite form of the Speed-Pseudogradient Algorithm proposed in [17, 18] was used.
Briefly, we comment the basic idea. Consider the time-invariant, affine-in-control system
ẋ = f(x) + g(x)u (in our system either (2.15)-(2.16) or (2.23)-(2.26)) with output y = h(x),
where x(t) ∈ R

n, y(t) ∈ R
l, and the input u(t) ∈ R

m. Consider also the control objective
y(t) → 0 when t → ∞; this control objective can be written as an objective function
Q(x) = (1/2)‖h(x)‖2. For this objective function the Speed-Pseudogradient Algorithm in
finite form reads

u ∝ −

(

∂h(x)

∂x
g(x)

)⊤

h(x), (3.1)

which can be derived calculating Q̇(x) along trajectories of the system and noting that h(x)
are independent invariants for the unforced system (u = 0). Stability properties of algorithm
(3.1) are described in [17]. In essence, the objective Q(x) plays the role of a Lyapunov
function with a closed trajectory as a limit set and then, roughly speaking, if Q̇(x) � 0
the goal will be achieved. Some examples of the application can be seen in [17, 19, 20]. In
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Figure 5: “Solid” experiment. “Dashed” simulation.

the case of study, selecting the objective function as the square of the total system energy
Q := Q1 = 1/2(γ1H)2 then, the trajectories of the mechanical system will tend towards the
surface (limit set) {(q1, p1, p2) ∈ S1 × R

2 | H = 0}, as in [18]. This aim does not guarantee
that the pendulum will pass through the origin. The objective function was modified adding
a new objective function Q2 so that the trajectories tend towards the closed trajectory (limit
set) {Q1 = 0} ∩ {Q2 = 0}. The Hamiltonian structure of the system helped us to find the
Q2 function needed. In fact, since the system is symmetric w.r.t. the angle q2, the conjugate
momentum p2 is a constant of motion for the unforced system, which is straightforward from
(2.26). Recall that q2 is a cyclic coordinate, which is closely related with Noether’s theorem
[5]. Thus, it is reasonable to choose the objective function as Q := 1/2(γ1H)2 + 1/2(γ2p2)

2,
where γ1,2 are positive control gains and p2 is the conjugate momentum of the coordinate

q2. The output vector reads y = h(x) = (γ1H, γ2p2)
⊤. The objective closed trajectory

{Q1 = 0} ∩ {Q2 = 0} is the homoclinic orbit for Furuta’s pendulum [21]. Thus, the objective
function for Fradkov’s Speed-Gradient method includes not only the energy but also the
arm momentum, which are both conserved quantities for the unforced system. To show
the fidelity of the model proposed we show Figure 5 from [15, 16], where we compare
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the experiment (solid line) with the simulation (dashed line) with the controller
proposed. Another proof of the fidelity of the conservative model was shown in [14]
where we developed the strategy through Routh’s function [7], which embedded both
conservative quantities given before. A video of the experiment can be displayed from
http://www.esi2.us.es/∼jaar/investiga e.htm.

Remark 3.1. We underscore that the success of the proposed strategy relies on the fact that
the experimental model is quasi-conservative. In fact, the control strategy is based on both
conservative quantities, energy and momentum. Without that conservative property the control
strategy would fail.

Literature Review

The control problem of swinging the pendulum up was firstly solved by Åström and Furuta
with a reduced system model [1, 4]. The control strategy was based on neglecting the
reaction torques from the pendulum to the arm. This allows greatly simplify to a second-
order model in (q1, q̇1)-coordinates, and with the help of Fradkov’s Speed-Gradient method
the desired energy injection was easily computed [22]. However, we remind that it was
based on a simplifying assumption. Moreover, the arm speed must be low for the success
of any stabiliser at the switching time, but notice that this speed is not considered in the
dimension 2 control law, i.e. designed with the second-order model. Fortunately, for standard
pendula with the usual initial conditions (the lower position with no velocity) the dimension
2 control law behaves well. Nevertheless, if the reaction torques from the pendulum to the
arm cannot be neglected, for example, either due to the mass of the pendulum or to the low
friction on the arm, Åström and Furuta’s law fails. Some conditions of this failed attempt
case were shown in [23], where conditions to induce the approximation to fail, were tested.
Moreover, our proposed control law keeps the nice properties of Åström-Furuta’s one when
compared with other swing-up control laws based on a fourth-order model, i.e. our swing-
up control law is able to accomplish the goal with arbitrary small control signal magnitude
(unlike [24, 25]) and, the control signal converges to zero as the homoclinic orbit is reached
(unlike [26]).

3.2. Non-Linear Stabilisers

In the previous section we show the non-linear strategies to swing the pendulum up to
the upright position. Those strategies stabilise the homoclinic orbit, which passes through
the origin of the state space. Unfortunately, the origin is a saddle fixed point in closed
loop and then, to solve the whole problem, that is, swing-up and stabilisation, a balancing
strategy (stabiliser) has to be designed to “catch” the pendulum at the upright position.
Fortunately, the swing-up strategy was designed such that the pendulum passes through the
origin with (q1(t), q̇1(t), q̇2(t)) → 0, and u(t) → 0. The latter allows to design the balancing
stabiliser separately and then, to propose a switching strategy between both, i.e. the swing-
up controller and the stabiliser. Again, the conservative model of the pendulum allowed to
design non-linear stabilisers using invariants and/or conserved quantities. In this section we
describe all the non-linear stabilisers designed using the conservative model and, moreover,
successfully tested through experiments.
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3.2.1. Energy Shaping

A conservative system allows, in a natural fashion, to be controlled by energy-shapingmethods.
In fact, a non-linear stabiliser was designed through the energy-shaping methodology called
Interconnection and Damping Passivity-Based Control. This methodology was introduced in
[27] to regulate the position of underactuatedmechanical systems of the form (2.22)with total
energy given by (2.21). The main idea is to force the closed-loop structure of the system to a
desired one. This procedure is commonly called “matching.” In fact, for mechanical systems
the proposed closed-loop structure takes the Port-Controlled Hamiltonian form [6] given by

[

q̇

ṗ

]

=

[

0 M−1Md

−MdM
−1 J2

]

⎡

⎢

⎢

⎣

∂Hd

∂q
∂Hd

∂p

⎤

⎥

⎥

⎦

, (3.2)

where in our case of study (q, p) ∈ S1 × S1 × R
2, Md(q) is the desired inertia matrix, Vd(q)

is the desired potential function and so, the total energy function of the closed loop reads
Hd = (1/2)p⊤M−1

d
(q)p + Vd(q). Subindex “d” denotes “desired” which means in closed-

loop. Finally J2(q,p) ∈ R
2×2 is a skew-symmetric matrix free for the designer. The design

concludes after a damping injection stage. Stability properties require a positive definite Md

in a neighborhood of the desired equilibrium q⋆, with q⋆ = argminVd(q), and then (q⋆, 0) is a
stable equilibrium point of the closed-loop system (3.2), with Lyapunov function Hd.

Since the system is underactuated the “matching” procedure provides on one hand,
a set of algebraic constraints (in the actuated part) and, on the other hand, a set of Partial
Differential Equations (PDEs) on Md and Vd (in the unactuated part). The PDEs arise for
Md are called kinetic energy PDEs and the ones for Vd are called potential energy PDEs.
Clearly, the success of this methodology relies on the possibility of solving those PDEs, which
is usually a daunting task. In fact, for the case of the Furuta’s pendulum a new mathematical
machinery was needed to solve them. First, the reparametrization of the free skew-symmetric
matrix J2 given in [28] allows to transform the kinetic energy PDE in a set of first-order
ordinary differential equations depending only on the q1-coordinate. Second, the change of
coordinates proposed in [29, 30] allows to simplify, drastically, the non-homogeneous term of
the kinetic energy PDEs. The complete solution was reported in [31] and the experimental
test will be commented further in comparison with others strategies.

Remark 3.2. Again the success of the proposed strategy relies on the fact that the model for the
design is conservative. The extension of this methodology considering natural damping was
given in [32, 33]. Unfortunately, in Furuta’s pendulum case and considering natural damping
torques no solutions were found so far.

Literature Review

Other different theoretical solutions have been reported using energy-shaping approaches. In
[2] the Controlled Lagrangians methodology was used for stabilisation, through just a kinetic
energy shaping (see also [34]). In [35] a way to transform the PDEs was proposed providing
another solution for Furuta’s pendulum. Closely related it is the non-linear controller based
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on a Lyapunov control approach given in [36]. All of these different solutions have not been
experimentally tested, so far.

3.2.2. Forwarding

Cascade non-linear control techniques have attracted the interest of many researchers (see
[37–39] and references therein), mainly because they provide great simplifications and/or
reductions in the non-linear control design stage. Forwarding is a passivity approach applied
to cascade non-linear systems with feedforward paths. In [38] the system is treated as a
feedforward connection of two cascade subsystems through a non-linear vector function.
Assuming that each subsystem has an associated Lyapunov function, separately, the main
difficulty is the need to construct an additive cross term to get a Lyapunov function for the
whole cascade. The cross term is constructed through the solution of a PDE. The solution
of the PDE provides an invariant manifold decomposition. The manifold allows together
with a change of coordinates to construct a compound scaled Lyapunov function solving the
stabilisation problem in closed form [37]. So, to solve another PDE is needed. Finally, noting
that the system is in Jurdjević-Quinn form [40], then a damping stabiliser solves the whole
control problem. We apply this technique to the conservativemodel (2.18) and the design and
experiments were reported in [41, 42]. It is worth noting that the main result of [41] was not
the non-linear stabiliser designed through Forwarding. Themain result was that the Lyapunov
function associated to the Forwarding design was used together with the one of the swing-
up controller, to design a Lyapunov-like switching strategy to solve the whole problem,
i.e. the almost global stabilisation of the inverted position, both in theory and practise. The
usual switching strategy to solve this global control problem is, to compound the swing-up
controller with a Linear Quadratic Regulator (LQR) to stabilise the origin [8, 43], i.e. a state-
feedback u := Kx with state x ∈ R

n and a constant gain matrixK. In our available pendulum
we realised that the Lyapunov function associated to the LQR cannot be used to design the
switching strategy because the estimate of the Domain of Attraction (DoA) is too small. By
too small we means that the level of the noise from the measurements is higher than the size
of the largest admissible level set of the estimate of the DoA, and then the switching controller
fails to commute.

Remark 3.3. The Forwarding needs the solution of a PDE. The solution of the PDE is an
invariant which provides and invariant manifold decomposition for the closed-loop system.
Thus, that conservative property was crucial again.

Literature Review

In [3] another solution was given using the non-linear cascade technique called Backstepping
[44]. The approximated solution given relies on a nontrivial change of coordinates and it has
not been experimentally tested so far.

3.2.3. Input-Output Feedback Linearisation

This technique was a step ahead after the development of the well-known State Feedback
Linearisation, which linearises the state of the system from the control input through a
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non-trivial change of coordinates and control. This change of coordinates comes up from
the solution of a set of PDEs. The extension to this approach was made through the
Input-Output Feedback Linearisation which linearises the input-output response of the system
[45, 46]. In the cases in which it is not possible to linearise the whole system by a static
state-feedback, a partial feedback linearisation can still be possible. This partial feedback
linearisation transforms the system dynamics into two parts: the external dynamics, which
become linear; the internal non-linear dynamics (locally characterised by the zero dynamics
[45]). As proposed in [45] a possibility to control non-linear systems is to find an output,
called “fictitious” such that the system linearised through that output is minimum phase [45].
Thus, in [47, 48]we proposed a nontrivial and constructive “fictitious” output through which
it is possible to achieve the asymptotic stability with (locally) exponential convergence of
the origin, for a class of underactuated mechanical systems with underactuation degree one.
The generalisation to underactuation degree larger than one is given in [49]. The approach
was based on classical Input-Output Feedback Linearisation and Lyapunov redesign [50],
yielding excellent results in theory and experiments. In particular, for Furuta’s pendulum
the proposed output, namely y, reads

y := q̇2 + k1 cos q1q̇1 + k2 sin q1, (3.3)

where k1,2 are positive control gains. The model used for the design was (2.18). In fact, the
proposed output makes the system to be exponential minimum-phase [46], i.e. the equilibrium
of the zero dynamics is hyperbolic. As it is well-known this property provides the systemwith
robustness (to unmodelled dynamics, disturbances) [50]. The experiments in the available
Furuta’s pendulum equipment were reported in [51].

Remark 3.4. We would like to underscore that the exponential minimum phase property is not
achieved by most of non-linear control design techniques. For example in energy-shaping
and Forwarding techniques the closed-loop system is weakly minimum phase w.r.t. its output,
inherent fact of thosemethodologies by their passivity properties (see [52] for further details).

Remark 3.5. As in the previous cases, a crucial conservative quantity allows to design the
stabiliser. In this case the energy of the zero dynamics was the conserved quantity.

Literature Review

Close to Input-Output Feedback Linearisation is the Flatness approach. In the case of a system
with a single control input then, it is said to be differentially flat if and only if it is fully
linearisable via static state-feedback (see e.g. [53, 54]). A Flatness controller for a linearised
model of Furuta’s pendulum was given in [55] but it was based on a linear model, through
the Jacobian, since the non-linear model is not differentially flatw.r.t. any output.

3.2.4. Singular Perturbations

A deep and fair review of the use of this technique to control systems with different time
scales is given in [50] and references therein. A singularly perturbed system is a system in
which its own structure makes different coordinates evolve in different time scales. In the
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2 × 1.45 rad

2 × 0.82 rad

2 × 0.75 rad

Figure 6: Experimental region of attraction.

beginning, it was a technique to analyse the stability of equilibria, because the time-scale
separation is a property of the own structure of the system. Nevertheless, if the system has not
this time-scale separation itself, we can be able to propose a stabiliser to force that separation-
like property and then, to analyse the stability of the equilibrium. This is the case proposed in
[56, 57] for Furuta’s pendulum. In fact, we evenmake relaxations to the Input-Output Feedback
Linearisation control law described above, and then we use the Singular Perturbation theory to
analyse the stability. The theoretical and experimental result was reported in [56, 57], where
a fair comparison with another techniques was also reported. Moreover, we designed an
experiment to measure the largest attraction basin. In fact, to the best of our knowledge,
this is the largest region of attraction experimental tested so far, to stabilise this kind of
pendulum. We reproduce, and comment briefly, here Figure 6 from [57], where the results
of the experiments were collected.

In the experiment we forced to the system to start from an initial condition as
(θ(0), θ̇(0), ϕ(0), ϕ̇(0)) = (θ⋆, 0, 0, 0). The idea was to find out the largest θ⋆ for which
the origin (the upright position of the pendulum) was stabilised with a given controller.
The controller design shows that the maximum theoretical value of θ⋆ for the controller
based on singular perturbations is defined through a condition in the controller gains, and
therefore can be tuned (see [57]). In [2, 31] the maximum theoretical θ⋆ depends on physical
parameters of the own pendulum, and therefore the formulas are not tunable, giving rise in
our pendulum to a maximum approximately the half of the value of the one given by the
singularly perturbed approach. The best experimental results for each controller are collected
in Figure 6 and give rise to θ⋆ = 1.45 rad with the singular-perturbed approach; θ⋆ = 0.82
rad with the energy-shaping approach; θ⋆ = 0.75 rad with a Linear Quadratic Regulator.
Unfortunately, the system saturates and it was not possible to enlarge evenmore this practical
region of attraction (see [57]). Some videos of the experiments can be displayed from
http://www.esi2.us.es/∼jaar/investiga e.htm.

3.3. Global Stabiliser: A Challenge

In the previous sections we have shown the non-linear strategies to swing-up and
stabilisation of the pendulum at the upright position. To solve the whole problem,
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i.e. swing-up and stabilization, a switching strategy was designed to “catch” the pendulum
at the upright position properly. As commented before, fortunately, the swing-up strategy
was designed such that the pendulum passes through the origin of the state space. This is
the practical engineering solution to the whole problem. But one might wonder, if it would
be possible to solve the whole problem with only one control strategy. We cannot close this
section without describing this mathematical and still open problem that has attracted the
attention of many researchers. Thus, suppose that we are interested in solving the whole
problem, designing only one smooth state-feedback controller. By smooth we means only
with one control strategy without any switch between strategies. Of course, from a practical
engineering point of view the problem is actually solved as it has been shown in the previous
sections, but from a mathematical point of view it is a challenge problem. On one hand there
is an obstacle inherent to the own configuration space of the system, remind that q ∈ S1 × S1,
which means that we cannot globally stabilise an isolated equilibrium in the whole state
space. All we can do is to stabilise the upper equilibrium from almost everywhere in the
state space, except possibly a set of zero Lebesgue measure. On the other hand, since the
upper equilibrium of the unforced system is unstable then we have to design a static state-
feedback that makes that equilibrium asymptotically stable and all the remaining equilibria
unstable.

The latter idea, for an underactuated mechanical system, was proposed in [58] in a
pendulum-on-a-cart system where almost global stability of the equilibrium was proved. For
Furuta’s pendulum case, we have found a promising controller that makes the work but
it was not possible to prove the almost global stability of the equilibrium, so far. As it was
reported in [8] the static state-feedback reads u := k1 sin(2q1) + k2 cos(q1)q̇1 + k3q̇2, with ki,
i = 1, . . . , 3, control gains, and where we underscore the unsigned definite damping-like term.
To prove almost global stability of the equilibrium, if so, is still a mathematical open problem.
However we tested the proposed controller through experiments. In Figure 7 we show a
successful experiment, where in the top figure we show the time histories of the position
and the velocity of the pendulum and, in the bottom figure the time histories of the control
input. Notice that there is no any switch. A video of the experiment can be displayed from
http://www.esi2.us.es/∼jaar/investiga e.htm.

3.4. Autonomous Oscillations

Another field of interest for the control community is the generation of “artificial” and
autonomous oscillations, i.e. by means of an appropriate control law. To accomplish this
in [59] we proposed a methodology based on matching the open-loop system with a
generalised hamiltonian system, which is able to exhibit robust oscillations. Thus, the closed-
loop system displays robust oscillations associated with a limit cycle. The methodology
mimics the energy-shaping approach but here, the objective is to reach a limit cycle
(invariant limit set), which provides a stable oscillating behaviour, instead of a fixed-
point attractor. The desired limit cycle is born through a supercritical Hopf bifurcation on
an approximated second-order dynamical model and, therefore, for certain values of a
control parameter the closed-loop system has a fixed-point attractor, changing to a limit
cycle through other values of that control parameter. Successful experiments were reported
in [59] and we reproduce in Figure 8 a sequence of snapshots of the experiment for a
period of the oscillations of 0.5 second. A video of the experiment can be displayed from
http://www.esi2.us.es/∼jaar/investiga e.htm.
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Figure 7: Experimental result with the challenging non-linear stabiliser.
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Figure 8: Sequence of snapshots showing one period of the oscillations.

Literature Review

Another approach to generate autonomous oscillations on Furuta’s pendulum has been
reported in [13, 60] based on virtual holonomic constraints. In our approach we design a
closed-loop structure which associated Lyapunov function has a closed trajectory as its limit
set (the limit cycle). In [13, 60] a closed trajectory is generated in closed loop and then only
local exponential convergence can be guaranteed.
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3.5. Bifurcations

This section is devoted to comment briefly some works regarding with bifurcations which
have been also analysed and experimentally tested in our laboratory pendulum. The works
commented here are mainly focused in the analysis of some non-linear behaviour of the
controlled pendulum, rather than in control design. In fact, the controller used to analyse the
behaviour is the linear one, i.e. a linear state-feedback stabiliser designed through the Jacobian.
In [61, 62] a bifurcation map was constructed for Furuta’s pendulum with a saturated linear
controller, where the bifurcation parameters were the controller gains. Detailed analysis,
simulations, and experiments in our available pendulum were reported in [63]. Finally,
in [64] global bifurcation analysis was made for Furuta’s pendulum. Nevertheless, we
underscore that the dynamic friction model presented here was not used. Only a static model
to compensate Coulomb’s friction was used instead.

Literature Review

In [21] a complete bifurcation map for the Furuta’s pendulum is given. Nevertheless,
the bifurcation map is for the unforced pendulum and only through simulations with
continuation methods.

4. Conclusion

A detailed dynamical model of the available laboratory Furuta’s pendulum is provided. The
completed model is based on Classical Mechanics augmented with a dynamical model that
allows to compensate all those non-conservatives torques, arising to a quasi-conservative model
in practise. A survey of all the non-linear controllers designed with that quasi-conservative
model and successfully tested through experiments is also reported.

Appendices

A. Experimental Control System

The schematic representation of the full control system is depicted in Figure 9. The laboratory
electromechanical system is composed by three subsystems: measurement, power, and
control supervision. A brief description of them is given in this appendix.

Measurement Subsystem

Recall that the system has two degrees of freedom corresponding to the angles of rotation
of the pendulum and the motor shaft, the angular coordinates θ and ϕ, respectively. These
angles are measured by sensors position (encoders) of incremental nonhigh resolution (2000
and 1024 pulses per revolution, resp.). Velocities for each angle, θ̇ and ϕ̇, are obtained from
suitable filters to the respective angular positions. There is the possibility to obtain the
velocity ϕ̇ via a tachometer coupled to themotor shaft. The transmission of the signal position
of the pendulum is through brushes using a slip-ring system.
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Figure 9: Schematic of the experimental control system.

To avoid problems of aliasing, mainly caused by noise, an analog filter (antialiasing) is
used. The cutoff frequency is at 200Hz, to filter the signal for the speed sensor (variable ϕ̇)
before being sampled.

Power Subsystem

This subsystem provided the necessary power to drive the motor. The DC-motor provides
a maximum torque of 15Nm at 2000 r.p.m., with a regulated source of 50VA. The motor is
controlled by current through a PWM servo-amplifier at 22KHz (see Figure 9).

Control and Supervision Subsystem

This subsystem closed the loop. It is composed by a PC and a data card Dspace DS1102,
based on a Digital Signal Processors (DSP) TMS320C31. Among others, We have interfaz
AD/DA, digital inputs/ouputs, counters, incremental encoders interface, digital filters,
and communication interface. The real-time software is provided by Dspace running on
Matlab/Simulink. The minimal sample time allowed is 1msec.

B. MATLAB

For the sake of completeness, in this appendix we collect the detailed MATLAB code for
identification of the dynamic friction model (LuGre).
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B.1. Code for Step 1
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B.2. Code for Step 2
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B.3. Code for Step 3
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B.4. Code for Step 4
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[4] M. Wiklund, A. Kristenson, and K. J. Åström, “A new strategy for swinging up an inverted
pendulum,” in Proceedings of the 12th IFAC World Congress, vol. 9, pp. 151–154, Sydney, Australia,
1993.

[5] H. Goldstein, Classical Mechanics, Addison-Wesley, New York, NY, USA, 2nd edition, 1980.
[6] A. J. Van der Schaft, L2-gain and Passivity Techniques in Nonlinear Control, Springer, New York, NY,

USA, 1989.
[7] D. R. Merkin, Introduction to the Theory of Stability, vol. 24 of Texts in Applied Mathematics, Springer,

New York, NY, USA, 1996.
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[16] F. Gordillo, J. Á. Acosta, and J. Aracil, “A new swing-up law for the Furuta pendulum,” International
Journal of Control, vol. 76, no. 8, pp. 836–844, 2003.

[17] A. L. Fradkov and A. Yu. Pogromsky, Introduction to Control of Oscillations and Chaos, vol. 35, World
Scientific, River Edge, NJ, USA, 1998.

[18] A. L. Fradkov, O. P. Tomchina, and O. L. Nagibina, “Swinging control of rotating pendulum,” in
Proceedings of the 3rd IEEE Mediterranean Symposium on Control and Automation, pp. 347–351, Limassol,
Cyprus, July 1995.

[19] A. L. Fradkov, “Swinging control of nonlinear oscillations,” International Journal of Control, vol. 64, no.
6, pp. 1189–1202, 1996.

[20] A. P. Konjukhov, O. L. Nagibina, and O. P. Tomchina, “Energy based double pendulum control in
periodic and chaotic mode,” in Proceedings of the 3rd International Conference on Motion and Vibration
Control, pp. 99–104, Chiba, Japan, 1996.
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[28] J. Á. Acosta, R. Ortega, A. Astolfi, and A.M.Mahindrakar, “Interconnection and damping assignment
passivity—based control of mechanical systems with underactuation degree one,” Transactions on
Automatic Control, vol. 50, no. 12, pp. 1936–1955, 2005.
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[53] M. Fliess, J. Lévine, P. Martin, and P. Rouchon, “A lie-backlund approach to equivalence and flatness
of nonlinear systems,” IEEE Transactions on Automatic Control, vol. 44, no. 5, pp. 922–937, 1999.

[54] M. V. Nieuwstadt, M. Rathinam, and R. M. Murray, “Differential flatness and absolute equivalence,”
in Proceedings of the 33rd Conference on Decision and Control, Lake Buena Vista, Fla, USA, 1995.
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