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Abstract

Fused in sarcoma (FUS)-immunoreactive neuronal and glial inclusions define a novel molecular

pathology called FUS proteinopathy. FUS has been shown to be a component of inclusions of

familial amyotrophic lateral sclerosis with FUS mutation and three FTLD entities, including
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neuronal intermediate filament inclusion disease (NIFID). The pathogenic role of FUS is

unknown. In addition to FUS, many neuronal cytoplasmic inclusions (NCI) of NIFID contain

aggregates of α-internexin and neurofilament proteins. Herein, we have: (1) shown that FUS

becomes relatively insoluble in NIFID and there are no post-translational modifications; (2) shown

there are no pathogenic abnormalities in the FUS gene in NIFID; (3) performed an

immunoelectron microscopy analysis of the precise localizations of FUS in NIFID, as this has not

previously been described. FUS localized to euchromatin, and strongly with paraspeckles, in

nuclei, consistent with its RNA/DNA-binding functions. NCI of varying morphologies were

observed. Most frequent were the ‘loosely aggregated cytoplasmic inclusions’ (LACI), 81% of

which had moderate or high levels of FUS-immunoreactivity. Much rarer ‘compact cytoplasmic

inclusions’ (CCI) and ‘Tangled twine ball inclusions’ (TTBI) were FUS-immunoreactive at their

granular peripheries, or heavily FUS-positive throughout, respectively. Thus FUS may aggregate

in the cytoplasm and then admix with neuronal intermediate filament accumulations.
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Introduction

Neuronal intermediate filament inclusion disease (NIFID) is a rare progressive neurological

disease with a clinically heterogeneous phenotype including: frontotemporal dementia

(FTD), upper motor neuron disease (MND), and extrapyramidal signs presenting, typically,

at a young age (Bigio et al. 2003; Cairns et al. 2003; Josephs et al. 2003; Cairns et al. 2004a;

Josephs et al. 2005; Molina-Porcel et al. 2008; Neumann et al. 2009b). Rare cases have an

age at onset greater than 65 years (Molina-Porcel et al. 2008). Although the most

characteristic clinical phenotype of NIFID is FTD, the clinical picture may embrace a

diverse group of motor disorders and dementia: primary lateral sclerosis (upper motor

neuron disease), parkinsonism, corticobasal degeneration, FTD, and combinations thereof

(Bigio et al. 2003; Cairns et al. 2003; Josephs et al. 2003; Cairns et al. 2004a; Josephs et al.

2005; Molina-Porcel et al. 2008; Neumann et al. 2009b). Macroscopically, there is atrophy

of the frontal and temporal lobes and often the basal ganglia are affected. Microscopically,

the disease is characterized by neuronal loss and gliosis in affected areas and neuronal and

glial inclusions containing fused in sarcoma (FUS) protein (Neumann et al. 2009b;

Armstrong et al. 2010). In addition, there are neuronal cytoplasmic inclusions (NCI) and

axonal inclusions (spheroids) that are filamentous and contain neuronal intermediate

filament (IF) proteins. These latter inclusions, which are variably ubiquitinated, distinguish

NIFID neuropathologically from other forms of frontotemporal lobar degeneration with FUS

inclusions (FTLD-FUS) (Munoz et al. 2009; Neumann et al. 2009a and 2009b; Mackenzie et

al. 2010). In about half of cases, there are neuronal intranuclear inclusions (NII), which

contain epitopes of FUS and are variably ubiquitinated. The fine structure of FUS-

immunoreactive neuronal inclusions of NIFID has not previously been described and the

etiology of NIFID is unknown.

The FUS protein is a 526-amino acid DNA/RNA-binding protein like TAR DNA-binding

protein of 43 kDa (TARDBP or TDP-43) (Buratti and Baralle 2001; Buratti et al. 2001;

Kwiatkowski et al. 2009; Lagier-Tourenne and Cleveland 2009). FUS, like TDP-43, defines

another molecular pathology also seen in FTLD (FTLD-FUS), but is uncommon, accounting

for about 1 per cent of cases, or less, in most series (unpublished data). There are many

similarities between TDP-43 and FUS: both bind RNA, through RNA recognition motifs

(RRM), and both are involved in splicing and processing messenger RNA with only a few
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known targets (reviewed in Lagier-Tourenne and Cleveland 2009). As with TDP-43, FUS is

normally a predominantly nuclear protein that is expressed at low levels in the cytoplasm.

Similar to familial amyotrophic lateral sclerosis (FALS) with TARDBP mutation (Gitcho et

al. 2008; Kabashi et al. 2008; Sreedharan et al. 2008; Van Deerlin et al. 2008; Benajiba et al.

2009), FALS with FUS mutation (Kwiatkowski et al. 2009; Vance et al. 2009) is

characterized neuropathologically by cytoplasmic aggregates of FUS and nuclear to

cytoplasmic translocation of FUS, similar to that seen in FTLD-TDP. The discovery of

TARDBP mutations in FALS in about 5% of FALS established a primary genetic role for

TARDBP in ALS (Gitcho et al. 2008; Kabashi et al. 2008; Van Deerlin et al. 2008; Benajiba

et al. 2009). Subsequently, TARDBP variants have been reported in a few patients with

FTLD-MND and FTLD in the absence of MND (Benajiba et al. 2009; Gitcho et al. 2009a).

The observation that TARDBP gene defects may cause a spectrum of clinical and pathologic

phenotypes (MND, FTLD-MND, and FTLD) led Van Langenhove and colleagues (2010) to

investigate the genetic contribution of FUS in FTLD and FTLD-MND and they identified a

missense mutation in one patient with FTLD that was predicted to be pathogenic. Though

NIFID cases have no family history, these data indicate that mutations in FUS may result in

a clinically heterogeneous phenotype including MND, FTLD-MND, and FTLD linked by a

common molecular pathology called FUS proteinopathy. More recently, FUS has also been

found in the inclusions of a number of rare neurologic disorders with overlapping features of

FTLD and MND including: neuronal intermediate filament inclusion disease (NIFID)

(Neumann et al. 2009b; Armstrong et al. 2010) basophilic inclusion body disease (BIBD)

(Munoz et al. 2009), and atypical FTLD with ubiquitin inclusions (aFTLD-U) (Neumann et

al. 2009b). FUS is also a minor component of the inclusions of several other

neurodegenerative diseases including Huntington’s disease and other polyglutamine diseases

(Doi et al. 2010).

It is presently unknown whether the neuronal and glial inclusions of NIFID result from toxic

or protective mechanisms, but the identification and the precise ultrastructural co-

localization of the range of molecules which aggregate to form inclusions will help to

elucidate the mechanisms of pathogenesis in NIFID. These mechanisms may illuminate

pathogenesis in other neurodegenerative diseases with abnormal neuronal protein

aggregates. Here we describe, for the first time, the ultrastructural localization of FUS

protein within NIFID, with particular reference to the NCI.

Materials and methods

Histology and immunohistochemistry

After death, the consent of the next of kin was obtained for brain removal, following local

Ethical Committee procedures (Human Studies Committee, Washington University School

of Medicine) and the 1964 Declaration of Helsinki (as modified in Edinburgh, 2000) (Table

1). Brain tissue was preserved in buffered 10% formalin or 4% paraformaldehyde. For this

study, tissue blocks were taken from the frontal cortex at the level of the genu of the corpus

callosum to study the superior frontal cortex (SFC), and temporal lobe at the level of the

lateral geniculate body. Tissue was fixed in 10% phosphate buffered formal-saline and

embedded in paraffin wax. Following microwave pretreatment, immunohistochemistry

(IHC) was performed on 6 - 8 μm sections with either anti-FUS rabbit polyclonal antibody

(1:1,500; Sigma-Aldrich, St. Louis, MO) or A300-294A (1:1,500; Bethyl Laboratories,

Montgomery, TX: both generated similar staining) and sections were counterstained with

haematoxylin.

Antigen retrieval of the paraffin wax-embedded tissue blocks was performed by heating

sections in a solution of 0.5% ethylenediaminetetraacetic acid (EDTA) in 100 mmol/L

TRIS, pH 7.6 at 100°C for 10 min. Immunohistochemistry (IHC) was undertaken on 6-10
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μm thick sections prepared from formalin- (cases NIFID.1 to 4) or 4% paraformaldehyde-

(NIFID.5) fixed, paraffin-embedded tissue blocks using the avidinbiotin complex detection

system (Vector Laboratories, Burlingame, CA) and the chromagen 3,3′-diaminobenzidine

(DAB); sections were counterstained with haematoxylin. Antibodies used included those

that recognize ubiquitin, FUS, and epitopes of class IV neuronal IF proteins including

phosphorylation-dependent anti-neuronal IF antibodies (Table 2). Anti-neuronal IF

antibodies used in this study are well characterized and have been used previously to

demonstrate epitopes of neuronal IF in NIFID (Cairns et al. 2004b).

Biochemistry

Fresh, snap-frozen brain tissue from neocortex was extracted and analyzed from five cases

of NIFID, as previously described (Cairns et al. 2004a and 2004c; Mosaheb et al. 2005).

Using an established protocol (modified), gray matter was separated from white matter and

sequentially extracted with buffers of increasing strength at 2 mL/g initial wet tissue weight

as follows: (1) Low-salt (LS) Tris-buffered saline (TBS; 10 mM Tris, pH 7.5, 5 mM

ethylenediaminetetraacetic acid (EDTA), 1 mM dithiothreitol (DTT) in 10% sucrose); (2)

1% Triton X-100 in LS-TBS, 0.5 mM NaCl; (3) Sarkosyl Buffer, LS-TBS with 1% N-

lauryl-sarcosine and 0.5 mM NaCl buffer, (4) 2% SDS in 50 mM Tris, pH 7.6; and (5) Urea

Buffer; 7 M urea, 2 M thiourea, 4% 3-[(3-cholamidopropyl) dimethylammonio]-1-

propanesulfonate (CHAPS), 30 mM Tris-HCl, pH 8.5. Each buffer was supplemented with a

protease inhibitor cocktail (Mini Protease Inhibitor Cocktail Tablets, Roche Applied

Science, Indianapolis, IN) (Gitcho et al. 2009b). Tissue was homogenized in 2 mL/g low-

salt (LS) buffer and centrifuged at 25,000 x g for 30 minutes at 4°C. The supernatants were

saved as the LS fraction (all extractions were repeated twice). Pellets were homogenized in 2

mL/g Triton-X (TX) buffer. Myelin precipitate was removed by suspending the pellet in

Myelin Floatation Buffer (TX buffer with 30% sucrose) and centrifuged at 100,000 g for 30

minutes at 4°C. After centrifugation, the myelin layer was removed. The pellets were

homogenized in 2 mL/g Sarkosyl buffer and incubated at 22°C on a shaker for 1 h before

sedimentation at 180,000 g for 30 minutes at 22°C. The pellet was homogenized in 1 mL\g

urea buffer and centrifuged at 25,000 g for 30 minutes at 22°C (Neumann et al. 2006). For

Western blot analysis, polyvinylidene fluoride (PVDF) replicas were prepared from 4%

stacking and 12% resolving SDS polyacrylamide slab gels and probed with rabbit polyclonal

antibodies to FUS (C-terminal of FUS, A300-294A, 1:2,000, Bethyl Laboratories,
Montgomery, TX). Primary antibodies were detected with horseradish peroxidase-

conjugated anti-mouse IgG (Jackson ImmunoResearch Laboratories, Inc., West Grove, PA)

and immunoreactive proteins were revealed using ECL chemiluminescence (ECL Advance

Western Blotting Detection Kit, RPN2132, Piscataway, NJ).

DNA extraction and PCR

Genomic DNA was isolated from frozen brain tissue. Briefly, approximately 100 mg of

frozen brain tissue was pulverized in liquid nitrogen. DNA was extracted using the Qiagen

DNeasy Blood & Tissue Kit (Quiagen, Valencia, CA). Primers used were previously

reported and conditions optimized for PCR (Kwiatkowski et al. 2009). The purified PCR

products (QIAquick PCR Purification Kit, Qiagen, Valencia, CA) were directly sequenced

using BigDye version 3.1 (Applied Biosystems, Carlsbad, CA) on an ABI Prism 3100

automated DNA sequencer (AME Bioscience A/S Toroed, Norway) with PCR primers.

Sequencher 4.9 software (Gene Codes Corp., Ann Arbor, MI) was used for sequence

analysis.
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Tissue preparation for transmission electron microscopy

Frozen brain tissue stored at −70°C was brought to −20°C. The grey matter was identified,

dissected, and samples placed directly into a cold (4°C) solution of 4% (w/v) formaldehyde

and 0.1% (v/v) glutaraldehyde (vacuum-distilled) in phosphate-buffered saline (PBS). The

following procedures were carried out at 4°C. After 18 h of fixation, the samples were rinsed

thoroughly in PBS then dehydrated in an ethanol series and embedded in Unicryl resin

(British BioCell International, Cardiff, UK) as previously described (Thorpe et al. 1999) and

as used in our previous transmission electron microscope (TEM) study of NIFID (Mosaheb

et al. 2005). Details of the antibodies and the dilutions used for immunogold labeling TEM

studies are described in Table 2; for the TEM study, 5 and 10nm gold particle-conjugated

goat anti-rabbit (GaR5, GaR10) and 10nm goat anti-mouse IgG (GaM10) secondary probes

were obtained from British BioCell International (Cardiff, UK).

Immunogold labeling transmission electron microscopy

We used established methods to perform immunoelectron microscopy (Thorpe, 1999).

Briefly, modified phosphate-buffered saline, pH 8.2 containing 1% BSA, 500μl/L

Tween-20, 10mM NaEDTA and 0.2g/L NaN3 (henceforward termed PBS+) was used

throughout all the following procedures for all dilutions of antibodies and gold probes. Thin

sections were initially blocked in normal goat serum (1:10 in PBS+) for 30 min at ambient

temperature, then either single-labeled with anti-FUS and anti-ubiquitin antibodies (in initial

labeling experiments we used normal rabbit serum as a specificity control and all dilutions

were performed at 25μg/ml IgG final concentration) or double-labeled with anti-FUS and

SMI31 or SMI32 (both at 1:100) or α-internexin (INA) (5μg/ml IgG final concentration).

After 3 × 2 min PBS+ rinses, the sections were immunolabeled in GaR10 for the single

labeling or, for the double-labeling, a mixture of GaR5/GaM10 secondary gold probes (all

1:10 in PBS+) for 1 h at ambient temperature. Sections were subsequently rinsed in PBS+ (3

× 10 min) and distilled water (4 × 5 min). All immunogold-labeled thin sections were

subsequently post-stained in 2% (w/v) aqueous, 0.22μm-filtered uranyl acetate for 1h and

examined in a Hitachi-7100 TEM at 100kV. The sections were systematically and

thoroughly scanned for pathology and images acquired digitally with an axially-mounted

(2K x 2K pixel) Gatan Ultrascan 1000 CCD camera (Gatan UK, Oxford, UK).

Results

Neuropathology

The histological changes in NIFID included the stereotypical lesions of frontotemporal lobar

degeneration (FTLD): neuronal loss, microvacuolation, particularly in superficial laminae,

and astrocytosis in temporal and frontal isocortex. However, the most striking feature of the

NIFID brains was the presence of inclusions containing FUS (Fig. 1a to c). At the light

microscope level, abnormal FUS-immunoreactivity was detected at four sites: neuronal

cytoplasmic inclusions (NCI) (Fig. 1), neuronal intranuclear inclusions (NII), dystrophic

neurites (DN), and in sparse glial cytoplasmic inclusions (GI) (Neumann et al. 2009b;

Armstrong et al. 2010). As previously reported, NCI were present in neurons that lacked

nuclear FUS-immunoreactivity, indicating a redistribution of the normally predominantly

nuclear protein to abnormal cytoplasmic aggregates (Fig. 3a). In the cases examined, the

NCI was the most frequent morphological type, whilst NII were rare in the sections

available. Thus, for the TEM studies, we present data relating to NCI only; the infrequency

of NII, DN and GI in thin sections precluded a sufficiently detailed analysis of these

inclusions.
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Biochemistry

To determine if NIFID is a protein misfolding/aggregating disease we investigated the

solubility of FUS protein using sequential fractionation methods. We extracted protein from

gray matter of frontal cortex from patients with NIFID as well as age-matched controls.

Immunoblotting showed variability in the amount of FUS detected in all brains analyzed;

however, there was a consistent alteration in FUS solubility in NIFID (Fig. 2a). In addition,

we detected only a single major protein band of approximately 73 kDa, consistent with the

predicted molecular weight (Fig. 2a arrowhead). We did not identify higher molecular

weight species in the soluble or urea fractions, but lower molecular weight species were seen

in the soluble fractions, possibly indicating splice variants or cleavage products of the

normal protein. As FUS was present in the urea-soluble fraction only in the NIFID cases

(Fig. 2), further investigation is needed to examine the possible role of post-translational and

structural modifications associated with FUS and, possibly, other urea-soluble proteins in

NIFID.

Molecular genetics

In this study, we sequenced the complete coding region and the flanking intronic regions of

FUS. A single nucleotide polymorphism (SNP) was detected at position 4327 in two cases

(C/T genotype, SNP: rs1052352). However, this SNP has also been reported in normal

controls. We did not detect any novel polymorphisms in the FUS gene.

Immunogold labeling transmission electron microscopy

Neuronal nuclear localization of FUS—Within normal neuronal nuclei, FUS-

immunogold particles were preferentially localized to euchromatin regions (Fig. 3b).

Additionally, there was a strong association of FUS-immunogold particles with discrete,

round subnuclear structures, called ‘paraspeckles’ (Bond and Fox, 2009) (Fig. 3c, solid

arrow). These paraspeckles were, most often, located next to interchromatin granules (Fig.

3c, dashed arrow). The presence of FUS in nuclear structures in unaffected cells is

consistent with its normal DNA/RNA-processing function. Initial specificity control labeling

with normal rabbit serum at matched IgG concentration to that used for the anti-FUS

antibody generated acceptably very minimal labeling (data not shown).

Neuronal cytoplasmic inclusions—The number of neuronal cytoplasmic FUS-

immunogold particles was, generally, very low in unaffected neurons of NIFID (data not

shown). In affected (NCI-bearing) neurons, FUS-labeling was strongly and specifically

associated with certain inclusions, of which three major morphological subtypes were

identified: (1) ‘Loosely Aggregated Cytoplasmic Inclusion’ (LACI), (2) ‘Compact

Cytoplasmic Inclusion’ (CCI), consistent with the morphological subtypes previously

described (Mosaheb et al. 2005), and (3) ‘Tangled-Twine-Ball Inclusion’ (TTBI).

The LACI was the most common type of inclusion, as was previously reported in our

ultrastructural studies of the NCI with neuronal IF proteins in NIFID (Cairns et al. 2004a;

Mosaheb et al. 2005). In thin sections, LACI appeared predominantly as round, oval (Fig.

4a), or elongated (Fig. 4b) inclusions. Discrete inclusions were adjacent to the nucleus while

others were annular. None of these inclusions had a limiting membrane around the border of

the inclusion. FUS labeling of the LACI was prominent in granular regions (Fig. 4d), while

filamentous regions had much lower levels of immunoreactivity. Visual inspection and

semi-quantitative assessment of all LACI (n = 88) revealed that 81% had moderate or high

levels of immunogold labeling. In the LACI, α-internexin and phosphorylated neurofilament

immunolabeling was low, as we have previously described (Mosaheb et al. 2005). INA and

phosphorylated NEFH epitopes did not, in most inclusions, co-localize with FUS.
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Conversely, ubiquitin labeling of the LACI was high as previously reported (Mosaheb et al.

2005) and was localized, largely, to areas of FUS-immunogold labeling.

The CCI, corresponding to the hyaline conglomerate inclusion identified by light

microscopy (Fig. 1c) (Bigio et al. 2003; Cairns et al. 2004a) and that we have previously

shown to contain neuronal IF proteins (Mosaheb et al. 2005), was much less frequent than

LACI. They were usually round or oval in shape and contained more densely packed parallel

filaments than was seen in the LACI (Fig. 5a and 6a [CCI]). Some of these CCI had

transitional zones in which the filaments were orientated in different directions. Typically,

surrounding the CCI was a layer of more dense and more granular material (Fig. 5a and 5b,

arrows). The dense core of the CCI was not, or only modestly, FUS-immunoreactive (Fig.

5b and 5c, regions with asterisks), corresponding to the FUS-negative regions of CCI seen

by IHC (Fig. 1c). Eccentric or surrounding areas were moderately FUS-immunolabeled (Fig.

5b, arrows [single-labeled for FUS] and Fig. 5c [serial section of same CCI double-labeled

for FUS and phosphorylated neurofilament). Previously, we showed that the core of the CCI

contains variable amounts of INA, ubiquitin and phosphorylated NEFH (Mosaheb et al.

2005).

The tangled twine ball inclusion (TTBI), like the CCI, was much less numerous than LACI

(Mosaheb et al. 2005). These TTBI were first found and described by Mosaheb (2008 thesis,

unpublished data) and are composed of a dense, central, tightly tangled ball of filaments

with invading/radiating filaments, resembling loose ends which have escaped a tangled

twine ball. Moderate levels of FUS labeling were identified in the central dense region and

high levels in the peripheral filament bundles (Fig. 6c). Epitopes of phosphorylated NEFH

were present to a moderate degree (Fig. 6c) and more numerous epitopes of ubiquitin were

seen (Fig. 6d). Labeling of FUS, neuronal IF, and ubiquitin was localized to similar regions

of the TTBI indicating proximate co-localization of these proteins in the TTBI of NIFID.

FUS, neuronal IF, and ubiquitin immuno-labeling of filamentous structures in NIFID is

summarized in Table 3.

Discussion

FUS has recently been added to the list of protein misfolding diseases which are

characterized by relatively insoluble aggregates which form either within neurons, glial

cells, or both. FUS was first identified as the pathological protein in about 5% of cases of

familial ALS with FUS gene mutation (Kwiatkowski et al. 2009; Vance et al. 2009). So far,

only one FUS variant has been reported in a case of FTD (Van Langenhove et al. 2010).

Subsequently, it has been found in the inclusions of a diverse group of FTLD entities

including: NIFID, BIBD, and atypical FTLD with ubiquitin-immunoreactive inclusions

(Munoz et al. 2009; Neumann et al. 2009 and 2009b; Armstrong et al. 2010). Together, this

group of diseases is linked by a common molecular pathology called FUS proteinopathy.

The pathological signature of FUS in FTLD-FUS remains to be determined, but preliminary

data indicate that FUS becomes relatively insoluble in aFTLD-U, a similarity shared with

other protein misfolding diseases including: tauopathy, synucleinopathy, and prionopathy

(Forman et al. 2004; Winklhofer et al. 2008). The specificity of FUS within FTLD is

uncertain as FUS is also a component of the neuronal intranuclear inclusions of

Huntington’s disease, spinocerebellar ataxias 1 and 3, and neuronal intranuclear inclusion

body disease (Woulfe et al. 2010).

FUS protein is an RNA/DNA binding protein that is localized predominantly to the nucleus

(Andersson et al. 2008). It is involved in many diverse cellular processes, including cell

proliferation (Bertrand et al. 1999), DNA repair (Baechtold et al. 1999) transcriptional

regulation and RNA splicing (Yang et al. 1998), and nucleo-cytoplasmic shuttling (Zinszner

Page et al. Page 7

J Mol Neurosci. Author manuscript; available in PMC 2012 June 14.

 E
u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts
 E

u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts



et al. 1997). It has been suggested that the non-coding RNAs (ncRNAs) present in

paraspeckles may act as a ligand for FUS causing an allosteric change resulting in its release

from an inactive conformation (Wang et al. 2008). The accumulation of FUS in paraspeckles

may indicate a partial loss of function. The observation that FUS co-localizes with

paraspeckles indicates a specific function(s) for this protein distinct from those of TDP-43

and deserves further investigation.

We have extended these observations and speculations by (1) undertaking DNA sequencing

of the FUS gene in NIFID, (2) determining the relative solubility of FUS protein by

biochemical sequential fractionation methods, and (3) performing immunogold electron

microscopic studies of the inclusions to elucidate their fine structure in order to illuminate

their evolution, as far as this is possible in a static section of brain tissue. Specifically, we

have used immunogold labeling TEM to localize FUS protein within unaffected neurons and

within the various morphological subtypes of NCI seen in NIFID (LACI, CCI, and the

TTBI) (Mosaheb et al. 2005). In this TEM study, we focused on FUS-immunogold labeling

and undertook double-labeling of FUS and phosphorylated NEFH and FUS and INA,

together with (single) ubiquitin labeling of serial sections and compared these data with our

previous ultrastructural studies of these inclusions.

In unaffected NIFID neurons, nuclear FUS immunolabeling was preferentially associated

with regions of euchromatin, which is consistent with its role in transcription, and similar to

our previous ultrastructural study of nuclear TDP-43 in normal brain neurons (Thorpe et al.

2008). A novel observation of this study is that FUS is strongly associated with subnuclear

structures called paraspeckles in adult human brain (Bond and Fox, 2009). These structures

are only found in mammalian nuclei in cells which have undergone differentiation (Fox et

al. 2002); they are known to contain proteins involved in transcription and RNA processing,

with active RNA polymerase II and newly transcribed RNA present in their structures (Xie

et al. 2006). Paraspeckles are thought to regulate gene expression by the retention of RNA

(Zhang and Carmichael, 2001) and they and their functions are very dynamic (Bond and

Fox, 2009). For example, a virus-infected cell increases paraspeckle diameter either as a

result of viral processing or through activation of cell defense mechanisms (Zolotukhin et al.

2003). Specific labeling of FUS within paraspeckles correlates with its well-described

functions as an RNA/DNA binding protein (Crozat et al. 1993; Perrotti et al. 1998) involved

in transcription regulation, RNA splicing (Yang et al. 1998), and nucleo-cytoplasmic

shuttling (Zinszner et al. 1997). The observation that FUS co-localizes with paraspeckles

indicates a specific function(s) for this protein distinct from those of TDP-43 and deserves

further scrutiny.

Initial observations at the light microscope level show that NCI-bearing neurons exhibit a

lack of nuclear FUS staining (Figs. 1 and 3); this redistribution of a usually predominantly

nuclear protein to the cytoplasm in affected neurons is similar to our previous findings, at

the ultrastructural level, in regard to TDP-43 in FTLD with TDP-43 proteinopathy (Thorpe

et al. 2008) and to Pin1 protein in a range of FTLD entities with tauopathy and Alzheimer’s

disease (Thorpe et al. 2004). Thus, the mis-localization of important regulators of nuclear

function appears to be a common feature in a spectrum of neurodegenerative diseases and

may lead to cell death by common pathogenic mechanisms leading to a toxic gain of

function and/or loss of function.

With regards to FUS localization in affected NIFID neurons, this study provides further

evidence that it is an important component of the pathological inclusions, supporting the

initial evidence provided by Neumann et al. (2009b). Three types of NCI were identified, the

most common being the LACI (Mosaheb et al. 2005); many were round or oval in shape

(Pick body-like), though some were neurofibrillary tangle-like, crescentic, or annular, as

Page et al. Page 8

J Mol Neurosci. Author manuscript; available in PMC 2012 June 14.

 E
u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts
 E

u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts



previously described and more recently described using FUS IHC (Bigio et al. 2003;

Josephs et al. 2003; Cairns et al. 2004a; Mackenzie and Feldman, 2004; Neumann et al.

2009b; Armstrong et al. 2010) at the light microscope level. Immunogold labeling with anti-

phosphorylated neurofilament antibodies was low, α-internexin labeling was negligible,

whilst ubiquitin epitopes in LACI were numerous both in this and our previous study

(Mosaheb et al. 2005). Eighty-one percent of LACI were labeled, either moderately or

heavily, with anti-FUS antibodies, indicating an important role for FUS in the pathogenesis

of NIFID. The much rarer TTBI and the CCI/hyaline conglomerate inclusion had variable

proportions of molecular components. There was more abundant phosphorylated NEFH in

TTBI, suggesting a potentially more significant role for this protein in this form of inclusion

compared to a LACI. The distribution of FUS labeling around the granular peripheries of

CCI/hyaline conglomerate inclusions suggests an evolution in the aggregation of proteins

including neuronal IF. Previously, we showed very high levels of INA labeling in the CCI

from the same NIFID cases as used in the present study (Mosaheb et al. 2005).

Reproducibility between studies was confirmed by comparing the mean width of filaments

containing INA (mean filament width: 10.1 nm) of this study with that calculated from our

original study by a different observer (mean filament width: 9.9 nm) of our previous study

(Mosaheb et al. 2005).

Previously, we used a candidate gene approach to identify potential gene defects in several

neuronal IF genes and found none in NIFID (Momeni et al. 2006). Similarly, in this study,

in agreement with Neumann et al. (2009b), we found no pathogenic mutations in the FUS

gene. Interestingly, a transgenic mouse model with a deletion in gigaxonin (GAN), a

cytoskeletal regulating protein, and the genetic cause of giant axonal neuropathy developed

a phenotype reminiscent of the INA-immunoreactive inclusions of NIFID. Although the

NCIs of NIFID and GANDex1/Dex1 mice were immunohistochemically similar, no GAN

variant was identified in DNA obtained from well-characterized cases of NIFID (Dequen et

al. 2009). To date, no pathogenic gene defect has been reported in NIFID.

Using post-mortem brain tissue, it is a challenge to determine the pathogenic chronology of

the disease and in particular the formation and evolution of the inclusions. The apparent

alternatives are that either the three forms of NCI reported here and previously (LACI, CCI,

and TTBI; Bigio et al. 2003; Mosaheb et al. 2005; Uchikado et al. 2006) represent unique

structures reflective of differing molecular pathogenic cascades operating within different

neurons, or they represent different appearances of the same inclusion at different stages in

its evolution towards maturity. This latter would be analogous to the proposed evolution of

the ‘diffuse’ beta amyloid plaque into a ‘classical’ ring-with-core structure and, ultimately, a

‘burned-out’ plaque in the pathogenesis of AD. Previous studies (Neumann et al. 2009b;

Armstrong et al. 2010), suggest that as there is often diffuse, but intense, staining of

neuronal IF in the cytoplasm of neurons with FUS-immunoreactive NCI, an initial defect in

FUS metabolism, either as a consequence of a reduction in normal function or toxic

accumulation of aggregates, may cause a secondary abnormality in the processing and

regulation of intermediate filament trafficking. This sequence of events might result from

the malfunction of FUS as a transcriptional regulator. Alternatively, the apparent

accumulation of neuronal IF in the cytoplasm may be a consequence of the formation and

growth of the FUS-immunoreactive inclusion (Neumann et al. 2009b). The observation that

some separate and distinct inclusions of neuronal IF and FUS can occur in the same neuron

indicates that both of these processes may operate within a single neuron.

In this study, we examined 88 LACI using FUS immunogold TEM and make some very

cautious suggestions regarding their possible evolution. We observed a small number of

LACI with significant filamentous areas that were not labeled with anti-FUS antibodies, but

which were labelled for α-internexin and neurofilament. However, the granular regions
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around these inclusions labeled moderately for FUS. Therefore, it may be that LACI evolve

composed of intermediate filaments, with the subsequent accumulation of FUS protein as a

downstream event. Previously, we demonstrated high levels of INA and neurofilament

labeling in the central filamentous core of CCI in the same NIFID cases (Mosaheb et al.

2005). In this study, we have observed that the granular regions surrounding the CCI is

FUS-immunoreactive (Fig. 5), similarly to those surrounding some LACI. Thus, the CCI

may represent a precursor LACI. Granular FUS-immunoreactive material may be deposited

early at the periphery of the filamentous INA- and neurofilament-containing inclusion (CCI)

and then invade and admix with the inclusion to form a LACI. The mature inclusion (LACI)

would eventually assume the morphology of a more loosely-aggregated filamentous form,

concomitant with lowered levels of reactivity to INA and neurofilament proteins. This and

the disaggregation of the inclusion may reflect a degree of protein degradation; the higher

levels of ubiquitin within the LACI, compared with the CCI, support this hypothesis (see

Table 3 for a summary of these labeling data).

In summary, we provide the first ultrastructural analysis of the association of FUS protein

within NCI of NIFID. Allied to our previous data on neuronal IF proteins in NIFID, these

data support an important role for FUS, alongside neuronal IF proteins, and ubiquitin in the

molecular pathogenic cascade leading to NCI in NIFID. These unique inclusions of NIFID

distinguish it from other FUS proteinopathies including ALS with FUS mutation, BIBD and

aFTLD-U.
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Fig. 1.
Fused in sarcoma (FUS)-immunoreactive neuronal cytoplasmic inclusions (NCI) in NIFID.

Neuronal loss, gliosis, microvacuolation and FUS-immunoreactive neuronal cytoplasmic

inclusions (NCI) are present in the superficial laminae of the parahippocampal gyrus (a).

NCI in the dentate gyrus (b). Globose and skein-like NCI in motor neurons of the precentral

gyrus; one motor neuron contains a compact cytoplasmic/hyaline conglomerate inclusion

(CCI) with eccentric FUS-immunoreactivity (c). FUS immunohistochemistry (a-c); x400 (a,
c); x200 (b).
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Fig. 2.
FUS in NIFID is relatively insoluble. Gray matter from the frontal cortex of five NIFID

cases (lanes 1 to 5) and a control patient (C) was sequentially extracted with buffers of

increasing extraction strength. Each extract, corresponding to 20 mg of initial wet tissue

weight, was resolved by SDS-PAGE and immunoblotted with antibodies to FUS. There is a

consistent increase in insolubility of FUS in NIFID: normal FUS was present in the soluble

fractions of NIFID and control (arrowhead), but insoluble FUS (urea fraction) was only

present in NIFID cases and not the control (a). Urea-soluble FUS was present in all NIFID.

1-5 cases but not in the control brain tissue (NL) (b).
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Fig. 3.
FUS is present in the nucleus of unaffected cells (a-c). Light microscopy reveals normal

nuclear staining (arrow) in the superficial layers of the parahippocampal cortex; in affected

neurons there is an apparent translocation of FUS-immunoreactivity from the nucleus to the

cytoplasm to form a compact neuronal cytoplasmic inclusion (double arrows). In some

neurons, there is less intense immunoreactivity in the cytoplasm, possibly representing an

intermediate form, or pre-inclusion (double arrowheads); in the same neuron there is a

vermiform intranuclear inclusion (arrowhead). Within the neuropil, some FUS-

immunoreactive grains are seen (asterisk). TEM reveals FUS immunogold labeling of

nuclear structures (b, c). Epitopes of FUS are preferentially localized to euchromatin, rather

than (the denser) heterochromatin (asterisk) regions, within the nucleus; the nuclear

envelope is marked by an arrow (b). Paraspeckles (solid arrow), have the appearance of

dense round areas in the nucleus and are strongly FUS-immunoreactive (c). The

paraspeckles were, most often, located next to interchromatin granules (dashed arrow). FUS

immunohistochemistry (a), FUS immunogold TEM (b, c). Scale bars 50 μm (a), 100 nm (b)

and 200 nm (c)
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Fig. 4.
Ultrastructural analysis of the NCI in NIFID. Neuronal cytoplasmic inclusions have varying

morphologies: a round, neuronal, loosely aggregated cytoplasmic inclusion (LACI) (arrow)

adjacent to the nucleus (a), a crescentic LACI (arrow) (b), and annular filaments of a LACI

(arrows) surrounding the neuronal nucleus (c). FUS labeling is preferentially over granular

structures within the LACI (d). FUS immunogold TEM. Scale bars = 2 μm (a-c), 200 nm

(d)
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Fig. 5.
Ultrastructural analysis of the compact cytoplasmic inclusion (CCI) in NIFID. A low

magnification electron micrograph showing one CCI (asterisks) (a). The core of the CCI

(asterisk) shows no, or minimal, FUS-immunoreactivity (single antigen labeling), whereas

the peripheral, more granular, regions (arrows) are moderately labeled by anti-FUS

antibodies (b). Serial section of the same CCI as in (b) showing a zone of phosphorylated

neurofilament immunoreactivity (asterisks) and a peripheral zone of FUS-immunoreactivity

(circles) and a transitional zone double-labeled for FUS and phosphorylated NEFH (circle

with white asterisk). FUS (5nm gold particles) and phosphorylated NEFH (10nm gold

particles) double-labeled immunogold TEM. Scale bars 2 μm (a, b) and 200 nm (c)
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Fig. 6.
Filaments of NCI in NIFID contain FUS protein. NCI with the appearance of tangled twine

balls (TTBI) reveal a dense central core with radiating bundles of filaments (a, b).

Immunoelectron double-labeling with FUS and phosphorylated NEFH reveals that the thick

radiating filament bundles of the TTBI are strongly FUS-immunolabeled (5nm gold particles

within circles) and there is moderate labeling with anti-phosphorylated NEFH antibodies

(10nm gold particles) (c). In addition to containing FUS and phosphorylated NEFH, TTBI

contain epitopes of ubiquitin; the thick radiating filament bundles showed the most intense

labeling (d). FUS, phosphorylated NEFH, and ubiquitin immunogold TEM. Scale bars 2 μm

(a, b) and 200 nm (c, d)
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Table 3

Immunolabelling and filament dimensions of three types of neuronal cytoplasmic inclusions in NIFID

Antigen
Neuronal cytoplasmic inclusion

LACI TTBI CCI

FUS ++ +++ −

α-Internexin* +/− − (+++)

Phosphorylated NEFH* + ++ (+++)

Ubiquitin* +++ +++ (++)

Polyglutamine* (−) (−) (−)

Filament width
mean ± s.e.m. (range)

8.9 ± 0.2 (5.9-15.0) nm 9.6 ± 0.5 (5.6-12.4) nm 10.1 ± 0.7 (6.1-14.2) nm

Abbreviations: LACI, loosely aggregated cytoplasmic inclusion; TTBI, ‘tangled twine ball inclusion; CCI, compact cytoplasmic inclusion; FUS,

fused in sarcoma; NEFH, neurofilament heavy polypeptide. Semi-quantitative assessment of the density of immunogold particles/filament: +++

high; ++ moderate; + low; +/− negligible; − unlabelled.

*
Data previously reported (Mosaheb et al. 2005) are included here (in parentheses) for comparison with FUS immunoelectron microscopy
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