
Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Liangxiu Han,
Manchester Metropolitan University,
United Kingdom

REVIEWED BY

Jinling Zhao,
Anhui University, China
Xin Lv,
Shihezi University, China
Haikuan Feng,
Beijing Research Center for
Information Technology in Agriculture,
China

*CORRESPONDENCE

Yan Zhu

yanzhu@njau.edu.cn

Xia Yao

yaoxia@njau.edu.cn

†These authors have contributed
equally to this work

SPECIALTY SECTION

This article was submitted to
Sustainable and Intelligent
Phytoprotection,
a section of the journal
Frontiers in Plant Science

RECEIVED 18 November 2022

ACCEPTED 22 December 2022
PUBLISHED 16 January 2023

CITATION

Mustafa G, Zheng H, Li W, Yin Y,
Wang Y, Zhou M, Liu P, Bilal M, Jia H,
Li G, Cheng T, Tian Y, Cao W, Zhu Y
and Yao X (2023) Fusarium head blight
monitoring in wheat ears using
machine learning and multimodal
data from asymptomatic to
symptomatic periods.
Front. Plant Sci. 13:1102341.
doi: 10.3389/fpls.2022.1102341

COPYRIGHT

© 2023 Mustafa, Zheng, Li, Yin, Wang,
Zhou, Liu, Bilal, Jia, Li, Cheng, Tian, Cao,
Zhu and Yao. This is an open-access
article distributed under the terms of
the Creative Commons Attribution
License (CC BY). The use, distribution
or reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

TYPE Original Research
PUBLISHED 16 January 2023

DOI 10.3389/fpls.2022.1102341
Fusarium head blight
monitoring in wheat ears
using machine learning
and multimodal data
from asymptomatic to
symptomatic periods
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1National Engineering and Technology Center for Information Agriculture, Key Laboratory for Crop
System Analysis and Decision Making, Ministry of Agriculture, Jiangsu Collaborative Innovation
Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China, 2National
Engineering and Technology Center for Information Agriculture, Jiangsu Key Laboratory for
Information Agriculture, Ministry of Agriculture, Jiangsu Collaborative Innovation Center for
Modern Crop Production, Nanjing Agricultural University, Nanjing, China, 3Crop Genomics and
Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm
Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
The growth of the fusarium head blight (FHB) pathogen at the grain formation

stage is a deadly threat to wheat production through disruption of the

photosynthetic processes of wheat spikes. Real-time nondestructive and

frequent proxy detection approaches are necessary to control pathogen

propagation and targeted fungicide application. Therefore, this study

examined the ch\lorophyll-related phenotypes or features from spectral and

chlorophyll fluorescence for FHB monitoring. A methodology is developed

using features extracted from hyperspectral reflectance (HR), chlorophyll

fluorescence imaging (CFI), and high-throughput phenotyping (HTP) for

asymptomatic to symptomatic disease detection from two consecutive years

of experiments. The disease-sensitive features were selected using the Boruta

feature-selection algorithm, and subjected to machine learning-sequential

floating forward selection (ML-SFFS) for optimum feature combination. The

results demonstrated that the biochemical parameters, HR, CFI, and HTP

showed consistent alterations during the spike–pathogen interaction. Among

the selected disease sensitive features, reciprocal reflectance (RR=1/700)

demonstrated the highest coefficient of determination (R2) of 0.81, with root

mean square error (RMSE) of 11.1. The multivariate k-nearest neighbor model

outperformed the competing multivariate and univariate models with an

overall accuracy of R2 = 0.92 and RMSE = 10.21. A combination of two to

three kinds of features was found optimum for asymptomatic disease detection

using ML-SFFS with an average classification accuracy of 87.04% that gradually
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improved to 95% for a disease severity level of 20%. The study demonstrated

the fusion of chlorophyll-related phenotypes with the ML-SFFS might be a

good choice for crop disease detection.
KEYWORDS

fusarium head blight, asymptomatic detection, sequential floating forward selection,
machine learning classifier, disease estimation, multimodal data
1 Introduction

Among the biotic stress challenges to wheat cereals,

fusarium head blight (FHB) has been causing extensive and

severe damage to wheat crops since the early 20th century

(McBeath and McBeath, 2010). FHB is equally detrimental to

humans and livestock because it produces fungal mycotoxins

and causes discoloration, weight reduction, and production,

quality and yield losses (Bauriegel et al., 2011). Therefore,

early and real-time detection and monitoring is a potential

option for controlling FHB (Zhang et al., 2020). For this

purpose, reflectance and chlorophyll fluorescence-based

imaging (Multispectral and hyperspectral images, Chlorophyll

fluorescence images, etc.) and non-imaging (Multispectral and

hyperspectral reflectance or spectroscopy) sensors are being

employed successfully for plants’ disease monitoring (Bauriegel

et al., 2011; Bauriegel and Herppich, 2014; Mahlein et al., 2019).

The FHB pathogen deteriorates internal pigmentation and

physiological structure during the plant–pathogen interaction,

which can be observed by reflectance spectroscopy (Kuenzer and

Knauer, 2013). In agricultural remote sensing, reflectance

spectroscopy is considered a competitive high-throughput

phenotyping tool (Araus Ortega et al., 2018). Few studies have

examined the spike–pathogen interaction using reflectance

spectroscopy. For example, Ma et al. (2020) studied the

reflectance of FHB, applied wavelet transforms and combined

with Fisher linear analysis to measure the spectra from an angle

to the side of wheat ears, and developed an identification model

with an overall 88% accuracy. Likewise, (Huang et al., 2019a)

used Fisher analysis with support vector machine (SVM)

classification to develop a discriminant model. In addition,

hyperspectral analyses have been successfully implemented in

several crops for disease identification (Ren et al., 2021). Some

studies have also explored hyperspectral imaging spectroscopy

for FHB identification (Jin et al., 2018; Mahlein et al., 2019).

These studies have indicated reflectance spectroscopy as an

excellent candidate for spike studies. The numerous reflectance

analysis approaches, for example, both narrow and broad bands

(Thenkabail et al., 2004; Oumar et al., 2013), spectral derivatives

(Gong et al., 2002), and transformed spectral reflectance (Zhao

et al., 2021) are used. However, the application of vegetation
02
indices (VI) is a simple and effective tool for detecting spectral

variations (Ren et al., 2021). So far, the consistent sensitivity of

VI in different years for FHB has yet to be investigated using

spectral data.

Anatomically, the photosynthetic structure is primarily and

severely affected by the hemi-biotrophic behavior of FHB (Kheiri

et al., 2019). Thus, the net photosynthetic rate (Pn) is highly

sensitive and could also be the best marker of pathogen invasion.

The chlorophyll fluorescence spectroscopy is also an excellent

approach for detecting plants’ early or real-time abiotic and

biotic stress responses (Harbinson, 2013). Multiple fluorescence

imaging techniques are used to investigate plant responses via

different excitation modes. For example, anthocyanin levels in

strawberry leaves have been estimated using UV light-induced

fluorescence imaging of both the chlorophyll and blue-green

fluorescence signals under Nicotiana benthamiana damage

(Pineda et al., 2008). Kinetic fluorescence has been employed

to examine Arabidopsis for drought tolerance and freeze-thaw

(Ehlert and Hincha, 2008), virus infection in plants (Lei et al.,

2017), and wheat responses to salt stress (Mehta et al., 2010).

Chlorophyll fluorescence imaging (CFI) has also been applied

for FHB detection and classification in combination with other

remote sensors for wheat crops (Bauriegel et al., 2011; Mahlein

et al., 2019), and to analyze pathogen severity on wheat spikes

and leaves (Tan et al., 2021). However, the consistent sensitivity

of CFI under different light excitation modes in different years

for FHB remains to be investigated using machine learning

(ML) approaches.

A comprehensive and temporal investigation of plants using

remote sensors results in a huge dataset to compute output.

Thus, for target output and data redundancy, ML helps through

feature selection to select a subset of relevant features from the

initially available dataset (Long et al., 2019). The mathematical

models are classifiers from ML: a system that learns from given

multiclass data and labels test data points (Wei et al., 2022).

Numerous studies have used ML classifiers for disease detection,

and they have become a valuable and widely applied

mathematical tool in remote sensing studies (Zarco-Tejada

et al., 2018).

Most of the previously conducted studies used all features

(spectral and fluorescence) or biochemical/biophysical attributes
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to disease classification or regression models, regardless of the

number of input variables. Many researchers have found that the

amount of input variables or spectral features affect ML

algorithms’ performance (Fallahpour et al., 2017; Bhardwaj

and Patra, 2018). ML classifiers were used with feature

selection techniques to improve fluorescence spectroscopic

nucleotide identification (Huang et al., 2019b). Their machine

learning and sequential floating forward selection (ML-SFFS)

approach has not been applied to reflectance spectroscopy in

combination with chlorophyll fluorescence of plants for disease

diagnosis. The relative importance of each input indicator may

vary by disease severity (DS) stage (Zarco-Tejada et al., 2018;

Poblete et al., 2020). Thus, it is ambiguous how the partial fusion

or combination of numerous spectral and fluorescence features

improves FHB disease identification at different DS stages. FHB

photosynthetic fingerprints on wheat spikes are rarely described

in terms of net photosynthesis and chlorophyll concentration

(Mustafa et al., 2022). Hence, the study conducted examination

of wheat spikes pursuing principal objectives: (1) to determine

highly disease-sensitive features (DSF) employing chlorophyll

fluorescence imaging (CFI) and chlorophyll-related

hyperspectral indices using a variable importance measure,

and (2) to assess the ML-SFFS approaches focusing the

multimodal data fusion for classification and estimation of

disease at different levels of disease severity.
2 Materials and methods

2.1 Study site and plant material

The glasshouse-based winter wheat experiments were

conducted in Jiangsu Province, China, for two consecutive

seasons (2019–20 and 2020–21). The hyperspectral reflectance

(HR) measurements were performed at the Pailou experiment

base of Nanjing Agricultural University (Qinhuai District,

Nanjing – 32°1’ N, 118°15’ E), and the fluorescence

experiments were conducted at the Intelligent Glasshouse of

Nanjing Agricultural University (Xuanwu District, Nanjing –

32°1’ N, 118°12’ E). HR plant material using two wheat varieties

(Aikang-58 as susceptible and Sumai-3 as resistant to FHB) was

grown successfully in 24 pots (size: 30 cm × 25 cm) in both

growing seasons (2019–20 and 2020–21). The detail of the

experiment material is given in Table S1. In each pot, 10 seeds

were uniformly grown and managed following the method of

Abid et al. (2017), where 12 pots were devoted to each variety

and further halved to six for healthy and six for diseased plants.

A similar protocol was followed for CFI that was identical to the

HR plant material. Whereas, for high throughput phenotyping

(HTP), seven wheat cultivars were grown: (1) Bainong-418, (2)

Zhongyou-9507, (3) Jimai-31, (4) Wenmai-6, (5) Chianmai-42,

(6) Huangpei-R4 as susceptible, and (7) Sumai-3 as

resistant to FHB. In total, 56 pots were grown, seven of which
Frontiers in Plant Science 03
were allocated to each cultivar, and five out of seven were

inoculated (Figure 1A).

2.1.1 Inoculation
The pots for the three types of sensors were inoculated with a

freshly obtained inoculum of Fusarium graminearum from the

State Key Laboratory of Crop Genetics and Germplasm

Enhancement of Nanjing Agricultural University. The

inoculum suspension of 2.5×105 spores ml−1 was point

inoculated for each spike in the middle spikelet (Figure 1A).

The environment of all the plants was made favorable for

successful fungal growth with high humidity, temperature 25–

30°C and 16/8 hours of light/dark photo-period (Zhang et al.,

2020). The inoculation was made at the growth stage (GS) 61–65

or flowering stage, where all spikes of uniform height and

phenotype were inoculated in each pot.

2.1.2 Disease severity
DS is the ratio of the symptomatic area to the asymptomatic

area of the sample (Stack and McMullen, 1998). Due to the

nonuniform development of disease infection, we designated

nine different categories of DS: (1) asymptomatic (healthy), (2)

DS1 (1–3%), (3) DS2 (4–5%), (4) DS3 (6–10%), (5) DS4 (11–

20%), (6) DS5 (21–40%), (7) DS6 (41–60%), (8) DS7 (61–80%),

and (9) DS8 (81–100%). The infection ratio or percentage of 4

infected ears from each pot was calculated based on the number

of pixels using the Image J software package following Easlon

and Bloom (2014).
2.2 Data measurement

2.2.1 Spike photosynthesis measurement and
chlorophyll content analysis

The Pn of the spikes was measured using a newly developed

P-Chamber (Figure 1B) integrated with a portable

photosynthesis system (LI-6400XT, Li-Cor Inc., Lincoln, NE,

USA). The P-Chamber’s dimension is 30 cm × 5cm × 5cm (L ×

W × H), equipped with double-sided red and blue LED light

source, and operate over a wide range of temperature (0–50°C)

and humidity (0–95%) without condensation. A CO2 flow rate of

800 L min−1 was maintained due to the large size of the P-

chamber. Further details of the experimental setup can be found

via info@phenotrait.com and in Chang et al. (2020).

For spike chlorophyll contents (SCC), each spike was

divided into three segments (upper, middle, and lower) and

the parts (rachis, rachilla, glumes, lemma, palea, and awns) were

mixed using a mortar and pestle. Then, 0.1 g of material was

weighed out and stored in a vial containing 25 mL of ethanol

(95%) for 48 h, till it turned white. The filtered samples were

then placed in a 4.5 mL cuvette and their absorbance was

measured at 470, 649, and 665 nm using a UV-visible

spectrophotometer (Thermo Scientific Evolution 220, Thermo
frontiersin.org

https://doi.org/10.3389/fpls.2022.1102341
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Mustafa et al. 10.3389/fpls.2022.1102341
Scientific, Waltham, MA, USA). Afterwards, calculated the

chlorophyl l content us ing a Lichtentha ler (1987)

standardized technique.
2.2.2 Hyperspectral reflectance measurements
For HR, a high-resolution spectroradiometer (ASD

FieldSpec 4 Hi-Res, Malvern Panalytical, Westborough, MA,

USA) was used to measure the spike HR with a sample interval

of 1.4 nm in the 350-1000 nm region and of 1.11 nm in the range

of 1001-2500 nm. The light reflected from the target was

captured using a 1.5 m fiber optic contact wire and the ASD

FieldSpec 4 Hi-Res array detector. Using a fiber optic probe, we

observed the sample stage from a vertical position at sample-to-

probe distance of approximately 2.5 cm using sunlight

(Figure 2A) between 11:00 h and 14:00 h (Beijing time). In

particular, all measurements were made non-destructively using

same spikes on sunny days. In total, 40 spikes were measured for

each year of the two-years experiments. In the end, five spectra

were captured spatially from each position – the top, middle, and

bottom of each spike from the front and back sides (Figure 2B).

Eventually, 30 spectra were collected from each spike for
Frontiers in Plant Science 04
subsequent analysis. This study used chlorophyll-related

spectral indices (Zarco-Tejada et al., 2018; Tian et al., 2021)

(Table 1A and Table S2).

2.2.3 Chlorophyll fluorescence imaging
For CFI, an open FluorCam FC 800-O kinetic imaging

fluorometer (PSI, Brno, Czech Republic) (Figure 3A) in which

the light flashes for measurement of modulated CF excitation are

produced by a pair of saturating light pulses (1 s, ~2000 mmol m−2

s−1) with red (lmax ~618 nm) and blue LED panels (lmax ~455 nm)

producing actinic light. A charge-coupled device camera (CCD)

with 12-bit resolution capturing 96 pixels per inch was employed to

capture the CF kinetics at a frequency of 10 images per second

(Granum et al. (2015). The spike pot was laid horizontally for

precise exposure of the spike face toward the fluorescence camera

(Figure 3A) and the samemarked side was imaged daily. The spike’s

region of interest (ROI) was cropped in FluorCam7 (PSI) software

to obtain spike measurements as one biological sample. In total, 25

and 85 spikes were measured over the two time periods of the

experiments in 2019–20 and 2020–21, respectively. Table 1B

provides the details of selected variables as explained by the

system developers.
A B

FIGURE 1

Spike FHB inoculation (A) and spike photosynthesis measurement with P-Chamber (B).
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A B

FIGURE 2

(A) Illustration of the setup for hyperspectral measurement, (B) Reflectance acquisition points from the whole individual spike.
TABLE 1 Variables included for fusarium head blight detection and estimation in the current study.

(A) Chlorophyll-related spectral indices

Chlorophyll indices Abbreviations Formulas References

1 Reciprocal Reflectance RR 1/R700 Gitelson et al. (1999)

2 Pigment Specific Simple Ratio PSSRb R800/R650 Blackburn (1998b)

3 Ratio Analysis of Reflectance Spectra RARSb R675/(R675×R700) Chappelle et al. (1992)

4 Normalized Difference Vegetation Index NDVI (R800-R670)/(R800+R670) Rouse et al. (1974)

5 Pigment Specific Normalized Difference PSNDa (R800-R675)/(R800+R675) Blackburn (1998a)

6 Carter indices CAR R695/R760 Carter (1994)

A detailed description of all used spectral indices is given in Table S2.

(B) Chlorophyll fluorescence variables

Chlorophyll fluorescence variables – description Abbreviations

1 Minimum fluorescence in dark-adapted state F0

2 Maximum fluorescence in dark-adapted state Fm

3 Steady-state maximum fluorescence in light Fm_Lss

4 Fluorescence decline ratio in steady-state Rfd_Lss

5 Peak fluorescence during the initial phase of the Kautsky effect fp

6 Steady-state non-photochemical quenching NPQ_Lss

7 Steady-state PSII quantum yield QY_Lss

8 Maximum PSII quantum yield QY = fv/fm

(C) High-throughput phenotyping variables

High-throughput phenotyping variables – description Abbreviations

1 Red band image R

2 Green band image G

(Continued)
F
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2.2.4 High-throughput phenotyping
For HTP, a nondestructive fluorescence and multispectral

phenotyping platform were employed (CropReporter,

PhenoVation B.V., Wageningen, the Netherlands) to

monitor various real-time physiological traits. This platform

acquired data via specific absorption, fluorescence, and

reflection patterns in the visible (VIS) and near-infrared

(NIR) wavelength ranges. The entire setup was automated

(Figure 3B), while the core fluorescence and spectral image

acquisition camera comprised a CCD, 16-bit camera, and

fluorescence lights mounted on robotic cartesian coordinates.

In total, 20 plants of each variety were imaged, and afterward,

the measurements of the spike areas were acquired using ROI

for subsequent data analysis. The system’s developers have

explained the details of the extracted variables (Table 1C),

and data were analyzed using the default software
Frontiers in Plant Science 06
Data_Analysis_V562; a detailed description can be found in

the study of Meng et al. (2020).
2.3 Algorithmic methodology for
disease detection

The study selected disease sensitive features using Boruta,

then after variance inflation factor (VIF) analysis, the partial

fusion of selected disease sensitive features (SDSF) was made

through ML-SFFS.

2.3.1 Feature selection
The study selected DSF using the Boruta method. This

wrapper approach uses random forest (RF) ensemble learning

in which the relevant features are chosen by comparing the
TABLE 1 Continued

(A) Chlorophyll-related spectral indices

Chlorophyll indices Abbreviations Formulas References

3 Blue band image B

4 Color image Hue

5 Color image Saturation

6 Color image Value

7 Photosynthetic efficiency of photosystem II image Fv/Fm

8 Chlorophyll image Chl

9 Chlorophyll index image CHL.Index

10 Anthocyanin reflectance index image Ari.Index

11 Normalized difference vegetation index image NDVI
A B

FIGURE 3

Chlorophyll fluorescence image acquisition (A) and high throughput phenotyping image acquisition (B).
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importance of the original attributes to randomly obtained

important features via permuted copies. The main idea is:

Random variables are made from the system copies. Then, the

original system variables are compared to previously produced

randomized variables to determine their value. Variables with

larger importance are considered important (Kursa and

Rudnicki, 2010). Regarding the color scheme of boxplots,

green represents important features, yellow labels represent

tentative features (score is close to the best shadow feature),

red confirms feature rejection, and blue denotes shadow features.

For each boxplot, the topmost edge, black line, and bottommost

edge of the box denote the upper (Q3), median (Q2), and lower

(Q1) quartiles, respectively. While, whiskers denote the

maximum (Q3 + 1.5*IQR) and minimum (Q1–1.5*IQR)

values defined through interquartile ranges (IQR = Q3-Q1),

respectively. The circles outside boxplot denote the outliers. This

study carried out this analysis using the Boruta package in the

R-environment.

2.3.2 Classification of FHB
A preliminary VIF analysis was made on the DSF – a subset

selected following Boruta analysis for hyperspectral reflectance,

chlorophyll fluorescence imaging, and high-throughput

phenotyping features. Among these, the features with VIF of

less than 10 were retained for subsequent analysis (Tian et al.,

2021) and stated finally as “selected DSF” (SDSF). Thereafter,

assuming the optimality of the SDSF and reducing the

computational complexity, a sequential floating forward

selection (SFFS) was integrated with machine learning

classification (MLC) algorithms to develop optimal feature

combination (Huang et al., 2019b). SFFS is a bottom-up

search procedure developed by Pudil et al. (1994), which

initiates the exploration of a null or random subset and selects

the highly significant feature. The three MLCs: k-nearest

neighbor (K-NN) (Weinberger et al., 2006), RF (Belgiu and

Drăgut,̧ 2016), and SVM (Chang and Lin, 2001). We performed

these analyses using the mlxtend package on a Jupyter notebook.
2.3.3 Estimation of disease severity
The SDSF and DS were linked using univariate regression to

derive empirical linear and multivariate regression (RF, SVM,

and K-NN). The first-year (2019–2020) and second-year (2020–

2021) datasets were used to develop and validate the regression

models. Herein, the root mean square error (RMSE) – Eq. 1

(Where, Pi and Oi symbolize the predicted and measured values,

respectively, and n denote the number of samples.) – and the

coefficient of determination (R2) – Eq. 2 (Where, yî represents

points in the regression line or prediction, ȳ represents the mean

of all values, yi symbolize the actual values and n denotes the

number of samples or points) – were used to assess their

predictive performance.
Frontiers in Plant Science 07
RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n
i=1 Pi − Oið Þ2

r
(1)

R2 = 1 −o
n
i=1 ŷ i − yið Þ2

on
i=1 yi − �yið Þ2 (2)

Where, the classification performance was measured through

the attributes of the confusion matrix and results are presented

as overall accuracy (Eq. 3) (Gorunescu, 2011). Be noted, we

practiced, supervised binary classification.

Overall   accuracy =
TP + TN

TP + TN + FP + FN
(3)

Where, TP (in actual infected and model also predicted so),

TN (in actual healthy model predicted same), FP (in actual

healthy but model predicted infected) and FN (in actual infected

but model predicted healthy).
3 Results

3.1 Biochemical, fluorescence, and
spectroscopic changes under
FHB invasion

Figure 4 shows that both SCC and Pn were severely affected

by pathogen infection, but unexpectedly, the study also observed

that healthy spikes also showed a slightly decreasing trend. All

trends exhibited a noticeable fall in biochemical parameters due

to pathogen infestation, but statistically significant differences

were not common (Figure 4A). A statistically significant

difference for Pn appeared at 5% disease percentage (DP) for

the period 2019–20, while for the following period (2020–21) it

appeared at 6% DP (Figure 4B). A similar trend can also be seen

in Figure 4C, where a statistically significant difference appeared

at 3% DP, while in Figure 4D, it appeared at 4% DP. In nutshell,

the pathogen severely affected the biochemical parameters, but

SCC were more sensitive than Pn.

Figures 5, 6 demonstrate the photosynthetic fingerprints of

FHB disease invasion on wheat spikes for CFI and HTP,

respectively. The DP in respect of days after inoculation (DAI)

for two years is shown in the Figure 5A. In Figure 5, QY showed

the clear difference between healthy and diseased samples from

3DAI. Likewise, the Fm_Lss demonstrated the significant

difference between healthy and disease spikes, but the Fo
showed a balanced response until 5 DAI. However, NPQ

responded in absolutely different manner in comparison to all

other parameters, it showed first resistance and remained

consistent until 5DAI but from 6 to 10 DAI a clear rise in

diseased plants was depicted. The HTP shows the clear change

(pictorial form-data not shown) in the ears for fv/fm, and

CHL.Index (Figure 6).
frontiersin.org

https://doi.org/10.3389/fpls.2022.1102341
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Mustafa et al. 10.3389/fpls.2022.1102341
Figure 7 reveals that the regions of 420–480, 540–680, and

740–860 nm are the spectral regions most highly sensitive to

FHB. Moreover, the red-edge (690–730 nm) shift toward the

blue region is also prominent, and both the areas and amplitude

of the red-edge decreased substantially with the intensification of

FHB infestation. Across all mean spectra, there was a gradual

increase in the VIS region (400–700 nm), but in the NIR region,

there was a continuous decrease. For the first two levels of DS,

the NIR region showed an increase, but for the next DS, it

decreased substantially.
3.2 DSF based on variable importance
score (VIP)

Figures 8A, B showed that QY_Lss and CHL.Index are more

sensitive, respectively. The top five features (CHL.Index, Fv/Fm,

QY_Lss, Fm, and QY) were selected with the highest VIP for

subsequent analysis as DSF and marked them with red asterisks

in Figure 8C. A pooled dataset of both periods (2019–20 and

2020–21) was analyzed and shown in Figure 9C. Although all of

the spectral features (SF) in Figures 9A–C showed sensitivity to

FHB, the top ten SF (partitioned by the dotted blue line) from

each dataset (Figures 9A–C) were selected as stable and
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consistent DSF. Finally, only seven SF (CAR, SRPI, RR,

PSSRb, NDVI, PSNDa, and RARSb) were consistent

throughout Figures 9A–C (marked by red asterisks), which

had shown consistently stable responses to FHB. The resulting

DSF showing a VIF of ≤10 were retained as selected disease-

specific features (SDSF) (Table 2).
3.3 FHB detection

Regarding the feature combination (FC), for the first five

levels of DS, the combination was of two to four features but for

later ones, only one to two features were sufficient to get the

highest overall classification accuracy (CA) (Table 3). These

numbers were far below than the multivariate pool of DSF.

Although the FC in all three approaches were not identical, some

features participated and performed significantly and

consistently, i.e., F5 (Fv/Fm) and F8 (NDVI). Figure 10 shows

a comparison of the selected features from the SFFS and the use

of all SDSF. Although the CA is satisfactory for both approaches,

considerable differences prevailed. SVM-SFFS showed better CA

than SVM-all, which might be due to a dimensionality factor.

Among all the SDSF, SRPI (Figure 11C) yielded the highest

RMSE = 17.1 with R2 = 0.86 using an estimated equation
frontiersin.org
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FIGURE 4

Dynamic changes of Pn (A, B) and SCC (C, D) against disease percentage in 2020 (A, C) and 2021 (B, D). The blue asterisks mention the stage
when there was statistical significance (t-test) between healthy and diseased spikes.
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developed on the dataset with R2 = 0.88. However, NDVI

(Figure 11D) showed a lower RMSE = 13.8 with R2 = 0.81,

compared to SRPI, R2 between the developed model and the

cross-validated datasets exhibited a much greater difference. The

minimum RMSE = 9.73 with R2 = 0.86 (Figure 11E) during

disease estimation was shown by Fv/Fm. Regarding the

multivariate models, in respect of their effectiveness in the

FHB estimation models, the RF model (Figure 12A) resulted

in RMSE = 11.11 with R2 = 0.91, the SVM model gave an

RMSE = 12.90 with R2 = 0.87, and K-NN outperformed all the

others, resulting in an RMSE = 10.20 with R2 = 0.92.

Convincingly, all the SDSF explained the significant variation

with DS, and model equations had the excellent predictive ability

for FHB estimation.
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4 Discussion

4.1 Interpretation of disease-sensitive
features from different categories

FHB pathogen invasion on wheat spikes damaged the

spikelets’ anatomy along with disease proliferation. This

damage reduced Pn (Mustafa et al., 2022), SCC, and

eventually resulted in the gradual and complete destruction of

spike structure. The results confirmed this trend for Pn

(Figures 4A, B) and SCC (Figures 4C, D). Given these, the

reduction in the biochemical functions of wheat spikes can be

attributed to pathogen development. In addition, SF, CFI and

HTP features (Figures 7, 8) are evident of the photosynthetic
A

B

D
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C

FIGURE 5

Illustration of the chlorophyll fluorescence features involved in the study to detect fusarium head blight (FHB): (A) RGB image of nine different
disease severity (DS) and (B-G) are chlorophyll fluorescence parameters.
frontiersin.org

https://doi.org/10.3389/fpls.2022.1102341
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Mustafa et al. 10.3389/fpls.2022.1102341
FIGURE 7

Illustrates the temporal effect of fusarium head blight (FHB) on spectral reflectance in wheat spikes at different disease severity (DS).
FIGURE 6

Spectral and fluorescence (left to right) response of wheat spikes under fusarium head blight (FHB) infection through high throughput
phenotyping setup regarding days after inoculation (DAI) – top to bottom.
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damage to the spike structure because these features are

pertinent to chlorophyll-related studies (Table 1).

The SDSF from VIP analysis has excellent sensitivity to FHB

disease, and each feature clutches specific relevance to plants’

chemistry. For instance, among the SF (SRPI, NDVI, CAR,

CHL.Index), SRPI has been previously cited as being most

sensitive to chlorophyll and carotenoid components (Gamon

et al., 2016). Likewise, NDVI, CAR, and CHL.Index leverage

support from the literature as plant pigment indices (Rouse et al.,

1974). Previous studies have successfully employed the VI for

disease detection in different crops (Ren et al., 2021).

Accordingly, FHB detection and monitoring have investigated
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the VI for hyperspectral imaging and found PSSRa and PSSRb

most sensitive (Bauriegel et al., 2011; Mahlein et al., 2019). This

study also found these two VI sensitive to FHB disease (Figure 9)

but failed to compete with the chosen ones on behalf of the

criteria of consistent behavior and VIP. The reason might be that

these studies had not adopted consistent features selection

approach and claimed correlation-based sensitivity. However,

this study selected SRPI, NDVI, CAR, and CHL.Index for

classification using a consistent feature selection approach.

Resultantly the SF have sensitivity for FHB detection and

could be attributed for pigment damage in the plants. The

reflectance pattern (Figure 7) and the development of FHB
A B

C

FIGURE 8

Illustration of the variable importance among studied chlorophyll fluorescence features: (A) comparison of the chlorophyll fluorescence imaging
features (CFI) through variable importance score (VIP) using the pooled dataset, (B) comparison of fluorescence and reflectance features
acquired through high-throughput phenotyping (HTP) setup through VIP using pooled dataset, (C) comparison of all features measured through
CFI and HTP analyzed together as pooled dataset for VIP where red asterisks mark five features with high VIP.
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FIGURE 9

Illustration of the variable importance among studied spectral features (SF) calculated using hyperspectral reflectance: (A) comparison of the SF
through variable importance score (VIP) using pooled dataset of first year, (B) comparison of the SF through VIP using pooled dataset of second
year, (C) comparison of the SF through VIP using pooled dataset of both years.
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invasion severity are in accord with the findings of previous

studies (Ha et al., 2016 and Huang et al., 2020) that also

represent the pigment damage and red-edge shift under

disease stress.

Chlorophyll fluorescence is a well-known noninvasive

approach to examine the photosynthetic fingerprints of

stress (biotic or abiotic) on the metabolism of plants

(Gitelson et al., 1999; Ehlert and Hincha, 2008; Huang et al.,

2019b). Numerous studies have reported Fv/Fm as an integral

fluorescence attribute for successful plant examination under
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applied crop treatments (Harbinson, 2013; Lei et al., 2017). A

couple of studies found Fv/Fm from CFI as a strong candidate

for FHB detection (Bauriegel et al., 2011; Bauriegel and

Herppich, 2014), even when the symptoms were not visible

on the glumes (Mahlein et al., 2019). Likewise, in this study,

Fv/Fm played a substantial role under VIP analysis for CFI and

HTP. Since all the SDSFs were selected from the plant

pigment-related studies, these could be potential candidates

for studying FHB fingerprints on wheat spikes for pigment

damage and detection.
TABLE 2 List of the disease sensitive features selected through variable importance.

Device (Spectral meter) Feature Feature code

1 Chlorophyll fluorescence imaging QY_Lss F1

2 Fm F2

3 QY F3

4 High-throughput phenotyping CHL.Index F4*

5 Fv/Fm F5*

6 Hyperspectral reflectance SRPI F6*

7 PSNDa F7

8 NDVI F8*

9 RR F9*

10 PSSRb F10

11 RARSb F11

12 CAR F12*

The red asterisks denote the selected disease-specific features.
TABLE 3 Evaluation of ML-SFFS for optimized feature combination (FC) to obtain the highest classification accuracy with the proliferation of
disease severity from DS 1 to 8.

Disease
severity

RF K-NN SVM

(DS) Feature com-
bination (FC)

Overall classification
accuracy (%)

Feature
combination

(FC)

Overall classifi-
cation accuracy

(%)

Feature
combination

(FC)

Overall classification
accuracy (%)

Asymptomatic F4, F9, F6 84.86 F5, F8, F6, F12 87.14 F4, F9, F8 89.14

DS1 F5, F8 85.24 F5, F8 88.26 F5, F8 89.14

DS2 F5, F6 88.01 F5, F4, F8 89.00 F5, F4, F8 90.14

DS3 F5, F9 92.00 F4, F8 90.09 F5, F8 92.77

DS4 F5, F8 96.33 F5, F6 94.36 F4, F6 94.66

DS5 F5 100 F5 100 F5 100

DS6 F5 100 F5 100 F5 100

DS7 F5, F4 100 F5 100 F5 100

DS8 F5 100 F5 100 F5, F8 100

the highest overall classification accuracy at each DS is highlighted in bold.
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4.2 Early detection of FHB with ML-SFFS

In contrast to ML-SFFS, a few studies have examined

optimal features or feature fusion on disease detection (Zarco-

Tejada et al., 2018). Ultimately, feature selection employing

either approach is an effective tactic for handling the large

volume of data by reducing redundant information. Hence,

ML-SFFS following VIF analysis easily overcomes the

collinearity challenge and also deals with the computation load

(Tian et al., 2021). In former investigation, Mahlein et al. (2019)

obtained no significant improvement with the sensor fusion

approach after three days of disease inoculation. However,

Bauriegel et al. (2011) claimed improved CA for hyperspectral

and fluorescence imaging fusion. In current study at the

asymptomatic scale obtained high CA and at DS1 it

manifested 87% CA. Three to four features could claim the

highest potential CA, which is interpreted as each feature

showing variation under pathogen attack, and the overall

obtained accuracy was satisfactory. The notable factor is that

fluorescence features competed strongly with VI at each level of

DS. In fact, over the range DS1–8, F5 shared in each

classification approach (RF, K-NN, and SVM), except at DS3

in K-NN. Moreover, this ML methodology explains the

interpretability and rationality of the FC, because some

features might perform better at one DS than at another. For

example, F5 intervened in most levels of DS compared to any

other feature due to its great sensitivity to FHB (Mahlein et al.,

2019) in the studied datasets. The inclusion of different features
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at different levels of DS also help to interpret the disease-specific

responses to the specific features. For example, all spectral

features showed sensitivity to FHB in the VIP algorithmic test,

but few (DSF) were of more importance where further

redundancy led to obtain the SDSF. However, by performing

SDSF and ML-SFFS maneuvers, the most relevant features for

studying the photosynthetic fingerprints of FHB for

classification were selected and abundant redundancy was

filtered out. Similar approaches have been adopted to

determine the effective plant traits in Xylella fastidiosa

infection (Zarco-Tejada et al., 2018).

The SDSF adjusted the combination of different features for

FHB classification at different levels of DS and resulted in the

best CA under ML-SFFS. Subsequently, employed the SDSF for

FHB estimation by feeding into univariate and multivariate

estimation modeling. Both results are examinable for proxy

estimation of FHB. In comparison, multivariate estimation

resulted in better accuracy than univariate models (Figure 11,

Figure 12), which agrees with Zhang et al. (2014), who estimated

yellow rust in wheat using wavelet features and VI.
4.3 Advantages of methodology

Extraction and selection of features from hyperspectral

and chlorophyll fluorescence data can significantly enhance

computing efficiency and highlight the essential elements for

the development of classification methodologies. In contrast,
FIGURE 10

Comparison of classification accuracies of SVM between SVM-SFFS (feature selected through SFFS) and SVM-all (all selected features) using
pooled dataset of two years of experiment.
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feature selection algorithms have been demonstrated to be

efficient for maintaining important information while

reducing computation time (Huang et al., 2019a). The

suggested ML-SFFS classification approach outperforms

earlier disease classification models by combination of

sensitive features for high CA. The significant rise in CA

with DS shows that FC with two to four features could give

a higher CA than all DSF with lower computational cost

(Figure 10). Individual spectral features (Mahlein et al.,

2013; Shi et al., 2018) and ML (Rumpf et al., 2010) have
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been used in previous studies with promising results for the

detection of plant diseases (Cheng et al., 2010; Mahlein et al.,

2013). However, the majority of previous studies utilized

complex classification algorithms for disease detection and

only a few attempts were made to enhance FC for higher

classification performance (Rumpf et al., 2010; Zarco-Tejada

et al., 2018). By combination of sensitive features, the weak

features to disease stress at the earliest stage of infection could

be successfully amplified. In this work, the application of VIF

analysis and ML-SFFS algorithm enabled not only the decrease
A B

D

E F

C

FIGURE 11

Illustration of univariate quantitative relationship among selected disease specific features (SDSF) and disease severity (DS). (A) carter indices
(CAR), (B) Reciprocal Reflectance (RR), (C) simple ratio pigment index (SRPI), (D) normalized difference vegetation index (NDVI),
(E) Photosynthetic efficiency of photosystem II (Fv/Fm) and (F) chlorophyll index (CHL-Index).
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of collinearity among predictor variables, but also the

reduction of computational burden.

ML-based classification ensures logic and interpretability of

FC picked from SDSF by the SFFS technique. For instance,

reflectance and fluorescence data characteristics may have

performed well but could be uninterpretable and case-specific.

However, all FC identified from SDSF were directly connected to

FHB infection, physiological and morphological changes in

infected spikes, allowing this methodology’s generalization and

transferability to examine other diseases (Zarco-Tejada et al.,

2018). Sensitive features for disease detection have been

discussed in the literature recently (Poblete et al., 2020). A FC

usually incorporate numerous plant attributes, which better

illustrates FHB ’ infection’s complicated physiological

processes, and can explain this variance through spectral and

fluorescence features.
4.4 Applications and limitations

The photosynthetic fingerprints, particularly on SCC were

more sensitive than Pn under FHB pathogen invasion while

several studies have demonstrated its integral role in grain filling

(Tambussi et al., 2007; Jia et al., 2015). This might facilitate FHB

detection on a large scale that could be challenging in the context

of destructive sampling. In addition, studies have explored the

VI for FHB detection (Bauriegel et al., 2011; Bauriegel and
Frontiers in Plant Science 16
Herppich, 2014), which can be practiced with the currently

available technologies. Moreover, numerous studies have

resulted in efficient disease detection for other crops deploying

VI (Zarco-Tejada et al., 2018; Mahlein et al., 2019; Tian et al.,

2021). Despite attaining high CA at different scales, the ML-SFFS

approach has revealed some key concerns over FC, the

combination of different features at each scale and the

inclusion of different sensor data. Consequently, this can

restrict its large-scale application for disease detection because

relative disease sensitivity can vary at different levels of DS.

However, for disease quantification and estimation, the SDSF

exhibited substantial potential for univariate and multivariate

modeling. Moreover, SDSF can be employed in remotely sensed

disease detection systems at different scales for deep

phenotyping of wheat spikes. Hence, this disease detection

methodology can be applied in different farm fields developing

a manageable data acquisition setup.
5 Conclusion

This study explored the remotely sensed chlorophyll-related

phenotypes greatly affected by FHB. Twelve highly sensitive to

FHB infection features were observed from two years of

experiments under non-destructive data acquisition approach.

Likewise, the wheat spikes’ biochemical parameters also showed

sensitivity to the spike–pathogen interaction during the study.
A B C

FIGURE 12

Illustration of multivariate quantitative relationship between selected disease specific features (SDSF) and disease severity (DS). (A) random forest
regression with SDSF, (B) support vector machine regression with SDSF and (C) K-NN regression with SDSF.
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The studied parameters were highly responsive for investigating

the photosynthetic fingerprints of FHB and classification. This

suggests the transferable application of practiced non-

destructive disease detection methodology for the spike–

pathogen interaction. The following conclusions can be drawn

from this study’s results.
Fron
(1) Observation of the variable importance of the Boruta

algorithm and consideration of all chlorophyll-related

traits confirmed the destruction of photosynthesis under

FHB pathogen invasion. Hence, the selected disease-

sensitive features (SDSF) were highly responsive to FHB

growth. In addition, the reflectance patterns of

aggravated disease severity clearly demonstrated

damage to plant pigments (gradual rise in the visible

region) and spike structure (gradual fall in the near-

infrared region).

(2) Overall classification accuracy was improved

(Asymptomatic 87.04% to 95% at 20% disease

severity) using SDSF in machine learning-sequential

floating forward selection using two to four features’

combinations.

(3) Maximum univariate disease estimation was obtained

through CHL.Index, and for multivariate estimation

accuracy of R2 = 0.92 and RMSE = 10.21 through k-

nearest neighbor model.
Future studies are advised to develop a more concise and

decisive combination of features (disease index) in applying

SDSF to other plant diseases and cultivars. The development

of sensors with partial feature fusion (reflectance and

fluorescence) for disease detection may also prove useful

application in precision crop management both at greenhouse

and field experiments.
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