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Abstract

Background: The availability of large-scale curated protein interaction datasets has given rise to the opportunity to

investigate higher level organization and modularity within the protein interaction network (PPI) using graph

theoretic analysis. Despite the recent progress, systems level analysis of PPIS remains a daunting task as it is

challenging to make sense out of the deluge of high-dimensional interaction data. Specifically, techniques that

automatically abstract and summarize PPIS at multiple resolutions to provide high level views of its functional

landscape are still lacking. We present a novel data-driven and generic algorithm called FUSE (Functional Summary

Generator) that generates functional maps of a PPI at different levels of organization, from broad process-process

level interactions to in-depth complex-complex level interactions, through a pro t maximization approach that

exploits Minimum Description Length (MDL) principle to maximize information gain of the summary graph while

satisfying the level of detail constraint.

Results: We evaluate the performance of FUSE on several real-world PPIS. We also compare FUSE to state-of-the-

art graph clustering methods with GO term enrichment by constructing the biological process landscape of the

PPIS. Using AD network as our case study, we further demonstrate the ability of FUSE to quickly summarize the

network and identify many different processes and complexes that regulate it. Finally, we study the higher-order

connectivity of the human PPI.

Conclusion: By simultaneously evaluating interaction and annotation data, FUSE abstracts higher-order interaction

maps by reducing the details of the underlying PPI to form a functional summary graph of interconnected

functional clusters. Our results demonstrate its effectiveness and superiority over state-of-the-art graph clustering

methods with GO term enrichment.

Background
With advances in high throughput experimental biology,

the number of large scale protein interaction net-works

(PPI) have grown rapidly. At the same time, collaborative

efforts to annotate proteins and genes using Gene Ontol-

ogy [1] (GO) annotations has generated detailed attri-

butes that describe these entities. Knowledgebases with

GO annotations, such as UniprotKB [2], provide a wealth

of annotation data at different levels of specificity. GO

provides standardized annotations that describe various

attributes of a gene or protein, including localization

attributes, molecular function, and the biological pro-

cesses it participates in. As proteins may involve in multi-

ple roles and functions, GO attributes associated with a

protein or a gene can be high-dimensional.

While each individual protein or gene has a unique role

in the biological system, many of them form commu-

nities to govern higher-order biological processes or

functions. Biological networks are believed to be modular

and hierarchically organized; one may decompose a PPI

into modules or functional clusters that interact with one

another [3]. Protein complexes, for instance, are made up

of tightly connected subunit proteins that appear as

dense subgraphs in the PPI. Other functional groups may
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be structurally less obvious. Examples include signaling

pathways, where proteins rarely appear to be structurally

cohesive. In spite of their “sparse” structure, proteins

comprising them share biologically significant signaling

propagation function.

Motivation

The amount of information contained within large bio-

logical networks can often overwhelm researchers, mak-

ing systems level analysis of PPIS a daunting task. As

majority of function annotation and high throughput or

curated interaction data are encoded at protein or gene

level, higher-order abstraction maps such as complex-

complex or process-process functional landscapes, are

often unavailable. However, availability of such informa-

tion is invaluable as it not only allows one to ask ques-

tions about the relationships among high-level modules,

such as processes and complexes, but also allows one to

visualize higher order patterns from a bird’s eye

perspective.

For instance, consider the Alzheimer’s Disease (AD)

related PPI in IntAct [4]. An AD interaction network

can be studied at different levels of organization, from

broad-level process-process interactions to in-depth

complex-complex interactions. Such maps would reveal

higher-level patterns that otherwise would have been

invisible. The objective here is not to study a process

associated with AD in isolation, but instead focus on the

interplay of related processes in tandem to identify the

causative mechanisms of AD. For example, one might

ask the following questions: How do signaling pathways

implicated for AD associate with one another? How do

proteins related to transportation play a role in AD, and

how are they associated with bioenergetics? A bird’s-eye

view of the functional landscape of AD network may

provide answers to these questions. An example is

shown in Figure 1 (detailed in Results Section). Observe

that the associations between signaling pathways (A28,

A14, A18, A21, and A16 ) are depicted in the summary.

It is worth mentioning that it is extremely di cult to

answer the aforementioned questions by simply looking

at a large PPI containing large number of proteins and

interactions as nodes. This problem is further exacer-

bated by the high-dimensional nature of PPI; each pro-

tein may have hundreds of annotation attributes. It is

therefore crucial to have some form of summarization

that maps higher-order information of the underlying

PPI. Fortunately, the modular nature of biological net-

works-either structurally or attribute wise-lends itself to

the possibility of building such a summary.

Figure 1 Functional summary (FSG) of the AD network for k = 30 (cluster size indicated in brackets).

Seah et al. BMC Bioinformatics 2012, 13(Suppl 3):S10

http://www.biomedcentral.com/1471-2105/13/S3/S10

Page 2 of 18



Although tools to abstract high-level and functional

information from gene lists have been proven to be key

to analyzing high throughput data [5], similar tools that

automatically abstract and summarize PPIS at multiple

resolutions to provide high level views of functional

landscape of PPIS are still lacking. At first glance, it may

seem that state-of-the-art graph clustering techniques

[6-10] can be used for generating high quality summa-

ries of PPIS as these techniques have been successful in

identification of novel protein function and protein

complexes. Intuitively, a biological network can be

decomposed into modules-groups of vertices sharing a

common function-that are then collapsed into a repre-

sentative node to form a summary graph of the underly-

ing network. Depending on the granularity of the

decomposition, summaries of various level of detail can

be formed. Despite the benefits of graph clustering,

these techniques suffer from the following key weak-

nesses that make them less suitable for building high

quality higher order functional summaries of PPIS.

Firstly, several existing graph clustering approaches

[6-8,11] overwhelmingly emphasize structure cohesive-

ness over attribute coherence. In practical applications

of PPI summarization, however, attribute coherence is

key to forming meaningful, interpretable modules. In

PPI, groups of proteins (vertices) that share a common

vertex property can form a meaningful cluster that

represents a particular biological function. Otherwise,

clusters with inconsistent vertex properties, even if

structurally well-connected, may not simply summarize

into one functionally interpretable cluster. Secondly,

majority of existing graph clustering techniques form

non-overlapping partitions [6,8,11]. Consequently, they

cannot be used to generate high-quality summary

because “interactors” in biological processes and path-

ways are likely to overlap [12]. Thirdly, these techniques

typically focus on identifying dense subgraphs from a

graph. However, higher-level clusters in PPIS are not

always structurally dense. Proteins in signaling pathways,

for instance, are structurally loose, but share important

functions. Such groups of proteins often have significant

biological implications despite their loose structure, and

should be present in any summary of the underlying

network. Finally, because the annotations that describe

proteins and their functions are high-dimensional, find-

ing the right choice of attribute coherent groupings is

combinatorial and non-trivial. The reader may refer to

[13] for examples related to these limitations.

Overview

In this paper, we present a novel data-driven algorithm

called FUSE (Functional Summary Generator) that

addresses the aforementioned challenges (see Methods

Section). Given a PPI, it generates a k-node functional

summary graph (FSG) that best represents the higher-

order abstraction of the PPI by simultaneously evaluat-

ing interaction and annotation data. We argue that a

“good” functional summary of a network is not merely a

graph of all function-function relationships, but a graph

that reduces details of the original PPI to form a subset

of interconnected functional clusters. A functional clus-

ter represents a subnetwork of proteins that shares a

common function. In particular, the functional summary

graph must simultaneously satisfy the following require-

ments: (a) the summary is at a specific level (k nodes) of

detail, (b) the summary is representative of the original

network, and (c) redundancies are minimized. Specifi-

cally, FUSE exploits Minimum Description Length princi-

ple [14] to generate the “best” summary by maximizing

information gain while satisfying the level of details con-

straint. Figures 1 and 2 depict a 30-node and a 10-node

FUGS of the AD network, respectively, generated by

FUSE. Figure 3 depicts examples of functional summaries

generated by FUSE.

The goal of FUSE is not only to generate a higher

level functional summary that is representative of the

underlying PPI, but also to generate a k-node functional

map whose visual complexity (determined by k) permits

user analysis. With close to 30000 terms in the Gene

Ontology (GO), interaction network of 30000 functional

modules will not be a useful summary, as it is just as

daunting as the original PPI, if not more. FUSE

addresses this challenge by enabling generation of sum-

maries that are small and understandable.

We evaluate the performance of FUSE on several real-

world PPIS. We also compare FUSE to state-of-the-art

graph clustering methods with GO term enrichment by

constructing the biological process landscape of the

PPIS. Our experimental results demonstrate that FUSE

is highly effective in constructing higher order func-

tional maps with superior accuracy and representative-

ness compared to these state-of-the-art graph clustering

methods. Using AD network as our case study, we

further demonstrate the ability of FUSE to quickly sum-

marize the network and identify many different pro-

cesses and complexes that regulate it. In addition, we

analyze the topological features of the functional land-

scape of human PPI that leads us to the identification of

functional hubs (clusters of proteins that act as hubs).

Related work

Functional landscape of an underlying protein interac-

tion network has been explored in [15]. The approach

the authors used, however, rely on manual short listing

of 229 biological processes for analysis. While this

approach makes visualization permissible, it neither

scale with the growing number of annotations, nor does

it fully utilize the large number of annotations available.
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Figure 2 Functional summary (FSG) of the AD network for k = 10 (cluster size indicated in brackets).

Figure 3 Illustration of FUSE algorithm. (a) A toy example of PPI network. (b) A set of functional clusters of the network in (a). (c) Suppose a

3-node summary is required (k = 3). FUSE explores the functional clusters of the PPI network to identify the 3-node functional summary that

best partition and represent the underlying network. This functional summary graph (FSG) depicts the functional landscape of the PPI network in

3 nodes. (d) A 5-node partition (k = 5) and its corresponding FSG.
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Additionally, the processes that are relevant depends on

the context of the network.

Graph clustering methods identify functional clusters

based on the underlying assumption that the topology

of interacting proteins can be mined to identify protein

clusters [6-8,11]. Cluster function can then be inferred

and annotated by finding enriched annotations within

the cluster. While such methods have been proven

effective for identification of complexes, they are less

suitable for identifying higher level functional clusters,

such as biological processes and pathways, where inter-

actors within them are likely to overlap [12,16]. Interac-

tions within a process are also not necessarily cohesive.

CFinder [17] locates overlapping communities based on

structure of the network, but ignores the wealth of func-

tional knowledge already encoded in GO annotation

data. While most graph clustering techniques rely solely

on network topology, several recent techniques utilize

annotation information when clustering the networks

[9,10]. However, these techniques form non-overlapping

partitions. Additionally, with the growing amount of

annotation data, the attribute space of the nodes in an

interaction network is high dimensional as a single pro-

tein may be linked to hundreds of annotations. However,

these state-of-the-art approaches are not designed for

clustering high-dimensional attributes of GO annotated

interaction networks. For instance, in [9], a “semantic”

distance function is used to measure semantic similarities

between nodes with multiple MIPS complex annotations.

The curse of dimensionality limits the applicability of

such an approach on GO annotations [18]. To the best of

our knowledge, no existing method directly addresses our

need for generating overlapping clusters from high-dimen-

sional attributed graphs. Note that existing subspace

clustering approaches that allow overlapping subspace

clusters typically produce a huge number of clusters that

are difficult to interpret [19].

Lastly, the high dependency on interaction topology

makes graph clustering ineffective for many context spe-

cific networks. Although there are many networks asso-

ciated with diseases, there are few, if any, with complete

interaction knowledge available. The high probability of

false positive interactions may also occur. This hampers

accurate identification of cohesive clusters.

Results and discussion
Experiment settings

We have implemented FUSE in Scala and Java. We now

present the experiments conducted to evaluate the per-

formance of FUSE and report some of the results

obtained. We used the coverage metric to evaluate the

fraction of the annotated protein interaction network

covered by a summary. A functional summary with high

coverage is desirable because it is more representative of

the underlying interaction network than a summary

with low coverage. Additionally, the redundancy metric

is the average number of functional clusters each pro-

tein belongs to. This is an indicator of the amount of

cluster overlap in the summary. Detailed definitions are

described in the Methods Section. The PPI datasets

employed in this study are shown in Table 1. Biological

Process (BP), Molecular Function (MF), and Cellular

Component (CC) GO annotations are used. Unless spe-

cified otherwise, we set b = 0.01, b = 3, and d = 0 in

order to balance coverage and redundancy of the func-

tional summaries. We assign all edge weights be 1.0. All

experiments were run on a 1.66 GHz Intel Core 2 Duo

T5450 machine, with 3 GB memory, and a 250 GB

SATA disk.

Dataset

Currently, there does not exist any gold standard to com-

pare functional summaries of PPIS. Typically, biological

graph clustering approaches use MIPS complex annota-

tions [20] as gold standard data for testing cluster quality.

These annotations, however, are limited to complexes

and not for other functional clusters like pathways. GO

annotation data is also used as gold standard for evaluat-

ing clustering algorithms. As our approach utilizes attri-

butes of GO, using GO annotations as gold standard

evaluation may lead to results biased in favor of FUSE.

Instead, we obtained a different set of curated attributes

as gold standard-the molecule class annotations from

HPRD-which is distinct from GO attributes. Note that

these annotations are only available in the H. sapiens

dataset. Consequently, we use this dataset for the com-

parative study. To create a gold standard reference sum-

mary, we generated a network from subgraphs induced

from the HPRD network using nodes grouped by their

molecule class attribute, signifying the molecular func-

tional groups within the network. Subgraphs from five

functional groups corresponding to subgraphs of proteins

classified as G protein coupled receptor, Pro-

tease inhibitor, RNA binding protein,

Cytoskeletal associated protein, and Cal-

cium binding protein are extracted and merged to

form the reference summary network (747 nodes, 959

edges). FUSE and state-of-the-art graph clustering meth-

ods are then evaluated on this network to determine

whether the graph can be partitioned and summarized to

reconstruct the gold standard functional groups.

Table 1 Summary of datasets used

Dataset #nodes #edges Source

H. sapiens 9181 34624 HPRD [37]

S. cerevisiae 4768 177299 IntAct [4]

D. melanogaster 3114 6472 IntAct

Alzheimer’s disease (AD) 177 1038 IntAct
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FUSE vs graph clustering methods

We compare the performance of FUSE with four state-

of-the-art graph clustering methods for life sciences

applications, namely Markov clustering (MCL) [21],

MCODE [6], and NeMo [8]. We also compare FUSE

with CSV [11], a recent cohesive subgraph visualization

method. Note that in order to obtain higher order mod-

ules of a PPI, the current approach is to first use an

existing graph clustering method on the network to gen-

erate the clusters followed by function assignment. For

example, in Krogan et al. [21], the global yeast PPI is

first clustered using MCL to generate non-overlapping

clusters. Then, each cluster is compared against MIPS

complex annotations [20] and the complex annotation

with the greatest overlap is assigned to represent the

cluster.

Cluster quality comparison

We first emphasize on the qualities of an ideal summar-

ization. First, the generated clusters have to be represen-

tative of the underlying graph, which implies that

coverage of the clustering should be sufficiently high.

Second, attribute purity [22] of the clusterings should

correspond to the functional groups that were merged

apriori. This can be determined through the purity of

the molecule class attribute within the proteins in

each cluster. Each functional group should also be well-

represented. We use precision, recall, and F-measure to

quantify these features. For each cluster, we determine

the molecule class functional group that best matches

the cluster. The purity of that cluster is then defined as

the proportion of nodes in the cluster that belong to the

best matching group. As a functional group may be

represented by several smaller clusters, we define recall

for each functional group as total coverage of the func-

tional group among the clusters that best matches that

functional group. Then, the precision of a clustering is

defined as the average purity among all clusters. The

recall of a clustering is defined as the average recall

among all functional groups. Lastly, the F-measure

(
2∗precision∗recall

precision + recall
) provides an overall measure of clus-

tering quality.

Figure 4 depicts the results of summarization quality.

Where applicable, we adjust relevant parameters to vary

the cluster granularity. As NeMO has no parameter to

tweak, only a single set of clusters can be obtained. In

MCL, CSV, and MCODE, the inflation, hmseen cutoff,

and node score cuto parameters are adjusted, respec-

tively, to vary the cluster sizes (denoted as k in all fig-

ures). In FUSE, the parameter k directly affects the

summary granularity.

Observe that FUSE generates summary with signifi-

cantly higher F-measure score compared to the graph

clustering-based approaches for all values of k. In other

words, FUSE may generate summaries at multiple levels

of complexity while remaining representative of the

underlying graph. Observe that, although NeMO, CSV,

and MCODE generate clusters with high precision, the

recall scores are very low (< 0:2). This is because these

two approaches identify highly cohesive subgraphs,

which tend to be part of protein complexes. CSV in par-

ticular are limited to identification of near-clique struc-

tures. Proteins in complexes belong to the same

functional groups and hence the high precision. How-

ever as mentioned earlier, biological networks are not

comprised solely of complexes. Consequently, majority

of the underlying network was poorly represented by

these approaches due to heavy bias towards complexes.

Specifically, most of the clusters match the RNA binding

protein class of proteins, leaving other groups barely

represented. For instance, the Protease inhibitor

subgraph is not well represented because of its inherent

loose structure. Although the recall score of MCL is

relatively higher as this method is known to perform

very well in biological clustering applications, it is still

below 0.4. Note that the MCL approach failed to parti-

tion the underlying network into five clusters represent-

ing the five functional groups. The CSV approach, on

Figure 4 Cluster quality of FUSE vs graph clustering-based approaches.
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the other hand, were not able to generate larger number

of partitions.

Notice that these existing approaches indirectly affect

the summary complexity whereas FUSE allows direct

adjustment of summary size, which explains why sum-

maries at any level of detail can be obtained by the lat-

ter. Figure 4(d) shows that FUSE generates summaries

at different granularity without greatly affecting the pre-

cision and recall of the clusterings. The peak F-measure

score of 0.8 is obtained in FUSE at k = 5, corresponding

to the five gold standard functional groups that com-

prise the dataset. Observe that the recall and precision

scores are equally high. As cluster granularity deviates

from the underlying five functional groups, obviously

the F-measure score drops.

Function representativeness comparison

The accuracy and representativeness of the function

assigned to each cluster is key to generating high quality

functional maps. Here, we introduce measures that

quantify the representativeness of functions assigned to

each clusters and compared FUSE to graph clustering

methods in this aspect.

To obtain the functional landscape of a PPI, graph

clustering methods often assign function to clusters

through functional enrichment techniques. To this end,

we compute the statistical significance of association of

the cluster with every GO term based on the hypergeo-

metric distribution [5]. The term with the best p-value

is assigned as the representative function, denoted by ar
Î ∆, of the cluster. To evaluate the representativeness

of this assigned function, we reuse the precision and

recall measures introduced earlier with slight modifica-

tion. Specifically, the representative purity of a cluster C

is defined as the proportion of nodes in the cluster that

are annotated with the representative function, i.e.
|{v ∈ C : △v[ar(v)] = 1}|

|{v ∈ C}|
. We also define representative

recall for each functional group as total coverage of the

functional group among the clusters that has the func-

tional group assigned as representative function, i.e.
|{v ∈ C : △v[ar(v)] = 1}|

|{v ∈ V : △v[ar(v)] = 1}|
. Then, the precision of the

representative functions is defined as the average repre-

sentative purity among all clusters, and the recall of the

representative functions is defined as the average repre-

sentative recall among all functional groups.

Figure 5 depicts the representativeness of the func-

tional summaries by different techniques. As FUSE is

designed specifically to generate highly representative

maps, each cluster is perfectly representative of the bio-

logical function assigned to it. Likewise, each function is

well represented by its assigned cluster. In graph cluster-

ing methods, however, the clusters do not represent

their representative function well, as indicated by the

lower precision score. Hence, proteins within the clus-

ters exhibit less functional coherence. The lower recall

scores in graph clustering methods imply that only a

fraction of nodes annotated with the representative

function are included in the cluster. That is, FUSE sum-

maries contain functional clusters that are more repre-

sentative of the assigned function, and thus provide

more meaningful and interpretable higher-order func-

tional maps of the underlying PPI. While clusters with-

out attribute coherence may still reveal novel biological

insights, assigning a function to represent such cluster

could be misleading.

Effects of user-defined parameters

Effect of parameter k

Recall that the user-defined parameter k controls the

granularity of the summary. Intuitively, as k increases

the amount of information contained within the sum-

mary as well as its complexity increase. Figure 6(a)

reports the effect of k on the summaries of test datasets.

As k increases, the summary information content (SIC),

denoted by SIC(Θ), rises rapidly until it saturates to a

peak value before tapering off.

SIC(�) =
∑

C(u)∈S⊖

−ψC(u)|V(u)|logp(V(u))
(1)

where p(V (u)) is the probability that a protein in net-

work is annotated with term u or its descendants. Note

that summary profit cannot be used for comparing sum-

maries with different k values because it does not make

any assumption about the information content of a GO

term attribute. In contrast, sic measure is summary profit

with a twist - small clusters are weighted higher than

large clusters. This allows one to compare information

content of summaries with different k values. Other fac-

tors being equal, a summary with many small clusters

will contain more information than a single large cluster.

The above results imply that k is useful up to a certain

value, after which increasing k only increases summary

complexity while providing little information gain.

Figure 6(b) plots the effect of k on coverage of the

summary. Observe that except for low k values, it is

relatively stable as k varies. In fact, the amount of infor-

mation a summary can provide is limited by the resolu-

tion and completeness of the interaction and annotation

data. This could explain why S. cerevisiae summaries

have consistently higher coverage and information con-

tent than D. melanogaster summaries. The H. sapiens

summary contains the largest number of nodes and

edges, and even at k = 600, information content is still

increasing. The AD network reaches a peak of informa-

tion content at k = 20.
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Effect of parameters b and d

We investigated the effect of user-defined parameters b

and d on summary coverage and redundancy. We use

the global S. cerevisiae dataset with k = 100. Figure 7

shows that increasing b or decreasing d lowers overall

summary redundancy at the expense of lower summary

coverage. On the other hand, when d is increased or b

is decreased, both summary redundancy and coverage

increases. An intuitive explanation of this phenomenon

is that more cluster overlap penalty means fewer combi-

nation of clusters to choose from, lowering the

likelihood of finding a summary with high coverage.

Both parameters allow users to control the coverage and

redundancy tradeoff.

Runtime and scalability

Figure 8 plots the running times of FUSE over the real

datasets for generation of summaries ranging from k = 3

to k = 600. Observe that it increases almost linearly with k.

Specifically, summarization of the yeast interaction net-

work (the largest available network) completes within 40

minutes for k = 600. For practical sizes of k = 3 to k = 100,

Figure 5 Function representativeness.

Figure 6 Effect of k.
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a functional summary of a PPI can be generated within

few minutes. Disease networks such as AD network can

be completed in less than 10 sec.

We now assess the scalability of FUSE with respect to

network size and |S∆|. Note that the latter feature is

important as it will continue to grow as more annota-

tion information becomes available. To assess the scal-

ability with respect to network size, we generated

synthetic networks of vertex size |V | = 100 to |V | =

20000. For every term t, a vertex has a 2% probability of

being annotated with it. The number of terms is |S∆| =

2769. The edge density of the synthetic networks is such

that the probability that a pair of vertices interact is

0.0025, resulting in an average of 1 million edges in a

network of 20000 vertices. Summary granularity is set to

k = 50. To measure the effect of |S∆| on running time,

we generated synthetic networks by varying |S∆| ranging

from |∆| = 100 to |∆| = 10000.

Figure 9 depicts the scalability of FUSE with respect to

|V | and |S∆|. As the number of vertices increases, the

execution time of FUSE increases in a quadratic fashion.

In fact, it appears to increase almost linearly for

networks with |V| < 10000. For larger networks, the ψ
C

(u) component and the fsg generation component take

up the bulk of the execution time. Observe that in

Figure 9(b), the fsg generation component takes up bulk

of the computation time and is independent of |S∆|. As

|S∆| increases, ψ
C(u) computation and iterative cluster

selection time increases in near linear fashion, demon-

strating ability of FUSE to handle high-dimensional

annotation data.

Case study on AD network

In this section, we construct a low and a high resolution

functional summaries of the AD network to illustrate

the benefits of FUSE in providing a higher level func-

tional view of the underlying PPI. A low resolution sum-

mary delineates broad functional overview of the

processes related to the disease whereas a high resolu-

tion summary provides in-depth functional landscape of

the disease, revealing associations between processes

related to the disease. Figure 2 shows a low resolution

summary (k = 10) of the AD network. It indicates that

the AD network is represented by an interconnection of

Figure 7 Effect of b and d.
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several key processes, include protein phosphorylation

(B7), cell-cell signaling (B2, B3), and microtubule-based

transport and localization (B1, B5) processes.

Figure 1 depicts a high resolution functional summary

for k = 30. Defective transport mechanism has major

implications in AD. Consequently, several transport and

Figure 8 Running times of FUSE (in sec.).

Figure 9 Scalability of FUSE.
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cytoskeleton organization related cellular processes are

represented in the summary (A11, A22, A24, A26). Dis-

rupted transport mechanism affects, among others,

synapse organization and vesicle trafficking (A6, A8,

A23). In the literature, several lines of evidence explain

disruption of transport and its related processes in AD.

Amyloid-b plaques may lead to hyperphosphorylation

of tau proteins, subsequently causing microtubule

defects and axonal transport impairment [23]. More

strikingly, recent findings indicate that vesicle transport

itself play a causative role in pathogenesis of the disease

[24]. Glucose metabolic processes (A20) is closely linked

to microtubule-based processes (A22, A24). The link

between bioenergetics and transport in AD has been

discussed in [25].

At the center of the summary lies protein folding and

calcium ion homeostasis pathways (A15, A17).

Protein misfolding is central to AD pathogenesis [26].

Misfolded amyloid-b accumulation is shown to induce

calcium overload, leading to a variety of structural and

functional disruption in neurons [27]. The two func-

tional clusters are among the nodes with the highest

degree in the summary. Cell fate processes that trigger

or inhibit differentiation and cell fate (A9, A10, A12) are

also linked to AD [28]. It has been suggested that Wnt

signaling dysregulation, a key developmental path-

way, leads to reduced synaptic plasticity and function in

AD [29]. Processes such as peptide cross-linking and

negative regulation of angiogenesis (A3, A4) imply vas-

cular roles in AD pathogenesis [30].

From signaling regulation perspective, five major sig-

naling pathways are implicated - small GTPase (A28),

Notch (A14), Wnt receptor (A18), glutamate

(A21), and G-protein coupled receptor signaling

path-ways (A16). Several functional clusters connect

with multiple signaling pathways, indicating that signal-

ing pathways crosstalk in AD pathogenesis. For instance,

the serine/threonine kinase GSK-3b, a potential

therapeutic target, is known to be regulator of both the

G-protein coupled receptor pathway and the

Wnt/b-catenin signaling pathway [31]. PS1 may be

involved in regulating both Notch and Wnt pathways in

AD [32].

The tight interplay of multiple pathways and processes

in the aforementioned functional summary of AD net-

work highlights the complexity of the disease. The dis-

ease remains poorly understood despite decades of

research. While the summary does not suggest causal

relationships, in part because of the undirected nature

of the FSG, we hope that by having a global, big picture

view of process-process interactions, researchers can

better identify the causative mechanisms of AD. Most

studies considered an aspect of the processes in isola-

tion. An integrative study, however, may lead to a more

consistent view of the disease that addresses distinct,

often competing hypotheses.

Inferring functional cluster hubs

Structural information provided by the summaries pre-

sents an opportunity to study the topology and connec-

tivity of higher order abstractions of the underlying PPI.

Here we analyzed the association patterns of functional

clusters in summaries of the global H. sapiens PPI. To

this end, we generated cellular component (CC) and

biological process (BP) summaries of the human net-

work. For each summary type, we varied the level of

detail by setting k from 50 to 400.

Figure 10 shows the frequency-degree plots of the

functional clusters at different k values. At the broadest

level of abstraction (k = 50), long-tailed degree distribu-

tion of functional clusters is not observed. As level of

detail increases to k = 400, the smaller and more speci-

fic clusters exhibit increasingly pronounced long-tailed

distribution characteristics. We note that the CDF plots

on a semi-log scale form straight lines at higher k values

(k = 200 and k = 400), implying exponential distribution

of the cluster degrees.

In light of heavy-tailed distribution of functional clus-

ter degrees at higher k values, we identified functional

cluster hubs in the summary of the human network (k =

400) (analogous to identification of protein hubs). While

Patil and Nakamura defined hub as proteins having

degree of more than 6 [33], we chose a higher threshold

such that they correspond to the 15 most connected

functional clusters. The list of functional hubs is shown

in Table 2.

We observed that CC cluster hubs in S. cerevisiae

can be categorized into several major functional

groups. A significant percentage of the cluster hubs -

such as cytosolic large ribosomal subunit, cytosolic

small ribosomal subunit, eukaryotic translation initia-

tion factor 4F complex, preribosome, small subunit pre-

cursor, preribosome, large subunit precursor, and

polysome- are core to regulation and functioning of

protein translation. It is unsurprising that these func-

tional clusters have high degree, since every protein

must be translated or regulated by these machinery.

The complexity of this mechanism also suggests that it

requires many processes to regulate it.

Complexes involved in chromatin remodeling and

transcription, including nuclear nucleosome, Ino80 com-

plex, replication fork protection complex, astra complex,

and Swr1 complex, are also highly represented. The

functional cluster vacuolar proton-transporting V-type

ATPase complex is known to have diverse roles and is

associated with a wide array of processes [34].

Apart from that, we also observed the existence of

several ‘currency structures’, i.e., structures that may be
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acted upon by proteins from multiple processes. They

are generally not specific to a single bio-logical process.

We classify clusters nuclear nucleosome, nuclear micro-

tubule, cytoplasmic microtubule, and extracellular region

as such.

Next, we analyzed the bp functional cluster hubs.

From Table 2, we found many translation related pro-

cesses (regulation of translational initiation, transla-

tional elongation, translational termination, tRNA

aminoacylation for protein translation, negative

regulation of translation, positive regulation of transla-

tion, ribosomal small subunit assembly, ribosomal large

subunit assembly). Chromatin assembly and remodeling

processes (nucleosome assembly and nucleosome disas-

sembly) also served as key process hubs. Finally, we

found major post-translation protein modification and

transport processes, such as protein refolding, ATP

synthesis coupled proton transport, cotranslational pro-

tein targeting to membrane, and proteasome assembly,

acting as hubs.

Figure 10 Connectivity of functional clusters in H. sapiens network. Functional cluster degree CDF plots for BP and CC summaries at

varying cluster granularity. Plots are on a semi-log scale.

Table 2 High-degree CC and BP functional clusters in the H. sapiens summary (k = 400)

CC functional cluster Degree BP functional cluster Degree

Heterogeneous nuclear ribonucleoprotein complex 183 Actin filament bundle assembly 208

Cytosolic large ribosomal subunit 161 Regulation of defense response to virus by virus 206

Cytosolic small ribosomal subunit 158 Negative regulation of catabolic process 204

Coated pit 158 Peptidyl-threonine phosphorylation 200

Mitochondrial nucleoid 149 Signal complex assembly 189

Chaperonin-containing T-complex 148 Positive regulation of protein complex assembly 182

CRD-mediated mRNA stability complex 141 Regulation of nitric oxide biosynthetic process 181

NuA4 histone acetyltransferase complex 136 Glial cell development 178

Actin filament 135 Cell killing 178

Actomyosin 134 Regulation of cytokine-mediated signaling pathway 174

Clathrin coat of coated pit 133 Protein stabilization 174

Nonhomologous end joining complex 124 Actin filament capping 170

Endocytic vesicle membrane 124 Activation of MAPKK activity 169

Nucleosome 124 T cell receptor signaling pathway 164

Nuclear inner membrane 123 Regulation of RNA splicing 164
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Conclusions
In this paper, we propose FUSE, a novel data-driven and

generic algorithm for generating functional sum-maries

at multiple resolutions from a PPI, providing a high

level view of its functional landscape. It exploits mdl

principle [14] to generate the “best” summary from both

interaction and annotation data by maximizing informa-

tion gain for a specific resolution. Our experimental

study with real-world PPIS revealed that FUSE is effec-

tive and have higher accuracy compared to graph clus-

tering techniques in PPI summarization. It is also robust

against incomplete interaction knowledge (e.g., AD net-

work in IntAct). We note that the graph clustering tech-

niques have the ability to uncover novel complexes,

whereas FUSE is designed to determine process-process,

complex-complex, and process-complex associations

with higher confidence. In this aspect, graph clustering

and FUSE play complementary roles. As part of future

work, we intend to use FUSE-generated summaries as

training data for network comparison of various protein

interaction networks at functional level. We believe such

comparison may yield interesting findings on function-

function and process-process relationships among differ-

ent networks.

Methods
Functional summarization problem

In this section, we formally introduce the functional

summarization problem. We begin by defining some ter-

minology that we shall be using in the sequel.

A protein interaction network (PPI) G = (V, E) contains

a set of vertices V , representing proteins, and a set of

edges E, representing interactions. An edge has a positive

real weight ω that represents its interaction strength.

Given a GO directed acyclic graph (DAG), denoted as D,

the ordered set ∆ = 〈a1, a2, ..., an〉 is a topological sort of

D, where ai represents a single GO term. The term asso-

ciation vector of v Î V , denoted by ∆v, is defined as ∆v =

〈a1(v), a2(v), ..., an(v)〉, ai(v) Î {0, 1}, such that ai(v) = 1 if

and only if the term ai or its descendants are associated

with protein v. Otherwise, ai(v) = 0. Note that ∆v indi-

cates GO terms that are associated with v.

Functional summary of PPI

Given a PPIG(V, E), a functional summary graph (FSG)

is an undirected graph ΘG(S, F ) that models the set of

higher-order functional clusters S and their interactions

F that underlie the PPI. A functional cluster is a sub-

graph of G that shares a particular function/role based

on the structure and attribute properties of the sub-

graph and its constituent proteins. Functional clusters

may include complexes, processes, and signaling path-

ways. A pair of functional clusters may be connected by

a web of protein interactions. If the number of interac-

tions are significantly large, then we say that the pair of

clusters are associated. An FSG ΘG thus captures higher

order modules that comprise the ppi and their intercon-

nections. We now define these concepts formally.

Definition 1 (Functional Cluster) Let V (ai) ⊆ V

denote the set of vertices in G such that v Î V (ai) if and

only if ∆v[ai(v)] = 1. The functional cluster of ai Î ∆,

denoted by C(ai) ⊆ G, is the subgraph of G that is

induced by V (ai).

Note that V (ai) represents the set of vertices of G

that are associated with term aiÎ ∆. In this paper, we

treat C(ai) as a vertex as well. We may also call a func-

tional cluster a functional subgraph when we wish to

emphasize the fact that it is a graph. Figure 3(b) shows

a subset of the possible functional clusters of the PPI in

Figure 3(a). Every node in a cluster must share a parti-

cular function or attribute. For instance, nodes in func-

tional cluster cytosol share the cytosol term.

Definition 2 (Functional Summary Graph (FSG)) A

functional summary graph of the underlying protein

interaction network G(V, E), ΘG, is defined as ΘG = (S,

F, Pi, a), where S is a set of functional clusters and F is

a set of edges that links the functional clusters. Let ocuv
be the number of interactions connecting proteins in C

(u) and C(v). Let Pi be the probability density function of

observing ouv or more number of interactions between C

(u) and C(v). Let b be a significance cut-o parameter

(user-defined). Then, (C(u), C(v)) Î F if and only if Pi(X

> ocuv) ≤ 2b/|S|2. The bijection a : 1, 2, ..., m ↔ S is an

ordering of S.

Observe that the aforementioned definition of func-

tional summary includes additional constructs and rules

for determining whether two functional clusters are

associated. We elaborate on this further. Given a PPIG

(V, E), the expected probability of observing an interac-

tion between two randomly drawn protein pair is given

by pi =
2 |E|

|V| (|V| − 1)
. Let (C(u), C(v)) be a functional

cluster pair such that members of both clusters were

randomly drawn from V. If proteins v1 and v2 are ran-

domly drawn from C(u) and C(v), respectively, then the

expected probability of observing a positive interaction

between them would also be pi. Let n = |C(u)||C(v)|.

Based on the independent and identically distributed

variable (iid) assumption, we model the probability of

observing oc (the number of interactions between C(u)

and C(v)) as the probability of observing oc positive

interactions after n iid trials, representing n pairwise

interaction trials between proteins in C(u) and C(v).

Hence, the probability of oc or more positive interac-

tions between C(u) and C(v) can be modeled using a

binomial distribution:
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Pi(X > ocuv) =

n
∑

i=ocuv

(

n

i

)

pi
i(1 − pi)

n−i

This p - value is used to assess the association signifi-

cance between a pair of functional clusters. Given a set

containing k clusters, association significance between
1
2
k(k − 1) pairs of clusters would have to be tested. To

this end, we applied Bonferroni correction to account

for multiple testing. Given the significance cut-off b, a
pair of functional clusters is significantly associated if

Pi(X > oc) ≤ 2β/k(k − 1) ≈ 2β/k2

Observe that although we have adopted a simple

model to assess cluster-cluster association, the afore-

mentioned definition is general enough to encompass

more sophisticated association models.

Example 1 Figure 3(d) shows an FSG consisting 5

functional clusters. Any edge between two functional

clusters exists when Pi(X > ocuv) ≤ 2b =|S|2, implying

that more edges connect proteins between the func-

tional clusters than expected in random.

Problem statement

The functional summarization problem is the problem of

finding ΘG that best represents the underlying PPI sub-

ject to a summary complexity constraint. To model this

problem, we propose a profit maximization model that

aims to find ΘG = (S, F, Pi, a) by maximizing information

profit under a budget constraint. Every protein i Î V is

assigned a non-negative information budget b, which

represents the information it contains. Let S∆ be the set

of functional clusters induced from ∆. Every functional

cluster C(u) Î S∆ is assigned a non-negative structural

information value ψC(u)(to be defined later), which repre-

sents the amount of structural information contained

within the functional subgraph. When a functional clus-

ter C(u) is added to the summary, for every protein i Î V

(u), a portion of b is taken out and added to summary

information gain. This represents new information added

to the summary. The amount to take depends on ψC(u).

Imposing information budget b limits the amount of

information a protein can provide. A parameter 0 ≤ d ≤

10 is also introduced to penalize redundancy. By doing

so, repeated representation of a protein i yields reduced

information gain, modeling diminishing returns. Based

on this profit model, we construct the set of functional

clusters that maximizes profit while satisfying the

constraints.

Definition 3 (Functional Summarization Problem)

Let Ki be a set of functional clusters such that C(u) Î Ki

if and only if iÎ C(u). For every C(u) Î S∆, let ψ
C(u) be

the structural information value of C(u). Given a protein

interaction network G(V, E) and user-defined parameters

b, d and k, the functional summarization problem con-

structs a k-cluster FSG ΘG = (S, F, Pi, a) that satisfies

the following optimization problem:

maximize
∑

i∈V

|S|
∑

j=1

p(i, j)

where

b(i, m) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

d
10

(b(i, m − 1) − p(i, m − 1))
if m > 1,

αS(m − 1) ∈ Ki

b(i, m − 1)
if m > 1,

αS(m − 1) /∈ Ki

b if m = 1

and

p(i, m) =

⎧

⎨

⎩

ψαS(m)

b(i, m)

0

if b(i, m) ≥ ψαS(m)and αs(m) ∈ Ki

if b(i, m) < ψαS(m)and αS(m) ∈ Ki

αS(m) /∈ Ki

subject to

|S| = k

S ⊂ S�

(2)

We elaborate on how the structural information value

ψ
C(u) is assigned. A functional cluster C(u) and its pro-

tein constituents share a common function u, and thus

vertices in the subgraph are considered homogeneous

attribute wise. However, it does not imply that the func-

tional subgraph is structurally cohesive (dense). Proteins

having common function u may still be weakly interact-

ing. This may be due to the fact that u itself may indi-

cate a general function (e.g., ‘protein binding’)

which is a common attribute to a large number of pro-

teins that do not interact with each other. We argue

that structurally cohesive functional clusters contain

more information than those which are loosely intercon-

nected. The argument for this is based on the MDL prin-

ciple, whereby clusters that have higher than expected

cohesiveness will have higher information content

because of the lower probability of observing a random

cluster having the same cohesiveness. However, we

make the following exception - a functional cluster with

lower than expected cohesiveness is not deemed struc-

turally informative.

Since the optimization problem must choose among a

set of functional clusters, we are not concerned about

the actual p-value of observing a subgraph having such

interaction density. Instead, we only need a measure

that allows us to compute the relative ranking of the

functional clusters by their information content. Such

simplification leads to much greater computation effi-

ciency. We define the structural information value of a

functional cluster C(u) as follows.

Definition 4 (Structural Information Value) Let ωij

be the edge weight of (i, j) Î E. The structural informa-

tion value of a functional cluster C(u), denoted by ψ
C(u),

as ψC(u) = pC(u) where
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ρC(u) =

∑

i,j∈C(u) ωij
∣

∣C(u)
∣

∣

Algorithm 1 Algorithm FUSE

Input: G, ∆, D, k, b, d, b
Output: Θmin

1: Let S = empty set

2: Let Bmap = set of pairs (i, b) for each i Î V

3: Assign ψ
C(u) and cC(u) for each C(u) Î S∆

4: i = 0

5: while i < k do

6: (Cmin, Bmap) = MapProfit(S∆, Bmap, d, |V|, k )

7: Remove Cmin from S∆
8: Add Cmin to S

9: i = i + 1

10: end while

11: for C(i), C(j) Î S do

12: if C(i) ≠ C(j) and Pi(X > ocC(i)C(j)) ≤ 2b = |S|2

then

13: Add edge (C(i), C(j)) to F

14: end if

15: end for
rC(u) is the ratio association [35] score of C(u), a stan-

dard graph clustering objective we adopt that indicates

the structural density of C(u). At first glance, it may

seem that the structural information value should be

defined as ψ
C(u) = rC(u) - rrandom, where rrandom is the

expected structural density of a random cluster. How-

ever, we ignore rrandom for the following reason. In

scale-free and Erdős-Rényi graphs, the self-information -

log P (ψC(u)) is a positive non-decreasing function of ψC

(u) for ψ
C(u) >0. Hence, ψC(u) can be used to compare

the self-information between two functional clusters

without having to determine the probability density

function of the interaction distribution of a subgraph.

Given ai, aj Î ∆, C(ai) is deemed more informative than

C(aj) if and only if ψC(aj) > ψ
C(ai) and ψC(aj ) >0. If both

ψ
C(aj) and ψ

C(ai) are negative, it does not matter whether

one is more informative than the other, since both have

structural density less than that of random networks. As

such, for symmetry, we also deem that C(ai) is more

informative than C(aj) if and only if ψC(aj) > ψ
C(ai) for

ψ
C(aj)

≤ 0. Therefore, when comparing the structural

density between two clusters, rrandom can be omitted

from ψ
C(u) and ψ

C(u) is simply rC(u).
Example 2 Suppose we wish to summarize the PPI in

Figure 3(a) into a 3-node summary (k = 3). If clusters

apoptosis, receptors, and TGF-beta are chosen–

instead of the clusters in Figure 3(c)–we can see that the

profit obtained is suboptimal. Information budget for pro-

teins b, c are depleted due to redundancy, while informa-

tion budget for proteins d, e, g, i are untapped. In

contrast, functional summary in Figure 3(c) is relatively

more optimal, as not only the set of clusters maximizes

profit through superior coverage and minimal redundancy,

but it also maximizes profit through higher structural

information (e.g., the cluster transcription is structu-

rally dense compared to apoptosis).

Algorithm 2 The Map Profit procedure.

Input: S∆, Bmap, d, |V |, k

Output: Cmin, Bmap

1: Let pmax = 0

2: for C(u) Î S∆ do

3: Let Btemp = Bmap

4: Let p = 0

5: for i Î V (u) do

6: Let (i, b(i)) Î Btemp and p(i) = b(i) - ψC(u)

7: if p(i) >0 then

8: p = p + ψ
C(u)

9: b(i) = b(i) - ψC(u)

10: else

11: p = p + b(i)

12: b(i) = 0

13: end if

14: end for

15: cC(u) =

(

∣

∣V(u)
∣

∣ −
|V|

k

)2

16: p = p -cC(u)

17: if pmax < p then

18: pmax = p

19: Cmin = C(u)

20: end if

21: end for

22: for i Î Vmin do

23: Let (i, b(i)) Bmap and p(i) = (d/10)(b(i) - ψC(u))

24: if p(i) >0 then

25: b(i) = (d/10)(b(i) -ψC(u))

26: else

27: b(i) = 0

28: end if

29: end for

30: return (Cmin, Bmap)

The algorithm FUSE

The profit maximization problem is a variation of the

budgeted maximum coverage problem [36], which is an

np-hard problem. To permit a tractable solution, let us

first consider a straightforward greedy approach. The

initial FSG is an empty graph. Given the input protein

interaction network G, ψC(u) for each functional cluster

C(u) Î S∆ are computed. The algorithm then iteratively

selects the functional cluster that leads to greatest

increase in net profit of the summary. Each time a func-

tional cluster C(u) is selected, the FSG and budget infor-

mation b(i) for every protein i Î V (u) is updated. Once
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k clusters has been selected, the algorithm terminates by

generating the FSG.

A major weakness of the aforementioned approach is

that it tends to be “overenthusiastic” in selection of func-

tional clusters during early iterations. Functional clusters

that are too large or too small may be selected at early

iterations resulting in very poor cluster choices at later

iterations due to limited information budget and sum-

mary size (k) constraint. Hence, our proposed algorithm

adds a complexity cost to each chosen cluster. Given

graph size |V | and summary size k, the expected cardin-

ality of a functional cluster in the summary is defined by

E[|C|] = |V|

k
. Then the size deviation cost, denoted as cC(u),

is defined as the square of the deviation of |C(u)| from E

[|C|]. That is, cC(u) =
(

|V(u)| −
|V|

k

)2
. Observe that the

greater the difference between |V (u)| and E[|C|], the less

likely it is to be part of a summary of k-granularity. Clus-

ters whose size deviates too much from the expected car-

dinality are penalized and therefore less likely to be

selected. This reduces the chance of having too less or

too much information budget remaining during the later

iterations of the greedy heuristic.

The aforementioned intuition is realized in FUSE as

outlined in Algorithm 1. It consists of three phases,

namely, the initialization phase, the greedy iteration

phase, and the summary graph construction phase. In

the initialization phase (Lines 1-3), ψC(u) and cC(u) for

each functional cluster C(u) S∆ are computed. The

greedy iteration phase (Lines 4-10) involves iterative

addition of functional clusters into S in a greedy man-

ner as described above. The best candidate functional

cluster for the current round (Cmin) is determined

through the subroutine MapProfit (Line 6). This step

also maintains the information profit of S and the

remaining information budget of every v in G through

a persistent pro t map (Bmap). Cmin is then removed

from the candidate pool S∆ and added to the solution

set S (Lines 7-8). Finally, the summary graph construc-

tion phase (Lines 11-15) computes F to generate the

FSG Θmin.

The MapProfit procedure is outlined in Algorithm 2.

In order to identify the best candidate cluster of the cur-

rent iteration round, it evaluates every cluster in the

candidate pool by evaluating its profit gain potential

(Lines 1-21). First, the amount of information to extract

from each protein’s information budget pool (b(i)) is

computed (Lines 7-13). Next, the potential profit gain is

adjusted to compensate for the complexity cost (Lines

15-16). After Cmin is found, the profit map is recom-

puted to commit the changes made to the information

budget map due to the selection of Cmin (Lines 21-29).

Theorem 1 Algorithm FUSEtakes O(|S∆|
2|V |2) time

in the worst case.

Proof of theorem 1

In the initialization phase, ψC(u) for each C(u) S∆ has to

be computed. Each C(u) may contain up to |E| edges

and |V | vertices. In Algorithm 1, ψC(u) for each C(u) S∆
takes O(|E|) time. Thus, thus the total complexity for

this procedure is O(|E||S∆| + |V ||S∆|) time.

In the greedy iteration phase, the MapProfit subroutine

defined in Algorithm 2 is evaluted k times. In Algorithm 2,

lines 2-21 require O(|S∆||V |). Lines 22-29 require O(|V |)

time. Thus, Algorithm 2 takes O(|S∆||V | + |V |) time.

The iteration phase, as such, takes O(k|S∆||V | + k|V |)

time in total.

Finally, the summary graph construction phase

involves pairwise significance evaluation of the resultant

functional cluster set. This involves evaluation of all

edges between k-pairwise functional clusters of the sum-

mary. Each significance Pi(X > ocuv) test requires a sin-

gle-pass evaluation of edges connecting a pair of

clusters. At worst case, this takes O(|E|) time. The sum-

mary graph construction phase therefore require O(k2|

E|) time.

The FUSE algorithm, as whole, takes O(|E||S∆| + |V ||

S∆| + k|S∆||V | + k|V | + k2|E|) time. In the worst case

scenario of |E| = |V |2 and k = |V |, the algorithm takes

O(|S∆||V | + |S∆||V |2 + |V |2 + |V |4) time, implying a

polynomial time complexity at worst possible case.

Evaluation metrics

We used the coverage metric to evaluate the fraction of

the annotated protein interaction network covered by a

summary. A functional summary with high coverage is

desirable because it is more representative of the under-

lying interaction network than a summary with low cov-

erage. The coverage of a functional summary Θ is

defined as:

coverage(�) =

∣

∣

∣

⋃

C(u)∈S�
V(u)

∣

∣

∣

∣

∣

∣

⋃

C(u)∈S�
V(u)

∣

∣

∣

(3)

The coverage is the ratio of the total number anno-

tated proteins in the summary over the total number of

annotated proteins in the protein interaction network.

The redundancy metric is the average number of

functional clusters each protein belongs to. This is an

indicator of the amount of cluster overlap in the sum-

mary. Redundancy of Θ is defined as:

redundancy(�) =

∑

C(u)∈S�

∣

∣V(u)
∣

∣

∣

∣

∣

⋃

C(u)∈S�
V(u)

∣

∣

∣

(4)

A summary Θ with no overlapping clusters will have

lowest possible redundancy value of 1, where every
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protein is assigned to exactly one cluster. A summary

with high redundancy is undesirable, because a sum-

mary with many highly overlapping clusters is less intui-

tive and more complicated.

The following well-known evaluation metrics are

also used - precision and recall. These are well

known statistical measures to indicate accuracy

and completeness. Precision, a measure of exactness,

is defined as precision =
truepositive

truepositive + falsepositive
.

Recall, a measure of completeness, is defined as

recall =
truepositive

truepositive + falsenegative
. If a cluster C(i) is

assigned with the function i, then any protein p Î C(i)

that is not annotated with i or its descendants is

deemed a false positive. If p Î C(i) is annotated with i

or descendants, it is a true positive. Likewise, a protein

p Î V that is annotated with i but not in C(i) is deemed

a false negative. Here, proteins without annotations are

not taken into consideration.
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