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Abstract: Additive manufacturing (AM) highlights developing complex and efficient parts for various
uses. Fused deposition modelling (FDM) is the most frequent fabrication procedure used to make
polymer products. Although it is widely used, due to its low characteristics, such as weak mechanical
properties and poor surface, the types of polymer material that may be produced are limited, affecting
the structural applications of FDM. Therefore, the FDM process utilises the polymer composition to
produce a better physical product. The review’s objective is to systematically document all critical
information on FDMed-polymer composite processing, specifically for part fabrication. The review
covers the published works on the FDMed-polymer composite from 2011 to 2021 based on our
systematic literature review of more than 150 high-impact related research articles. The base and
filler material used, and the process parameters including layer height, nozzle temperature, bed
temperature, and screw type are also discussed in this review. FDM is utilised in various biomedical,
automotive, and other manufacturing industries. This study is expected to be one of the essential
pit-stops for future related works in the FDMed-polymeric composite study.

Keywords: FDM; polymer; composite; properties; process parameter; application

1. Introduction

Manufacturing industries are rapidly evolving in terms of the technology and mate-
rials involved. AM has transformed the industries of affordable three-dimensional (3D)
solid structure fabrication and rapidly converting computer-generated designs into actual
parts [1,2]. In recent years, AM has emerged as one of the most effective processes where
the material is printed layer-upon-layer for building 3D products. Rapid prototyping, rapid
manufacturing, and 3D printing are terms used to describe AM, which is snowballing in
the manufacturing sector because the product can be served directly to the consumers,
resulting in lower capital expenditure and transportation costs. Furthermore, AM fabri-
cates customised parts in small quantities, which do not need special tools and allow the
fabrication of complex geometries and assemblies [3,4]. In addition, 3D printing technology
has advanced rapidly in recent years, and now various field applications are available,
such as industries in the biomedical [5,6], aerospace [7,8], and automotive fields [9]. Unlike
the traditional manufacturing processes [10], 3D printing is an AM method that works by
stacking material from one layer over another to produce complex structures [11].

Metals, polymers, and composites can be used in AM. Many applications use AM
technologies to create a complex shape [12]. There are many AM processes, such as selective
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laser sintering (SLS) [13], fused deposition modelling (FDM) [14], direct metal deposition
(DMD) [15], laminated object manufacturing (LOM) [16], ink jet modelling (IJM) [17],
and stereo-lithography (SLA) [18]. These procedures differ in printing material, process
parameters, precision level, and end-use application [19]. FDM, also known as fused
filament fabrication (FFF), is very well used in 3D printing. Stratasys Inc. in the United
States invented the method during the 1990s. Printing factors such as printing orientation,
air gap, layer thickness, raster width, and raster angle can be adjusted to improve the
quality of printed parts [20]. Although FDM is known for its low operating cost and low
investment cost, the printed products are more fragile as compared to other standard plastic
manufacturing methods, such as moulding, injection [21], CNC [22], and extrusion [23,24].

Composites are materials of two or more physically or chemically separate phases
divided by a discrete interface. The different elements are deliberately merged to produce
a system with much more effective structural and functional properties than any of the
constituents could achieve on their own [25].

Whether natural or synthetic, polymer composites are amongst the most significant
applications of polymer. In various polymer matrices, the polymer composite is a multi-
phase solid substance in which one phase has at least 1, 2, or 3 dimensions. The polymer
composites are viable for use as a high-performance composite when the reinforcing prop-
erties differ significantly from or exceed that matrix. The polymer matrix composite is the
most enhanced composite material; these composite materials have various classifications
of fibres such as natural and synthetic fibres as the reinforced materials in various types of
polymer, for instance, thermoplastic polymer or thermoset polymer, which can be moulded
into various shapes and sizes to produce various types of antiquated material [26].

By applying the feeding force created by the grooved bearing and driving gear, ma-
terial in the form of a filament is fed into the liquefier head over the spool, as shown in
Figure 1. The thermoplastic filament is heated to a glass transition temperature before
being deposited in layers using a heated nozzle. The head of the liquefier travels through
the X-Y plane according to the tool path supplied by programming. Support material can
be eliminated with a solvent after fabrication [27].
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Figure 1. Schematic diagram of FDM process. Figure 1. Schematic diagram of FDM process.

Figure 2 shows the steps involved in the FDM process. The process begins with
designing a digital model of a part by using CAD software. Then, 3D scanning, and
reverse engineering are also performed to create a digital model. Later, the digital model is
converted into a Standard Tessellation Language or Standard Triangle Language (STL) file.
The STL file contains data about the surface geometry of the model. Then, the STL file is
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fed into the slicer software after conversion. Slicing determines the condition of printed
pieces. Next, they apply information from the STL file, and the slicer generates G-codes.
The generated G-code is the same as the CNC machine. It also controls the extruder and
platform’s direction during printing. After converting the G-codes from an STL file, the
3D printer is ready to print a physical object of the design. This printing differs regardless
of the kind of AM technique used. In the FDM process, the nozzle follows the G-code
instructions and moves to deposit the melted filament in layers. The G-code controls
the amount of material extruded, movement of the extruder nozzle, and extrusion time.
After the whole model is printed, some post-processing is required to ensure a satisfactory
product finish [28].
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Figure 2. Steps involved in the FDM process to produce 3D printed parts.

Even though the FDM process generates high-quality machinable materials, the world
currently requires far more effective 3D printed parts than the traditional approaches,
which can be gained by combining polymer with other materials, such as carbon, ceramic,
metal, and many others, which are known as polymer composites. This review paper
discusses the polymer composite using the FDM process from 2011 to 2021. As for this
review paper, around 150 high-impact related research articles have been analysed to
obtain the related information by using a research matrix table method. The paper also
discusses polymer composite utilisation in the FDM process and its properties, as well as
processing parameters and applications of the FDM process used in various industries.
The dimensional accuracy of FDM-printed prototypes is one of the many aspects that
determine the performance of fabricated prototypes because it influences the outcome of
further prototype investigations. In addition, many printing parameters such as extrusion
temperature, layer thickness, printing speed, raster width, and infill pattern are proven to
significantly impact dimensional accuracy [29].

2. Composite Materials

Composite materials have developed into engineering materials that are remarkable
and diverse because they are strong in domain areas that do not deform easily and have a
high strength-to-weight ratio [30,31]. A composite material is defined by its name, which
implies that it is made of different materials. Compositional engineering occurs when
many constituent materials with significantly different chemical or/and physical properties
are combined to form a new material with unique characteristics that are not present in
the individual element [32–37]. Compared to the qualities of individual materials, this
augmentation makes composite materials preferable. There are different types of composite
material: scale base composite, reinforced base composite, matrix material base composite,
and bio-composite. Figure 3 summarises the types of composite material. A composite
material comprises two materials, namely base and filler. Because it wraps and bonds the
reinforcement of other materials, the base material is commonly known as a matrix or a
binder material. Fibres, particles, fragments, and natural or synthetic whiskers are filler
materials [38–40]. Matrix is a soft phase with mechanical and physical properties, such as
formability, ductility, and thermal conductivity. Material with high stiffness, strength, and
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low thermal fluctuation is included in the matrix reinforcement. The reinforcement phase
of composites is always stiffer and more robust than the matrix because it conveys the load
applied to the material.
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2.1. Polymer Matrix Composite

A polymer matrix composite (PMC) is a composite material consisting of a natu-
ral polymer grid that holds a series of smaller uniform filaments. PMCs are designed
to transport loads between matrix material filaments. PMCs are composed of a ther-
mosetting or thermoplastic matrix with carbon, Kevlar, glass, and metal fibres dispersed
throughout [41–44]. Thermosets are more commonly used than thermoplastics because of
their increased strength and tolerance to high temperatures [45]. Thermosets are made by
combining resins that are hardened together. The most common type of laminar structure
is created by stacking and bonding thin layers of fibre and polymer until the appropri-
ate thickness is achieved. Due to facile handling procedures and cheap manufacturing
methods, PMCs are inexpensive composites [46,47]. Polymers can be utilised as the base
matrix. Metals, generally in powders, are often used as the reinforcement, resulting in
a material with unique qualities. The PMC has proliferated in recent years due to the
demand for additional innovative engineering materials with higher strength and lower
weight [48,49]. Figure 4 explains the classification of matrix composites. There are three
types of matrix composites: metal matrix composites (MMC), ceramic matrix composites
(CMC), and polymer matrix composites (PMC).

2.2. Base Material

AM and eventually the fabrication of original equipment manufacturer (OEM) compo-
nents rely heavily on polymer materials. There are two kinds of thermoplastic materials in
use today, which are thermoplastic and thermoplastic composites. The use of large-capacity
polymer thermosets and elastomer materials in AM is a relatively new technique. FDM
technology uses a variety of thermoplastics as feedstocks, including acrylonitrile butadiene
styrene (ABS), polylactic acid (PLA), polycarbonate (PC), polyether ether ketone (PEEK),
polyethene terephthalate glycol (PETG), and nylon [50,51]. Table 1 shows thermoplastics
used in FDM process.

Figure 5 shows the base materials used in the FDM process. The most used base
material is ABS, and the second most used is PLA. Both are thermoplastic materials that
are commonly used materials in the FDM process. Comparatively, materials other than
ABS and PLA are used at a minimum, at no more than 10%. PC, PEEK, and PETG are
thermoplastics primarily utilised in engineering applications. ABS is a popular thermo-
plastic material for the FDM process because ABS has excellent melt fluidity, strength,
and stiffness.
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FDM ABS products’ impact and tensile properties are poor compared to injection-
moulded components [52]. FDM-manufactured ABS products have a 34% lower tensile
strength than injection-moulded products. PLA is another popular thermoplastic material
utilised in the FDM process because of its biodegradable qualities and wide range of uses
in the medical sector. PLA has low ductility as compared to ABS. However, it has high
strength. During the printing of the PLA composite, a rise in void content and anisotropy
is observed, similar to ABS composites in the FDM process [53].

2.3. Filler Material

Plastics can be reinforced with a variety of fillers, including metals and numerous
organic compounds from plants, to create composites. These fillers can be used to increase
a composite’s characteristics, surface appeal, sustainability, or cost. Figure 6 shows filler
materials used in the FDM process based on polymer composite-related published work.
Carbon is the most used filler material (39%). The commonly used carbons are carbon
nanotubes, graphite, graphene, and carbon black. There are a few carbon nanotubes:
single-walled carbon nanotubes (SWNT) and multi-walled carbon nanotubes (MWCNTs).
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SWNTs are cylindrical graphitic tubules with diameters of approximately 1.0 nm. MWCNTs
are a unique structure of carbon nanotubes, whereby the multiple single-walled carbon
nanotubes are enclosed inside each other. Fibres can be classified into two categories:
natural fibre and synthetic fibre. The natural fibre is extracted from animals, cellulose, and
minerals. Fibre from minerals is asbestos. Animal fibres are silk, hair, and wool.

Table 1. Thermoplastic used in FDM process.

References Type of Materials Characterisation Utilisation Sector Remarks

[54–58] Acrylonitrile butadiene
styrene (ABS)

Better resistance to corrosive
materials
Low cost

Withstand high temperature

Microdevices
Microfluidics
Prototyping

Dissolves in acetone

[59–65] Polylactic Acid (PLA)

Low cost
Non-toxic

Biodegradable
Ease to print

Tissue engineering
Automotive

Electrical and
Electromagnetic

Biomedical
Biosensors

Prototyping

Very brittle
Low toughness

[66–68] Polyamide/Nylon
Resistant to impact

Heat-resistant
High tensile strength

Fabrication tools
Prototyping

Industrial production parts
Moisture accumulation

[69–72] Polycarbonate (PC)
Transparent

Temperature-resistant
High resistance to impact

Dental
Tissue engineering

Orthopaedic

[73,74] Thermoplastic
polyurethane (TPU)

Good lubricity
Abrasion-resistant

Hoses and tubes
Biomedical prototype

Seals and gaskets
Elastomeric behaviour

[24,75–78] Polyether-ether-ketone
(PEEK)

Organic thermoplastic
polymer

Chemical-resistant
Good lubricity

Aircraft parts
Racing cars

Drones
Medical implants

[79–82]
Polyethene

terephthalate glycol
(PETG)

Chemical-resistant
Transparent

High processability

Bone models
Orthopaedics

Become brittle due to
heat

[59,64] Polyvinyl alcohol
(PVA) Soluble in water

Dental models
Bioprinting

Brackets
Affected by humidity

[83,84] Polyetherimide (PEI)
Chemical-resistant

Heat-resistant
Dielectric

Aerospace
Automotive

Medical

Better than
conventional plastic

products

In contrast, cellulose is usually extracted from bast, leaf fruit, wood, seed, grass,
and stalk. There are two divisions of synthetic fibre: organic fibre and inorganic fibre.
Organic fibre consists of polyethene, aromatic polyester, and aramid fibre. Inorganic fibres
are glass, boron, carbon, and silica carbide [26]. Although there is much information
about continuous fibre-reinforced thermoplastic composites, there is not much on chopped
carbon fibre-reinforced thermoplastic composites. This employs the FDM process to create
composites and explore the impact of chopped carbon fibre on the thermo-mechanical
properties of PLA composites [27]. Table 2 shows the filler materials in FDM process to
enhance properties of polymer.
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Figure 6. Materials that are used as filler to enhance properties of polymer.

Table 2. Classification of filler material and the conducted test.

Classification Filler Material Type of Base
Material Used

Composition
(wt%) Test Reference

Metal

Aluminium PLA 6.95 Tensile [85–87]

Copper PLA 4, 8, 12, 16, 20 Compression and
flexural [88–90]

Stainless steel - - Density
measurement [91]

Plant-based
Cork PLA 5, 10, 15, 20, 25, 30,

50
Tensile and density

measurement [92,93]

Wood particle PLA 30, 40 Tensile, flexural [94–96]
Cellulose PLA 1, 2, 5, 10, 20 Tensile, flexural [97–100]

Carbon-based
nanomaterials

Carbon black
ABS 3, 1.5 Density

measurement, tensile [101,102]

PLA 5, 53 - [103–105]

Graphene
ABS 2, 4, 6, 8 Tensile, flexural,

impact, hardness [106–109]

PC/ABS 0.2, 0.4, 0.6, 0.8 Tensile [110,111]
ABS/EPDM 2, 4, 6, 8, 10 - [112]

Carbon nanotubes
ABS 1, 3, 5, 7, 10 Tensile, density

measurement [101,113,114]

PLA 10 Electrical
conductivity [115,116]

Mineral
Hydroxyapatite

(HA)

PLA 5, 10, 15 Compression and
flexural [117,118]

PCL 10, 20 Compression and
tensile [119–121]

PEEK 10, 20, 30, 40 Tensile [122]

Organic fibre
Kenaf bast fibre PCL 5, 10, 20 Tensile and flexural [123]

Aramid fibre Nylon polymer 2 Surface roughness [124]
Flax fibre PLA - Tensile [125]
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Table 2. Cont.

Classification Filler Material Type of Base
Material Used

Composition
(wt%) Test Reference

Inorganic fibre

Carbon fibre

ABS 1, 2, 3, 5, 7.5, 10, 15

Tensile, flexural,
surface roughness,

dimensional
accuracy

[126–128]

PLA 12, 15, 20
Tensile, compression,

flexural, hardness,
impact

[129–132]

PEEK 10, 20 Tensile, flexural [133–135]

Glass fibre
ABS 30 (vol%) Tensile [136]

nylon 13.87 (vol%) Tensile, flexural,
impact [137,138]

3. Processing Parameter of FDM

The process parameters influence the material’s accuracy, efficiency, and characteristics.
As a result, a fundamental study into numerous process factors must be included to produce
functionally efficient parts by utilising the FDM technology. Therefore, the FDM printing
process specifies and briefly describes several parameters.

3.1. Layer Height

Figure 7 shows the bar chart for layer height used in the FDM process 3D printer.
Nearly half of the 100% for layer height is 0.2 mm, consisting of 48%. Most FDM printers
only have a size up to a 0.4 mm printing nozzle. The least-used layer height is 0.5 mm. The
layer height is also defined as layer thickness. It means the thickness of material extruded
from the printing nozzle for printing the physical part. The layer height can be adjusted
to the printed parts’ referenced thickness. It represents the number of layers formed in a
single pass all along the vertical axis of the FDM machine. Material deposition heights will
be smaller than the nozzle diameter of the extruder.
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Figure 7. Layer heights used in FDM machine during printing process.

The value is solely dependent on the diameter of the extruder tip. Layer height has
an unavoidable impact on the impact and bending properties of the fabricated product.
A minimum layer thickness is recommended to obtain better bending properties, and to
increase layer thickness as it improves impact properties [139,140]. Compared to other
parameters such as shell thickness and part orientation, the impact of layer thickness, as
discussed in the literature, contributes roughly 85% of FDM-produced parts’ accuracy [141].
Based on the ANOVA results, other studies also show its significance (12.23% contribution)
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following the raster width parameter. The part dimension and layer thickness are deter-
mined to have a direct correlation. This indicates that thicker layers yield larger pieces,
resulting in more significant dimensional variances [142].

3.2. Nozzle Temperature

Extrusion temperature is the temperature controlled inside the heating nozzle of FDM
even before the material is extruded [143]. It changes the viscosity of printing material,
affecting the part’s properties. The ideal temperature must be maintained since it can
impact the viscosity of the filament material, which affects the printed part. Figure 8 shows
the various nozzle temperatures used for the FDM process. The highest temperature used
is from 230 ◦C to 259 ◦C. The second-highest range is 200 ◦C to 229 ◦C. Others stand for
ranges from 380 ◦C to 409 ◦C, 410 ◦C to 439 ◦C, and 440 ◦C to 469 ◦C. As the material is
extruded from the nozzle, the internal tension develops as the temperature of the material
cools from the initial temperature to the temperature of the chamber. This occurs as a result
of variations in deposition speed. The internal stress can cause interlayer and intralayer
deformation, leading to manufactured part failure [144]. The nozzle temperature melts
the filament into a semi-liquid state to print the physical parts. The extrusion temperature
would be an essential parameter because if the temperature were low, the material would
have a high viscosity which would be hard to extrude. However, if it is too high, the
substance will flow, and dripping might occur. As a result, it is vital to fix the extrusion
temperature to the correct value, depending on the material used for printing [141].
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Figure 8. Range of nozzle temperature for various material via FDM process.

3.3. Bed Temperature

Besides nozzle temperature, bed temperature also plays a vital role in printing. Bed
temperature, commonly known as heat bed, is a platform whereby the part is printed
during printing. Bed temperature has two primary purposes. Firstly, it can prevent the
printing object from warping. Warping is a familiar problem when the edges of the printed
material are cooled at various rates compared to the rest of the material. When a heated
and stretched material is extruded onto the cold and contracted material, it causes tensions
in the material after the new layer cools. This causes the cooled plastic to warp upwards
and changes the appearance of the print. Secondly, it helps in layer adhesion. It increases
the surface energy of the print bed to improve the bonding strength of the first layer. The
prints will not adhere properly to the build plate if the first layer adhesion is poor, which
increases the possibility of a print failure. When it has good adhesion, it helps to reduce the
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warping of the printing material. Besides preventing warping and layer adhesion, the bed
temperature also retains the temperature of the printing platform. The bed temperature
also eases the removal process of printed parts. The removal process is straightforward
with the bed temperature by using any cutting tools or forces. Figure 9 shows a column
chart for the bed temperature of the FDM process. The highest range used is from 50 ◦C
to 70 ◦C with 39%. The second primarily used range lies from 100 ◦C to 124 ◦C, with 18%.
The minor range used is 125 ◦C to 149 ◦C. Others are ranged from 175 ◦C to 199 ◦C and
from 200 ◦C to 224 ◦C.
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3.4. Printing Speed

In 3D printing technology, print speed is the most critical setting. As the name
implies, print speed determines how fast the motors of the printer move. The electric
motors controlling the X- and Y-axes and the extruder are included in the printing speed.
The speed of the nozzle represents the deposition of filaments over a region of the built
component during deposition. Printing speed is equal to the amount of time taken to print.
It has a significant influence on the quality of the fabricated model. However, in narrower
layer printing, the impact of the printing speed is negligible [145]. Figure 10 shows the
printing speed used in the FDM process. The frequently used printing speed is around
21 mm/s to 40 mm/s. The next is 41 mm/s to 60 mm/s.

3.5. Building Orientation

Building orientation is also known as building direction. Besides the layer resolution,
the build orientation is also very crucial to the process. The building orientation is the
angle at which the part is placed about the horizontal axis of the build platform. Surface
roughness and staircase effect are determined by resolution, whereas print quality and
layer arrangement are determined by build orientation, and fusion is proportional to the
mechanical properties of the printed object [14,146]. It describes how parts are positioned
on the build platform about the three primary axes of the machine tool, which are the
X-axis, Y-axis, and Z-axis [147]. Figure 11 shows the printing orientation of the impact
test sample for 0◦, 45◦, and 90◦. Afrose [148] observed that specimens’ best strain energy
storage capacity and fatigue life are printed at a 45-degree angle.
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3.6. Screw Type
3.6.1. Single Screw Extruder

The single screw extruder was invented in the 1870s. It is the most extensively used
extruder due to its ease of operation in polymer and rubber production [149]. The most
basic single screw extruder configuration is a single revolving screw positioned inside a
static cylindrical barrel split into three distinct zones: the compression zone, feed zone, and
metering zone [150]. Different pressures can be generated along the length of the screw
by varying the depth and pitch of the screw flight within every zone. The screw flight
pitch and depth are generally chosen at bigger scales than from other zones to achieve
low pressure at the feed zone, which consistently feeds material from the hopper into
the extruder barrel [151]. Solid materials must be melted and homogenised as part of the
rotating conveyance into the compression zone to form a suitable shape for distribution
in the metering zone. As a result, the decreasing screw flight and pitch depth cause a
progressive increase in barrel pressure along the length of the compression zone [152].
For less demanding applications, kneading, devolatilising, and mixing can be conducted
in this processing zone [152,153]. A homogenous product by consistent structure can be
achieved from die extrusion by stabilising the effervescent flow to a steady condition in
the last metering zone. Fabricating extrusion-based goods using a single screw extruder
is particularly well suited for high viscosity polymers since it may produce high pressure
during operation [154].
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The material is fed into the barrel through the feed throat by gravity force, and in most
single screw extruders, the speed of the screw controls the output rate. High pressure to
transfer material from the feed system causes the plastic pellet or powder to condense into
a solid bed [155]. Periodically, the mass flow rate is unaffected by the speed of the screw
and is regulated directly from the feed system by using a starving fed mechanism, resulting
in an output rate that is lower than the forwarding efficiency of the screw [156,157]. The
single screw extruder has only one screw and is used to make homogeneous polymers
in a continuous shape [149,158]. Single screw extruders are unsuitable for heat-sensitive
polymers due to higher friction and thermal energy as the screw speed increases.

Furthermore, significant pressure is used during the extrusion process, compressing
the ingredients to generate filaments. However, it may lead to agglomeration and poor
mixing due to a lack of shear deformation. [159–161].

3.6.2. Twin Screw Extruder

Although the single screw extruder process seems simple and inexpensive, it lacks
the mixing capacity required to produce a polymer composite using many compounded
components. As a result, in the late 1930s, a modified extruder known as a twin screw
extruder that contained two screws placed next to each other at a modular barrel was
developed to form intimate blends of two or more different materials [162]. Unlike a single
screw extruder, a twin screw extruder provides a more vital shear force amongst the screws
and barrel and the rotating screws, resulting in the proper mixing of materials [163]. As
a result, a broad range of mixing operations and heat transfers are achieved with a faster
throughput, independent of the screw’s speed. On the other hand, the counter-rotating
system can generate a sizeable extensional shear force between the gaps between the
two screws, allowing for a significant potential air entrapment, pressure generation, and
extended retention period while using the minimal speed and output of the screw [164,165].
Both can be divided into two categories: entirely intermeshing and non-intermeshing.
Because of its self-wiping function, the intermeshing twin screw extruder may not only
eliminate non-motion throughout the extrusion, but also avoid excessive overheating of
raw materials. After the process, the rotation of the screws removes residual material from
the screw roots and cleans the entire inside barrel. Table 3 shows the difference of single
screw extruder and twin screw extruder.

Meanwhile, this popular layout can help reduce product waste at the end of the
manufacturing process [166]. The mutually different screws positioned in the extruder
barrel for the non-intermeshing type result in low torque generation and weak interaction,
making it a better choice for processing high viscosity materials and venting to eliminate
interior volatile substances [167]. Figure 12 shows the type of screws.
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Table 3. Single screw and twin screw are compared.

Extrusion Type
(Screw) Extruder Model Advantages Disadvantages Reference

Single SJ-30/25, Zhangjiagang
Grand

Cheap
Simple design

Low maintaining cost

Poor in mixing
Not suitable for low

heat-resistant materials
[169–172]

Twin

SJ-30/25, Zhangjiagang
Grand

APV Chemical
Machinery MP 2015

DSM Xplore
Haake Rheomex OS,

Thermo Fisher,
Germany

High dispersion capacity,
which results in better

mixing
Better process parameters

control
Easy material feed
Flexible and better

productivity

Expensive
Better input energy
Not applicable for
materials that are

shear-sensitive

[171–175]

4. Properties of FDM-Polymer Composite
4.1. Mechanical Analysis

Mechanical properties are testing aids in evaluating and designing materials and
products, allowing them to last longer and be more efficient and cheaper. AM polymers’
characteristics are tested using ASTM and ISO test methods. They also aid in the creation
of desired items. In order to prepare the sample and conduct mechanical experiments,
research organisations use ASTM standard criteria; for example, practically all research
groups evaluated for tensile tests [176,177] employ ASTM D638. The majority of research
findings state that the component’s ultimate tensile strength, yield strength, elasticity, and
elongation are mostly affected by the process parameters. Figure 13 shows the mechanical
properties that were tested from 2011 to 2021. From the study conducted, the most tested
mechanical property is tensile. Flexural is the second most thoroughly tested mechanical
property. Fatigue behaviour is one of the mechanical properties that has undergone minor
testing. The tensile test is used on samples to determine material parameters, such as
ultimate tensile strength, yield stress, Young’s modulus, ductility, and toughness. There
are many shapes and designs to choose from when producing a sample for the tensile test.
Even though there are various options for the test sample design, it must adhere to ASTM
standards [178].
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The advancement of the fibre composite by using the FDM technique has expanded
opportunities for field research. The tensile properties of composites are heavily influenced
by factors such as printing parameters, fibre content, and fibre reinforcement. The percent-
age of fibre reinforcement and the orientation of fibres determine the tensile strength of
the composite produced by the FDM process [179,180]. The interlaminar shear strength of
the FDM-fabricated fibre composite is compromised, which directly impacts the flexural
strength of composites. In addition, the FDM-fabricated fibre composite has anisotropic
properties that cause variations in strain rate when bending, which increase the shear stress
amongst the layers, and ultimately cause the separation of layers and failure. Therefore, the
interlaminar shear strength is an essential factor to consider when improving the flexural
properties of the FDM-printed fibre composites [181]. In order to significantly increase
the mechanical qualities of FDM 3D-printed PLA items, such as average tensile strength
and impact toughness, Kuan et al. [182] and Li et al. [183] created FDM printing filaments
containing carbon fibre and MWCNT for the reinforced phase-modified PLA.

4.2. Thermal Analysis

Figure 14 shows a chart of thermal analyses. There are three types of thermal analyses:
dynamic mechanical analysis (DMA), thermogravimetric analysis (TGA), and differential
scanning calorimetry (DSC). The highest thermal analysis used is DSC with 41%, while
TGA is 31%. Essential qualities of energetic materials are their thermal properties, which
are strongly related to safety during manufacturing, storage, transportation, and usage.
The thermal properties of energetic materials can be determined quickly, efficiently, and
effectively using thermal analysis tools [184]. However, in thermal analysis investigations,
the fluctuation of thermogravimetry (TGA) curves frequently occurs for unknown reasons,
and the mass–loss curves, for example, grow or drop drastically and even surpass the com-
plete scales of instruments. Furthermore, the differential scanning calorimetry/differential
thermal analysis (DSC/DTA) is inconsistent with TG because the crucible frequently shifts
or slips off the sample pan [185]. Table 4 shows the difference between TGA and DSC.
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Figure 14. Thermal analysis of FDM polymer composite from the year 2011 to 2021.
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Table 4. Comparison of TGA and DSC.

TGA DSC Reference

Primary determination
Changes in sample mass as a

function of temperature or
time

Changes in heat flow to and
from a sample as a function of

temperature or time
[92,186,187]

Temperature range Room temperature to 1000 ◦C −170 ◦C to 600 ◦C [188–190]

Sample amount Approximately 5–50 mg Approximately 5–50 mg [191–193]

Typical output Lost or gained % by mass
Residual mass

Transition temperature
Transition enthalpy [194,195]

Example of applications

Moisture content
Decomposition

Thermal stability
Compositional analysis

Oxidation

Phase transitions: melting and
crystallisation

Glass transition
Solid–solid transitions

[196–198]

5. Application of Polymer Composite in 3D Printing

Various industries are using the FDM process to produce products. Figure 15 shows
the FDM application in industries. The biomedical field is one industry that utilises the
FDM process for its product, whereby the industry utilises 38% out of 100%. Manufacturing
is the second-highest industry in utilising the FDM process, and aerospace is the third-
highest industry. In recent times, the use of FDM technology has grown in popularity,
particularly in aerospace, medical, and automobile fields. In addition, the overall quality
of prototypes printed for the aerospace sector is in high demand since they are utilised to
examine the fluid dynamic behaviour of models [141].
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Figure 15. Application of FDM using polymer composite.

5.1. Aerospace

In the past few years, the production of aircraft, satellites, and space shuttles has
drastically increased the demand for aerospace and aviation components [199]. Aerospace
components with a high aesthetic value rather than high efficiencies, such as light housings,
door handles, power wheels, and complete dashboard designs, are usually made using 3D
printing. Metal 3D printing enables the manufacture and deployment of complex military
components more quickly [200]. However, recycling scrap formation after manufacturing
aircraft parts is costly and time-consuming. As much as 80–90% of the conventional billet
may be wasted during machining, but an AM process can reduce this by less than 10%.
AM also allows the creation of free-form designs that produce tooling fixtures for making
expensive aerospace materials such as titanium. As a result, conventional manufacturing
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methods can only produce cooling channels with straight lines, complicating aerospace
components’ fluid flow optimisation [201]. Figure 16 shows Stratasys and Aurora Flight
Sciences’ AM-unmanned aerial vehicle (UAV).
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5.2. Automotive

An AM technique widely used is fused deposition modelling (FDM). It is used in
the automobile industry for various purposes, including lightweight equipment, final
functional components, and testing models. On the other hand, the FDM technology faces
two significant challenges in becoming a viable processing method in the automotive
industry, which are weak and anisotropic mechanical characteristics and a limited range
of printing materials. The mechanical properties of FDM’s physical parts are influenced
by weak interlayer links produced during the layer top layering process [203]. By design,
the brake pedal is one of the most critical pieces of the vehicle. A brake pedal is a safety
component with sound engineering, exact quality requirements, and critical quality inspec-
tion. In addition, the brake pedal is the most acceptable option for research because of its
severe characteristics. As a result, if a crucial part can be produced with the AM technique,
then less critical parts such as brackets, hinges, and supports, to name a few, can also be
produced [9]. Figure 17 shows the brake pedal produced by using the FDM process.

5.3. Biomedical

Biomedical implants benefit the medical profession and end-users, such as people
who have suffered severe accidents or illnesses. However, biomedical implants are artificial
substitutes expected to function similarly to the original. Therefore, any substance used
as an implant must be compatible with the human body [204]. Because of its ability to
provide personalised fabrication at a minimal cost, 3D technology has piqued the interest
of industrial and academic fields. In addition, 3D printing technology enables the creation
of polymeric materials for biomedical applications due to inherent advantages, such as the
capacity to create complicated geometry quickly. There are four broad study categories
in which the latest 3D printing technology developed for medical application can be
classified as the formation of diseased organs, development of permanent non-bioactive
implants, and development of biodegradable and bioactive scaffolds on organ and tissue
printing [205]. In addition, the FDM-fabricated bone prototypes can be used in biomedical
research and real-world testing; these can be 3D solid models, specimens for similar
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mechanical prototypes, and mechanical testing. Geometric parameters, as well as local or
global mechanical properties, can be evaluated by the models showed in Figure 18 [206].

Polymers 2022, 14, x  16 of 27 
 

 

 

Figure 16. UAV using the FDM process. Adapted with permission from Stratasys [202]. 

5.2. Automotive 

An AM technique widely used is fused deposition modelling (FDM). It is used in the 

automobile industry for various purposes, including lightweight equipment, final func-

tional components, and testing models. On the other hand, the FDM technology faces two 

significant challenges in becoming a viable processing method in the automotive industry, 

which are weak and anisotropic mechanical characteristics and a limited range of printing 

materials. The mechanical properties of FDM’s physical parts are influenced by weak in-

terlayer links produced during the layer top layering process [203]. By design, the brake 

pedal is one of the most critical pieces of the vehicle. A brake pedal is a safety component 

with sound engineering, exact quality requirements, and critical quality inspection. In ad-

dition, the brake pedal is the most acceptable option for research because of its severe 

characteristics. As a result, if a crucial part can be produced with the AM technique, then 

less critical parts such as brackets, hinges, and supports, to name a few, can also be pro-

duced [9]. Figure 17 shows the brake pedal produced by using the FDM process. 

 

Figure 17. Metal brake pedal using BASF Ultra fuse 316L metal-polymer filament via FDM. 

Adapted with permission from Sargini et al. [9]. 2021, Elsevier. 
Figure 17. Metal brake pedal using BASF Ultra fuse 316L metal-polymer filament via FDM. Adapted
with permission from Sargini et al. [9]. 2021, Elsevier.

Polymers 2022, 14, x  17 of 27 
 

 

5.3. Biomedical 

Biomedical implants benefit the medical profession and end-users, such as people 

who have suffered severe accidents or illnesses. However, biomedical implants are artifi-

cial substitutes expected to function similarly to the original. Therefore, any substance 

used as an implant must be compatible with the human body [204]. Because of its ability 

to provide personalised fabrication at a minimal cost, 3D technology has piqued the inter-

est of industrial and academic fields. In addition, 3D printing technology enables the cre-

ation of polymeric materials for biomedical applications due to inherent advantages, such 

as the capacity to create complicated geometry quickly. There are four broad study cate-

gories in which the latest 3D printing technology developed for medical application can 

be classified as the formation of diseased organs, development of permanent non-bioac-

tive implants, and development of biodegradable and bioactive scaffolds on organ and 

tissue printing [205]. In addition, the FDM-fabricated bone prototypes can be used in bio-

medical research and real-world testing; these can be 3D solid models, specimens for sim-

ilar mechanical prototypes, and mechanical testing. Geometric parameters, as well as local 

or global mechanical properties, can be evaluated by the models showed in Figure 18 

[206]. 

 

Figure 18. (a) Geometric model and (b) FDM prototype of femur and tibia. Adapted with permis-

sion from Revilla-León et al. [206]. 2002, IOP Conference Science. 

5.4. Textile 

Textile companies are also beginning 3D printing to fabricate dresses, shoes, and 

other items [207]. Good adhesion and stability are the primary factors in textile manufac-

turing [208]. Polylactic acid (PLA), acrylonitrile butadiene styrene (ABS), polyamide (PA), 

and polycarbonate (PC) are usually used in FDM. In addition, fibres, fillers, dyes, and 

other additives are commonly used to produce filaments [209,210]. The widespread ap-

plication of PLA and Soft PLA is used to print smooth, glossy, soft, and lacelike fabric 

structures, because they are more flexible than PA and ABS and give the end product a 

soft handle [207]. On the flip side, ABS is rigid, making it suitable for joints [210,211]. 

According to Samit et al. researchers have constructed various knitted structures and 

weaves using the FDM process, such as woven fabric structures with weft knitted struc-

tures and visible stitches. They have also experienced using FDM printing to create gar-

ment panels, lace structures, and composite structures [207,209,211,212]. Figure 19 shows 

an FDM-printed structure for textile. 

Figure 18. (a) Geometric model and (b) FDM prototype of femur and tibia. Adapted with permission
from Revilla-León et al. [206]. 2002, IOP Conference Science.

5.4. Textile

Textile companies are also beginning 3D printing to fabricate dresses, shoes, and
other items [207]. Good adhesion and stability are the primary factors in textile manu-
facturing [208]. Polylactic acid (PLA), acrylonitrile butadiene styrene (ABS), polyamide
(PA), and polycarbonate (PC) are usually used in FDM. In addition, fibres, fillers, dyes,
and other additives are commonly used to produce filaments [209,210]. The widespread
application of PLA and Soft PLA is used to print smooth, glossy, soft, and lacelike fabric
structures, because they are more flexible than PA and ABS and give the end product a soft
handle [207]. On the flip side, ABS is rigid, making it suitable for joints [210,211]. According
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to Samit et al. researchers have constructed various knitted structures and weaves using
the FDM process, such as woven fabric structures with weft knitted structures and visible
stitches. They have also experienced using FDM printing to create garment panels, lace
structures, and composite structures [207,209,211,212]. Figure 19 shows an FDM-printed
structure for textile.
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5.5. Functional Materials

Functional materials are typically defined as those that have specific inherent qualities
and functions of their own. Topology optimisation is a popular and effective method for
determining structural configurations for various performance types. Additionally, it is
viable to incorporate it into additive manufacturing. Chen et al. have built topological
structures with an effective zero Poisson’s ratio: a framework based on periodic unit cells
with plus-minus Poisson’s ratios established. The topologically designed structures are
then printed using 3D printing technology and short carbon fibre reinforced polyamide
(SCF/PA) [213]. The auxetic effect, also known as the negative Poisson ratio (NPR), can
be induced in a hexagonal honeycomb by changing the cell angles. To achieve better
mechanical properties and functionality, continuous carbon fibre (CCF)-reinforced compos-
ites are designed and 3D-printed by Chen et al. [214]. Furthermore, for the planar lattice
designs, a center cross-lattice with four outer-strip components is created using carbon
fibre-reinforced polyamide composites via FDM by Chen et al. [215]. Auxetic geometries
are then turned into high-performance composites via the 3D printing technique, reinforced
with chopped carbon fibre (CF). The effects of polynomial ordering and CF incorporation
on the mechanical properties are carefully investigated by Hu et al. [216]. Chen et al. have
studied the compressive behaviours of 3D-printed CF-reinforced polyamide composite
metamaterials with NPR [217].

6. Future Trend/Challenges of FDM-Polymer Composite

Figure 20 shows the trend of polymer composite utilisation in the FDM process from
2011 to 2021. The graph shows that the trend is increasing yearly. From the study conducted,
the utilisation of polymer composite had a drastic hike in 2017 and 2021 compared to the
other years.
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The use of AM and other advanced manufacturing technologies such as the FDM
process is ushering in a new era in manufacturing, whereby value chains are short, tiny,
more localised and personalised, cooperative, and sustainable. Compared to the typical
subtractive techniques, these are potentials that enhance resource efficiency, reduce waste
of expensive metals such as titanium, and enhance the design for assembly methods to
improve characteristics and lower costs.

There are many signs to suggest that the FDM process will continue to be integrated
into current industrial processes and human life as the technology develops and becomes
more affordable. As a result, the FDM sector, comprising technology and material advance-
ments, as well as related services, has grown at an exponential rate.

7. Conclusions

AM is one of the most significant accomplishments of the fourth industrial revolution.
The uses of AM have significant growth in many industries. FDM is the most popular
AM due to its endless benefits. FDM is a process that can produce various complex
designs into physical objects at a lower cost as compared to traditional manufacturing. This
article discusses:

1. An overview of FDM process flow and polymer composite material properties, and
the type of base and filler material commonly used in FDM.

2. The printing parameters such as nozzle temperature, bed temperature, printing speed,
building orientation, layer height, and screw type also play a significant role in the
performance of the FDM-printed product. However, the relationship between printing
quality and mechanical behaviour for the various types of materials used in FDM
cannot be explained by the available data. There are currently no absolute laws and
regulations that can be applied to help users improve the printing process to achieve
the best printing results, because the same printing procedure can result in various
printing outcomes if the material is different.

3. Different polymers have different behaviours in terms of mechanical properties.
Adding fillers to thermoplastic polymers can enhance the properties and strength of
that particular polymer. Meanwhile, it is still rare to come across the improvement of
process parameters for thermal, chemical, and dynamic mechanical properties.

4. The application of the FDM process in industries such as the aerospace, automo-
bile, textile, and biomedical sectors is also explained briefly. However, in terms of
large-scale applications, FDM still cannot be used as a substitute for the traditional
technique, such as injection moulding, when analyzing the mechanical work perfor-
mance achieved. The main issues with the FDM printing are porosity, gaps between
layers, and rasters produced in the FDM process.
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