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Abstract

Recently, location-based social networks (LBSNs), such as
Gowalla, Foursquare, Facebook, and Brightkite, etc., have at-
tracted millions of users to share their social friendship and
their locations via check-ins. The available check-in infor-
mation makes it possible to mine users’ preference on loca-
tions and to provide favorite recommendations. Personalized
Point-of-interest (POI) recommendation is a significant task
in LBSNs since it can help targeted users explore their sur-
roundings as well as help third-party developers to provide
personalized services. To solve this task, matrix factoriza-
tion is a promising tool due to its success in recommender
systems. However, previously proposed matrix factorization
(MF) methods do not explore geographical influence, e.g.,
multi-center check-in property, which yields suboptimal so-
lutions for the recommendation. In this paper, to the best of
our knowledge, we are the first to fuse MF with geographi-
cal and social influence for POI recommendation in LBSNs.
We first capture the geographical influence via modeling the
probability of a user’s check-in on a location as a Multi-center
Gaussian Model (MGM). Next, we include social informa-
tion and fuse the geographical influence into a generalized
matrix factorization framework. Our solution to POI recom-
mendation is efficient and scales linearly with the number of
observations. Finally, we conduct thorough experiments on
a large-scale real-world LBSNs dataset and demonstrate that
the fused matrix factorization framework with MGM utilizes
the distance information sufficiently and outperforms other
state-of-the-art methods significantly.

Introduction
Recently, with the rapid development of mobile devices
and ubiquitous Internet access, location-based social ser-
vices become prevalent. Online location-based social net-
works (LBSNs), such as Gowalla, Foursquare, Facebook,
and Brightkite, etc., have attracted millions of users to
share their social friendship, experience and tips of Point-
of-interest (POI) via check-ins. These information embeds
abundant hints of users’ preference on locations. The infor-
mation not only can be utilized to help a specific user to
explore new places of the city, but also can help third-parties
such as advertisers to provide specific advertisements for
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Figure 1: User-location check-in frequency matrix.

the recommended positions. Hence, personalized POI rec-
ommendation becomes a significant task in LBSNs.

In the LBSNs, the check-in data contain the following
unique characteristics:
• Frequency Data and Sparsity. An observed entry in the

user-location matrix indicates the frequency of a user vis-
iting a place. Hence, only positive data are available in
the task, see Fig. 1 for an illustration. The density of the
dataset is about 2.08×10−4, which makes the POI recom-
mendation task very tough.

• Multi-centers and Normal Distribution. Users tend to
check in around several centers, where the check-in lo-
cations follow a Gaussian distribution at each center as
shown in Fig. 2 for a typical user’s check-in behavior.

• Inverse Distance Rule. Although each user contains dif-
ferent personalized taste for POI, the probability of visit-
ing a place is inversely proportional to the distance from
its nearest center (see Fig. 3(a) for more information).
This implies that if a place is too far away from the lo-
cation a user lives, although he/she may like that place,
he/she would probably not go there.

• Friendship Influence. The average overlap of a user’s
check-ins to his/her friends’ check-ins is about 9.6%. This
implies that social influence exists, but the effect may be
limited.
In this paper, in order to provide more accurate and effi-

cient POI recommendation, we propose a novel fused ma-
trix factorization (MF) framework to take into account the
above four factors. Our contributions are threefold. First,
we mine the dataset and extract the characteristics of the
crawled large-scale data from an LBSNs website. Second,
based on the data properties, we model the probability of
a user’s check-in on a location as a Multi-center Gaussian
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(a) Multi-center overview (b) Center 1

(c) Center 2 (d) Center 3 and 4

Figure 2: A typical user’s multi-center check-in behavior.

Model (MGM). This is different from an early POI rec-
ommendation work in LBSNs (Ye et al. 2011), which as-
sumes a power-law distribution of the check-in probability
with respect to the distance within the whole check-in his-
tory. Third, we consider the social influence, and more im-
portantly, we utilize the inverse distance rule and incorpo-
rate multi-center geographical influence into the fused MF
framework. Our comparison on the large-scale real-world
LBSNs data shows that fusing MF with MGM can achieve
significantly better performance than other state-of-the-art
methods.

Related Work
Location-based service (LBS) research becomes preva-
lent (Lu, Tseng, and Yu 2011; Yang et al. 2011a; Yang,
King, and Lyu 2011; Zheng et al. 2011) due to a wide
range of potential applications, e.g., personalized market-
ing strategy analysis, personalized behavior study, context-
aware analysis, etc. In particularly, POI recommendation has
attracted much research interest in recent years (Kang, Kim,
and Cho 2006; Horozov, Narasimhan, and Vasudevan 2006;
Zheng et al. 2009; 2010a; Leung, Lee, and Lee 2011). In the
following, we review several main approaches in collabora-
tive filtering communities.

One line of research is to solve POI recommendation
based on the extracted stay points from GPS trajectory logs
of several hundred monitored users (Zheng et al. 2009;
2010a; 2010b; Leung, Lee, and Lee 2011; Zheng and
Xie 2011; Cao, Cong, and Jensen 2010). In (Zheng et al.
2010a), three matrices, location-activity, location-feature,
and activity-activity, are constructed and a collective matrix
factorization method is proposed to mine POI and activi-
ties. A tensor factorization is conducted on the user-location-
activity relationship to be solved the same problem using the
same dataset (Zheng et al. 2010b). In (Leung, Lee, and Lee
2011), a Collaborative Location Model (CLM) is proposed

to incorporate activity to facilitate the recommendation.
The other line of work centers on POI recommenda-

tion based on the LBSNs data (Ye, Yin, and Lee 2010;
Ye et al. 2011). A pioneer work of POI recommendation
in LBSNs debuts in (Ye, Yin, and Lee 2010). The work
has been extended and further studied in (Ye et al. 2011).
More specifically, geographical influence is considered by
assuming a power-law distribution between the check-in
probability and the distance along the whole check-in his-
tory (Ye et al. 2011). However, they ignore users’ multi-
center check-in behavior. Moreover, the proposed memory-
based CF method has to compute all pairwise distances of
the whole visiting history. This is time consuming which
makes it impossible to solve large-scale datasets.

In summary, GPS data are usually in small-scale,
about one or two hundred users, but the data are very
dense. Contrarily, LBSNs data are in large-scale, but very
sparse (Noulas et al. 2011; Scellato et al. 2011). To solve
large-scale recommendation problems, matrix factorization
is a promising tool due to its success in Netflix competi-
tion (Bell, Koren, and Volinsky 2007; Koren 2009). How-
ever, previously proposed methods do not employ MF in
LBSNs POI recommendation and do not explore details
of the geographical characteristics in the LBSNs data. The
above overlook and the significance of POI recommendation
in LBSNs motivate us to conduct the work in this paper.

Table 1: Basic statistics of the Gowalla dataset.
#U #L #E

53,944 367,149 306,958

#Ũ #L̃ #Ẽ
51.33 7.54 11.38

#max. U #max. L #max. E
2,145 3,581 2,366

Check-in Data Characteristics
The check-in data we explore are crawled from one of the
most popular online LBSNs — Gowalla 1. Gowalla is an
LBSN website created in 2009 for users to check in to
locations through mobile devices. We collect a complete
snapshot, including users’ profile, users’ check-in locations,
check-in time stamps, users’ friend list, and location de-
tails, from Gowalla during the period from February 2009
to September 2011 via the provided public API. To reduce
noise data, we remove users with less than 10 check-ins and
locations with less than 20 visits. We then create a LBSNs
dataset, whose basic statistics are summarized in Table 1.
Details of the data are depicted in the following:
• The dataset consists of 4,128,714 check-ins from 53,944

users on 367,149 locations, and totally 306,958 edges in
the whole users’ social graph. The density of the dataset
is about 2.08×10−4.

• The average number of visited locations of a user is 51.33.
The average number of visited users for a location is 7.54.

1http://gowalla.com/
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The average number of friends for a user is 11.38.
• The maximum number of locations for a user is 2,145.

The maximum number of visited users for a location is
3,581. The maximum number of friends for a user is
2,366.

In the following, we further study the location distribution,
frequency distribution, and the social relationship among
users’ check-ins.

(a) Distance (b) Counts

(c) Top-k locations (d) Friends

Figure 3: Check-ins probability vs. distance, counts, top-k
locations, common check-ins of friends.

Location Distribution
Figure 2(a) shows the longitude and latitude of a typical
user’s check-in locations, where the locations form four cen-
ters. Figure 2(b)-2(d) further show the details of each center.
This observation yields our assumption different from the
power-law distribution on users’ check-in history in (Ye et
al. 2011). In addition, our statistic is also a little different
from the two states (“home” and “office”) check-in behav-
ior mentioned in (Cho, Myers, and Leskovec 2011). After
examining the comments of locations, we find that other
than the centers of “home” and “office” (counting above
half of a user’s check-ins), other centers count at least 10%
of check-ins. These centers may be a user’s usual business
travel places, e.g., an office of a branch of a large company,
or vocation places, which provide abundant information that
need to be differentiated.

Frequency Distribution
Figure 3(b) plots the Complementary Cumulative Distribu-
tion Function (CCDF) for the number of each user’s check-
in numbers at each location. It is shown that about 74% of
locations are only visited once and only about 3% of loca-
tions are visited more than 10 times. This means that users
usually visit several important places, e.g., home, office, and
some stores or bars, with very high frequency, while most
of other places are seldom visited. Overall, these places are

around several centers. Figure 3(c) further shows the CCDF
function of top-k frequently visited locations. The most vis-
ited location accounts for about 18.8% of all users’ check-
ins. The top-10 most visited locations account for 68% of
all check-ins and the ratio increases to 80.5% for the top-20
most visited locations, following the Pareto principle (aka.
80-20 rule) (Hafner 2001).

Social Influence
In the dataset, we find that the average overlap of a user’s
check-ins to his/her friends’ check-ins is only 9.6%. This
indicates that less than 10% of a user’s check-ins are also
visited by his/her friends, which is similar to the statistic
reported in (Cho, Myers, and Leskovec 2011). Figure 3(d)
plots the CCDF of the fraction of a user’s check-ins that
are visited by his/her friends. It is known that about 38%
of users, their check-in locations are no checked in by their
friends, while almost 90% of users contain less than 20% of
common check-ins with their friends. The statistics are a lit-
tle different from those in (Cho, Myers, and Leskovec 2011),
but the overall trend is similar. These observations imply that
social relationship has limited effect on users’ check-ins, but
they still cannot be ignored.

Recommendation with Social and
Geographical Information

The problem of personalized POI recommendation is de-
fined as follows: given a partially observed user-location
check-in frequency matrix with users in U and locations in
L , users’ social relationship F , and the longitude and lati-
tude of check-in locations, the task is to recommend top-k
locations to a user that he/she does not visit before. To solve
this problem, we first propose a personalized Multi-center
Gaussian Model (MGM) to capture the geographical influ-
ence on a user’s check-ins. We then depict the matrix factor-
ization, consider the social information, and propose a fused
MF framework to include geographical influence.

Multi-center Gaussian Model (MGM)
A significant characteristic of check-in locations is that they
are usually located around several centers as shown in Fig. 2.
The second characteristic of check-in locations is that the
probability of a user visiting a location is inversely propor-
tional to the distance from its nearest center; see Fig. 3(a).

These two characteristics indicate that geographical in-
formation plays strong influence on users’ check-in behav-
ior. Based on statistics from Fig. 2 and Fig. 3(a), we adopt
Gaussian distribution to model users’ check-in behavior and
propose the Multi-center Gaussian Model (MGM). That is,
the probability of a user u, visiting a POI l, given the multi-
center set Cu, is defined by:

P(l|Cu) =
|Cu|

∑
cu=1

P(l ∈ cu)
f α
cu

∑i∈Cu f α
i

N (l|µcu ,Σcu)

∑i∈Cu N (l|µi,Σi)
. (1)

Here, l denotes the longitude and latitude of a position, Cu is
the set of centers for the user u. For each center, calculating
Eq. (1) consists of the multiplication of three terms:
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• P(l ∈ cu) ∝ 1/dist(l,cu) determines the probability of the
location l belonging to the center cu, which is inversely
proportional to the distance between the location l and
the center cu. This is based on the inverse distance rule
observed from Fig. 3(a).

• The second term denotes the normalized effect of check-
in frequency fcu , on the center cu. The parameter α∈ (0,1]
is introduced to maintain the frequency aversion property,
where very high check-in frequency does not play too sig-
nificant effect.

• The third term denotes the normalized probability of a lo-
cation belonging to the center cu, where N (l|µcu ,Σcu) is
the probability density function of the Gaussian distribu-
tion, µcu and Σcu correspond to the mean and covariance
matrices of regions around the center cu.
Now, the problem turns to finding the centers. Here, we

propose a greedy clustering algorithm among the check-ins
due to the Pareto principle (Hafner 2001); see statistics in
Fig. 2 and Fig. 3(c)). More advance techniques to calculate
data similarity can be referred to (Yang et al. 2011b). We
scan from the most visited POI and combine all other visited
check-in locations, whose distance is less than d kilometers
from the selected POI, into a region. If the ratio of the total
check-in number of this region to the user’s total check-in
amount is greater than a threshold θ, we set these check-in
positions as a region and determine its center. Algorithm 1
shows the procedure of discovering multiple centers. In our
experiment, by trial on the training dataset, we set θ to 0.02,
the the distance threshold d to 15 and the frequency control
parameter α to 0.2.

Algorithm 1 Multi-center Discovering Algorithm
1: for all user i in the user set U do
2: Rank all check-in locations in |L | according to visiting fre-

quency
3: ∀lk ∈ L, set lk.center =−1;
4: Center list = /0; center no = 0;
5: for i = 1→ |L| do
6: if li.center ==−1 then
7: center no++; Center = /0; Center.total freq = 0;
8: Center.add(li); Center.total freq += li.freq;
9: for j = i+1→ |L| do

10: if l j.center ==−1 and dist(li, l j)≤ d then
11: l j.center = center no; Center.add(l j);
12: Center.total freq += l j .freq;
13: end if
14: end for
15: if Center.total freq ≥ |ui|.total freq * θ then
16: Center list.add(Center);
17: end if
18: end if
19: end for
20: RETURN Center list for user i;
21: end for

Matrix Factorization
Matrix Factorization (MF) is one of the most popular meth-
ods for recommender systems (Salakhutdinov and Mnih
2007; 2008; Bell, Koren, and Volinsky 2007; Koren 2009).

Given the partial observed entries in a |U| × |L | frequency
matrix F , the goal of MF is to find two low-rank matrices
U ∈ RK×|U| and L ∈ RK×|L | such that F ≈ UT L. The pre-
dicted probability of a user u, like a location l, is determined
by

P(Ful) ∝ UT
u Ll . (2)

Probabilistic Matrix Factorization (PMF) PMF is one
of the most famous MF models in collaborative filter-
ing (Salakhutdinov and Mnih 2007). It assumes Gaussian
distribution on the residual noise of observed data and also
places Gaussian priors on the latent matrices U and V . The
corresponding objective function of PMF for the frequency
data is defined as follows:

min
U,L

|U|

∑
i=1

|L |

∑
j=1

Ii j(g(Fi j)−g(UT
i L j))

2 +λ1‖U‖2
F +λ2‖L‖2

F ,

(3)
where g(x) = 1/(1+ exp(−x)) is the logistic function, Ii j
is the indicator function which equals to 1 if user i checks
in the location j and equals 0 otherwise. ‖ · ‖F denotes the
Frobenius norm.

Note: Since the observed frequency data is all positive,
we sample the same number of unobserved data from the
rest matrix and deem them as the frequency to 0. This is a
standard way to solve the one-class problem in CF (Pan et
al. 2008; Pan and Scholz 2009).

PMF with Social Regularization (PMFSR) We further
include the social information into the PMF as (Ma et al.
2008; Zhou et al. 2009; Ma et al. 2011c; 2011b) to improve
the model performance. We adopts the PMF with Social
Regularization (PMFSR) (Ma et al. 2011b), whose objective
function is defined as follows:

min
U,L

Ω(U,L) =
|U|

∑
i=1

|L |

∑
j=1

Ii j(g(Fi j)−g(UT
i L j))

2

+ β

|U|

∑
i=1

∑
f∈F (i)

Sim(i, f )‖Ui−U f ‖2
F

+ λ1‖U‖2
F +λ2‖L‖2

F , (4)

where F (i) is the set of friends for user ui, and Sim(i, f ) is
the similarity between user ui and his friend u f .

Probabilistic Factor Models (PFM) Since PMF outputs
poor performance in our preliminary results (see Fig. 4), we
turn to Probabilistic Factor Models (PFM) (Chen et al. 2009;
Ma et al. 2011a), which can model the frequency data di-
rectly. PFM places Beta distributions as priors on the latent
matrices U and V , while defines a Poisson distribution on
the frequency. This leads to seeking U and V by minimizing

20



Ψ(U,L;F), which is defined by:

Ψ(·, ·; ·) =
|U|

∑
i=1

K

∑
k=1

((αk−1) ln(Uik/βk)−Uik/βk)

+
|L |

∑
j=1

K

∑
k=1

((αk−1) ln(L jk/βk)−L jk/βk)

+
|U|

∑
i=1

|L |

∑
j=1

(Fi j ln(UT L)i j− (UT L)i j)+ c, (5)

where α = {α1, . . . ,αK} > 0K ,β = {β1, . . . ,βK} > 0K are
parameters for Beta distributions, and c is a constant term.

Fusion Framework
The matrix factorization methods only model users’ pref-
erence on locations. They do not explore the geographical
influence. As observed from Fig. 3(a), users tend to check
in locations around their centers. Hence, we fusion users’
preference on a POI and the probability of whether a user
will visit that place together to determine the probability of
a user u visits a location l, which is defined as follows:

Pul = P(Ful) ·P(l|Cu), (6)

where P(l|Cu) is calculated by Eq. (1) via the MGM and
P(Ful) encodes users’ preference on a location determined
by Eq. (2).

Complexity Analysis
The computation cost consists of the calculation of matrix
factorization models and calculating the probability of a
user visiting a POI. The training time for the matrix factor-
ization models scales linearly with the number of observa-
tions (Salakhutdinov and Mnih 2007; Ma et al. 2011b). For
the probability computation, the cost is to calculate the cen-
ters. This also scales linearly with the number of observa-
tions. Hence, our proposed method is efficient and can scale
up to very large datasets.

Experiments
The experiments address the following questions: 1) How
does our approach compare with the baseline and the state-
of-the-art algorithms? 2) What is the performance on users
with different check-in frequency? This is a scenario for
cold-start users whose check-ins are few.

Setup and Metrics
The experimental data include user-location check-in
records, users’ friendship list, and geographical information
(longitude and latitude of check-in locations). We split the
crawled Gowalla dataset into two non-overlapping sets: a
training set and a test set, where the proportion of training
data is test on 70% and 80%, respectively. Here, training
data 70%, for example, means we randomly select 70% of
the observed data for each user as the training data to predict
the remaining 30% data. The random selection was carried
out 5 times independently, and we report the average results.
The hyperparameters are tuned on the training dataset.

(a) Precision(ratio= 70%) (b) Recall(ratio= 70%)

(c) Precision(ratio= 80%) (d) Recall(ratio= 80%)

Figure 4: Performance Comparison

POI recommendation is to recommend the top-N high-
est ranked positions to a targeted user based on a ranking
score from a recommendation algorithm. To evaluate the
model performance, we are interested in finding out how
many locations in the test set are recovered in the returned
POI recommendation. Hence, we use the Precision@N and
Recall@N as the metrics to evaluate the returned rank-
ing list against the check-in locations where users actually
visit. These two metrics are standard metrics to measure
the performance of POI recommendation (Ye et al. 2011).
Precision@N defines the ratio of recovered POI to the N rec-
ommended POI and Recall@N defines the ratio of recovered
POI to the size of test set. In the experiment, N is set to 5 and
10, respectively.

Comparison
In the experiments, the compared approaches include:

1. Multi-center Gaussian Model (MGM): this method
recommends a position based on the probability calcu-
lated by Eq. (1).

2. PMF: this is a well-known method in matrix factoriza-
tion (Salakhutdinov and Mnih 2007). Its objective func-
tion is shown in Eq. (3).

3. PMF with Social Regularization (PMFSR): this
method is proposed to include the social friendship un-
der the PMF framework (Ma et al. 2011b). Its objective
function is shown in Eq. (4).

4. Probabilistic Factor Models (PFM): this method is a
promising method to model frequency data (Ma et al.
2011a). Its objective function is shown in Eq. (5).

5. FMF with MGM (FMFMGM): this is the fused matrix
factorization framework with the Multi-center Gaussian
Model (FMFMGM). The users’ preference on locations
is calculated by the PFM model. Here, we select PFM be-
cause PFM can model the frequency data better than PMF.
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(a) Distribution of user groups

(b) Precision@5 on different user groups

(c) Recall@5 on different user groups

Figure 5: Performance comparison on different user groups

Figure 4 reports the average of five run results on the top
5 and top 10 recommendation by the compared models us-
ing 20 and 30 as the number of latent feature dimensions,
respectively. The results show that:
• MGM and FMFMGM outperform PMF, PMFSR,

and PFM, significantly in all metrics. For example,
FMFMGM attains 0.0643 and MGM attains 0.0317 P@5
when the latent dimension is 20 and 70% of data are using
for training, while PFM, the best model without consider-
ing location information, achieves 0.0173 for the counter
part. This implies that geographical influence plays a sig-
nificant role in POI recommendation. By utilizing the ge-
ographical influence, we can provide much more accurate
POI recommendation to targeted users.

• FMFMGM achieves much significantly better perfor-
mance, at least 50%, than the MGM. That is, for case of
the latent dimension being 30 and 80% of data for train-
ing, the performance increases from 0.0141 for MGM to
0.0218 for FMFMGM. This verifies that the probability of

a user visiting a POI is controlled by both the user’s per-
sonal preference and the personal check-in location con-
straints. By utilizing users’ personalized tastes captured
by MF models, we can attain more accurate prediction.

• PMFSR attains a little better results than those of PMF.
This shows that social influence is not so important in POI
recommendation and it also coincides the fact that friends
share very low, only 9.6% common POI.

Performance on Different Users
One challenge of the POI recommendation is that it is dif-
ficult to recommend POI to those users who have very few
check-in history. In order to compare our method with the
other methods thoroughly, we first group all the users based
on the frequency of observed check-ins in the training set,
and then evaluate the model performances within different
user groups. Figure 5 shows the compared performance on
different user groups. Here, users are grouped into 6 types:
“1-10”, “10-20”, “20-30”, “30-60”,“60-150”, and “>150”,
which denotes the frequency range of users’ check-ins in the
training data.

Figure 5(a) summarizes the distribution on different
ranges of users’ check-in frequency in 70% of the training
data. It is shown that the number of users’ check-in loca-
tions mainly lies in the range of 10 and 150. From Fig. 5(b)
and Fig. 5(c), we observe that our FMFMGM method con-
sistently outperforms other compared methods in terms of
P@5 and R@5. When users’ check-in frequency is small,
MGM outperforms PMF, PMFSR, and PFM. But when
users’ check-in frequency becomes larger, PMF, PMFSR,
and PFM performs better than MGM. It is reasonable since
when users’ check-in frequency is small, especially for cold-
start users, it is difficult to learn users’ preferences, and
thus geographical information plays more influence on the
prediction. When more check-in information is available,
both users’ preferences and geographical influence can be
learned more accurately, but users’ preferences dominate the
geographical influence. More importantly, when combining
them together, our FMFMGM method performs much better
than other methods.

Conclusions and Future Work
In this paper, we have detailedly investigated the character-
istics of the large-scale check-in data from a popular LBSNs
website, Gowalla. Based on the extracted properties of the
data, we propose a novel Multi-center Gaussian Model to
model the geographical influence of users’ check-in behav-
ior. We then consider users’ social information, and propose
a fused matrix factorization method to include the geograph-
ical influence of users’ check-in locations. Results from ex-
tensive experiments show that our proposed method outper-
forms other state-of-the-art approaches significantly.

There are several directions worthy of considering for fu-
ture study: 1) how to model extremely sparse frequency data,
e.g., by designing more subtle sampling techniques, to im-
prove MF methods; 2) how to include other information,
e.g., location category, and activity, into our fused frame-
work; 3) how to incorporate temporal effect on POI recom-
mendation to capture the change of users’ preference.
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