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Abstract—Recent cyber security research has focused on pro-
viding a situation awareness of computer networks by identi-
fying incoming attacks. FuSIA: Future Situation and Impact
Awareness seeks to extend this situation awareness via estimating
plausible futures of ongoing attacks. Plausible futures, derived
based on current progress of attacks, are projected situations
that computer security analysts may use to determine appropriate
actions for proactive defense. This work discusses the generalized
framework of FuSIA as well as its application in cyber intrusion
projection. FuSIA adopts application specific contextual infor-
mation as well as provides flexibility by accommodating multiple
projection algorithms. In particular, this paper presents threat
projection algorithms via analyzing capability and opportunity of
ongoing attacks. Plausibility scores derived from these algorithms
are then combined based on Dempster-Shafer theory to provide
a final fused estimate of plausible futures.
Keywords: threat assessment, computer security, Dempster-
Shafer.

I. INTRODUCTION

As computer networks increase in size and complexity,
there has been an increasing need to quickly understand
potential security breaches. Much research has focused on
identifying single events or clusters of related events that
could then be analyzed by analysts [1]. This paper extends
the concepts set forth by TANDI [2] to create a general threat
assessment framework, namely, FuSIA: Future Situation and
Impact Awareness and apply it to cyber security. Given the
current situation, FuSIA is responsible for logically generating
plausible futures - estimates of potential future situations.
These potential future situations are not to be treated as
predictions, but rather as indicators to the analyst of potential
future situations so they can adequately prepare or react should
the situation occur.

Various tools have been developed to aid security analysts
to make data more bearable to sort and understand [3]–[7].
A few of these techniques seek to correlate multiple events
together into individual attacks. More recent research [2],
[8] has focused on identifying the threats and impact of
attacks to the computer network. These tools and techniques
require knowledge of the specific computer network being
monitored. When potentially malicious or suspicious activity
is detected, Intrusion Detection Sensors (IDSs) send alerts
to the security analysts [1]. Upon receiving alerts, analysts
must quickly determine whether the activity has any current or
future negative impact on the monitored network. This process

consists of the determination of what has been compromised,
what could be compromised, and what the impact of the
current attack is on the network.

TANDI [2] was proposed to address the need to project cy-
ber attacks into the future and introduced various performance
metrics for Level 3 data fusion. TANDI combined capability
with opportunity to determine the intent of the hacker. The
intent of the hacker represented a projection of the hacker’s
next step.

The idea of projecting a current situation into the future
extends beyond cyber security and applies to many other
domains. Financial analysts, for example, try to project future
financial situations based on a myriad of parameters. In
warfare, it would be of interest to project the enemy’s moves
before they happen. However, it is generally impossible to
accurately project every situation since there is an inherent
uncertainty with projections. This work presents a framework
that estimates simultaneous current situations. Information
fusion plays a key role here in uncovering potential hidden
plausible futures due to overwhelming and possibly conflicting
estimates.

The rest of the paper is organized as follows. Section II
discusses the FuSIA framework in detail illustrating how ca-
pability, opportunity, and intent are fused together to generate
plausible futures. Section III illustrates an example assessment
on a virtual terrain by FuSIA. Section IV concludes the paper.

II. FRAMEWORK OF FUSIA

Level 3 of the JDL data fusion model focuses on threat and
impact assessment. Impact assessment is comprised of both the
current and future impact. The future impact is determined by
the impact of possible future situations. FuSIA generates future
situations, or plausible futures, in a given environment, based
on an an ontology modeling the specific relationships between
objects and between activities that can occur for each object.
The plausible futures can be analyzed by an impact assessment
algorithm to determine the potential future impact. Figure 1
illustrates the overall FuSIA architecture.

FuSIA accepts real-time inputs known as attack tracks,
which are assumed to be a grouping of observed events in
the monitored environment. FuSIA consists of three major
processing units – situation estimation, projection, and damage
assessment. Situation estimation models the situation as a set
of activities and affected entities or object in the monitored
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Figure 1. FuSIA determines the current situation, plausible futures, current
impact and future impact.

environment. Projection identifies the plausible futures of a
situation, while damage assessment uses an impact assessment
model to determine the impact of the current situation to the
monitored environment. This paper will focus on the situation
estimation and situation projection processes of FuSIA. An
example damage assessment block is described by Argauer
and Yang [8].

Figure 2 illustrates how FuSIA projects the current situa-
tions using one or more algorithms. Multiple algorithms may
operate in parallel to determine plausibility scores p(·) for
each situation identified in the environment. The plausibility
scores derived for each situation using different algorithms are
then combined using Dempster-Shafer. The combined scores
based on different current situations are then further combined
to generate a list of plausible futures for each object in the
environment. The subsequent subsections discuss this three-
step process in detail.

Figure 2. FuSIA’s Situation Projection Architecture

A. Modeling the Current Situation

While situations in different domains can be interpreted
differently, they all share the same atomic elements. We define

a local situation, L, to be a set of related observations or
inferences of the monitored environment. In other words, a
local situation is a ordered collection of events, where an
event is associated with an object and the activity observed
for that object. One example of a local situation would be
the locations and availabilities of military resources over time
on a battlefield. In computer security, this would represent
the progression of a multistage attack on a network. In many
applications, there could be many unrelated activities taking
place on the network at the same time. Therefore, we define
the global situation, G = {L1, L2, ..., LM} as a collection of
local situations, where M is the number of local situations. It
should be noted that in many applications there is only a single
situation that needs to be assessed, and the distinction between
the local and global situation is unnecessary. However, the
cyber context allows multiple, unrelated attacks to occur on
the computer network and each may be modeled as a separate
situation.

The actual representation of a local situation depends upon
the application and is driven in FuSIA by an ontology - a
contextual model that represents objects, relationships between
objects, and relationships between activities that can occur for
each object. Since there are different representations of an
ontology for different domains, FuSIA only requires that it
be represented in the language or formalism providing the
expressiveness required to support the problem. For example,
for computer security we use a graph-based ontology called
Virtual Terrain [9] to model the monitored computer network.
However, other applications may use a Bayesian network,
OWL-based ontology, or some other model.

There are two requirements for an ontology to be used in
FuSIA:

1) The plausibility algorithms will need to extract infor-
mation from the ontology, so the format of the ontology
must be supported by the plausibility algorithms.

2) The ontology must define specific Objects of Interest,
J . This is a list of objects in the environment that
can be assigned plausibility scores by the plausibility
algorithms. These objects of interest represent entities
within the ontology that can be acted upon and are of
interest to an analyst.

B. Modeling Plausible Futures

A plausible future is defined as an event that extends from
a current progression of events, i.e., a current situation. In
mathematical terms, the plausible futures of a situation L may
be expressed as F = L∪E where E is a set of future events.

The future events are the basis to determine the plausibility
scores to various objects of interest. A plausibility score, p(j),
for object j ∈ J , corresponds to the plausibility that some
event in the near future will relate to that object. A plausibility
score takes on a value in the closed interval [0,1] or a value
of unknown. A non-zero score indicates that it is logically
possible for a future activity to occur on the given object.
The higher the score, the more plausible it is for that event
to happen. A score of zero implies that evidence suggests for
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no future activity on that object. An unknown threat score
indicates that there is no information relating to the object
that it will or will not be acted upon in the future. This is an
important distinction since an unknown score is processed
differently than a zero score in the fusion process (see Section
II-D). A plausibility score of 1, which would imply that there
is complete certainty of the object to be acted upon.

There are two important issues that should be noted about
the modeling of plausible futures. First, a plausibility score is
not meant to be interpreted as a probability. It is an indication
of how strongly the current evidence suggests that the given
object could be acted upon. Also, unlike probabilities, plausi-
bility scores are not required to add up to one among objects
in the environment. Secondly, plausible futures are not meant
to be treated as predictions. While a highly plausible situation
might be more likely to occur, the plausible futures are simply
meant to aid the analyst in identifying the future situations
to quickly assess how to prepare or inhibit future events. In
most applications, it would be intractable to completely and
perfectly model the current situation. Likewise, it is very likely
that not all events can be detected or inferred based on the
situation and model. Whether it is quantifiable or not, there
will always be an inherent error associated with the estimate
of the current situation, which can propagate to errors in
generating plausible futures.

C. Local Situation Plausibility Algorithms (LSPAs)

Since there are typically many different aspects that need
to be accounted for in generating an accurate plausible future,
a single algorithm assessing the entire situation may be too
complex to implement or execute. The three main aspects
of threat assessment are capability (the ability to execute an
attack), opportunity (the environment permits the attack to
happen), and intent (the attacker must have a reason for the
attack) [10]. By assessing the three aspects separately and in
parallel, the overall system may be more efficient and easier
for model updates. Note that it could be difficult to have a
clear division of the three aspects or to analyze intent in certain
applications. For example, the authors argue that it is unlikely
to determine the ultimate intent of a computer hacker with the
openness of the Internet.

FuSIA simplifies the assessment by using multiple parallel
algorithms that generate plausibility scores for each object
of interest. A local situation plausibility algorithm (LSPA)
is responsible for generating plausible futures for each local
situation. A LSPA is meant to mimic a single expert analyzing
a situation. Different experts may often have different (and
potentially conflicting) opinions of plausible futures. In many
instances, a LSPA would be a heuristic algorithm for the
application of interest. In the example of projecting cyber
attacks, we will show an example of how two heuristic
algorithms (Demonstrated Capability and Opportunity) look
at the cyber security situation from different perspectives.

The plausibility scores generated by each LSPA are then
input to the fusion process where an estimate of plausible
futures is calculated for each local situation. If an object of

interest has already been compromised or acted upon, it may
not make sense to assign any plausibility score to it. Therefore,
a LSPA only needs to assign plausibility scores to objects
in the set J∗ ⊆ J , where J∗ represents the objects that
have not yet been compromised. To further improve efficiency,
any objects in J∗ that are not assigned a plausibility score
are automatically assigned a value of unknown. Formally,
a LSPA, k, analyzes a local situation Ll and assigns a
plausibility score p(j, l, k) for object j ∈ J∗.

1) Algorithm Reliability: There may be certain situations
or parameters in which a LSPA performs very well or very
poorly. Therefore, each LSPA must provide a reliability score,
r(j, l, k) ∈ [0, 1], for each assigned plausibility score. The
reliability scores allow for more reliable assessments to be
weighted higher than less reliable assessments. The reliability
can be calculated based on a number of factors. E.g., the error
associated with evidences supporting the calculation, or the
historical performance of the algorithm’s assessments.

In terms of the historical performance of the algorithm’s
assessments, TANDI [2] defined a number of threat prediction
performance metrics that FuSIA can utilize to generate relia-
bility scores. In particular, a compromising score has been used
to evaluate the accuracy achieved by TANDI. The compromis-
ing score is defined as the relative plausibility score a single
event before the object is compromised. Mathematically, let
pt(j, l, k) represent the plausibility score for Object j based
on algorithm k’s assessment of situation Ll at time t. The
compromising score, c(j, l, k), is defined as:

c(j, l, k) =
pt∗−1(j, l, k)

max∀i∈J∗ pt∗−1(i, l, k)
(1)

where t∗ represents the time in which the object was com-
promised. The denominator of the above equation normalizes
the compromising score so that it is defined relative to the
maximum plausibility scores of objects in J∗ at time t∗. In
the case where historical performance is considered at the
algorithm level, a running average of c(k) = AVGj,l(j, l, k)
can be used as the reliability scores for all assessments.

D. Fusion Process

Each LSPA assigns a single plausibility score to each object
for each local situation. The fusion process is responsible for
two assessments:

1) Combining the plausibility scores, p(j, l, k), for an ob-
ject j based on a local situation Ll and across multiple
LSPAs, into a fused plausibility score p(j, l).

2) Combining the fused plausibility scores, p(j, l), from the
previous process to calculate a plausibility score, p(j),
for each object j as the global future situation.

Since each LSPA is also associated with a reliability score,
the fusion process should be able to take this information to
weight more reliable scores higher than less reliable scores.
Likewise, if the plausibility score is unknown, the fusion
process should not factor that assessment into the calculation.
In addition, the algorithms could present potentially conflicting
results, so the fusion process must be able to take this into
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account. Lastly, multiple high (or low) plausibility scores
should increase (or decrease) the fused plausibility score.

Dempster-Shafer Theory (DST) [11] is a method to combine
multiple uncertain observations into a single fused observation.
However, Zadeh showed a rather simple example in which
conflicting observations created counter-intuitive results. Re-
cently, Haenni [12] showed that introducing reliabilities to dif-
ferent observations help to overcome this example. Since each
of the plausibility scores generated by each LSPA contains a
reliability, we decided to use DST to fuse plausibility scores.

There are four possible outcomes for each plausibility score
generated: the outcome is plausible and the assessment is
reliable (PR), the outcome is plausible and the assessment
is unreliable (PU), the outcome is not plausible and the
assessment is reliable (NR), or the outcome is not plausible
and the assessment is not reliable (NU). We can therefore
define the frame of discernment for DST to be:

θ = {PR,PU,NR,NU} (2)

We can then use the following mass function in DST
combination:

mj,l,k(A) =
p(j, l, k)r(j, l, k) for A = {PR}
p(j, l, k) [1− r(j, l, k)] for A = {PU}
[1− p(j, l, k)] r(j, l, k) for A = {NR}
[1− p(j, l, k)] [(1− r(j, l, k)] for A = {NU}

(3)

The plausibility score can be extracted by calculating the
belief of the PR and NU outcomes:

p(j, l) = Bel({PR,NU}) (4)

Likewise, the reliability can be extracted by calculating the
belief of the PR and NR outcomes:

r(j, l) = Bel({PR,NR}) (5)

Now that the plausibility scores have been mapped to a
mass function, fused plausibility scores, p(j, l), can then be
generated for each object and local situation. Extending this
further, the p(j, l)’s can then be fused together to create a
global plausibility score, p(j).

As described previously, an unknown plausibility score
implies that there is no evidence supporting or discounting the
possibility of a future event occurring on that object. There-
fore, the fusion algorithm must be able to ignore unknown
plausibility scores. Also, if all p(j, l, k) = unknown for a
given object, it must follow that p(j, l) = unknown.

III. APPLYING FUSIA TO COMPUTER SECURITY

This section presents an example of FuSIA applied to com-
puter security. The ontology will be described to illustrate how
to model location situations. Two computer security LSPA’s
will be discussed, followed by the fusion of the plausibility
scores and an interpretation of the results.

Figure 3. Example Virtual Terrain

A. Virtual Terrain

The virtual terrain [9] is a security-based representation
of a computer network. The virtual terrain models not only
the physical topology of the network (hosts, routers, firewalls,
etc.), but also the configurations (routing rules, firewall rules,
etc.) and vulnerabilities of the network or objects in the
network. Like a true computer network, each host contains
a list of services that can be remotely exploited. Each of these
services contain a list of vulnerabilities that correspond to the
equivalent IDS alerts and log files. The virtual terrain also
contains firewall rules, which can be used to infer if traffic was
filtered before it ever reached the destination. The information
in the virtual terrain allows inferences on the current situation
to be made based on observed events. One example inference
that can be made is to determine if an attack on the network
was successful. Figure 3 illustrates the example network used
in [8] and [9], which will also be used as the ontology in the
example presented in this section.

When monitoring a computer network, an analyst may wish
to focus his attention on critical hosts, services, missions,
or users on the network. When any of these entities are
compromised (or close to being compromised), the analyst
must be able to react in a timely manner to resolve that
situation. While current technologies [5], [6] are able to
identify related security events, they do not directly map these
events to an estimate of the current state of the various entities.
The entities for which the state is estimated are referred to as
the objects of interest, J . FuSIA exploits information from the
virtual terrain estimate the state of the objects of interest for a
local situation. For simplicity, our example will only focus on
four hosts and the associated services in the computer network
shown in Figure 3 as the objects of interest.

B. Modeling the Current Situation

Most computer networks are monitored by IDSs and secu-
rity logs [1]. These components provide a large volume of data

1998



indicating specific security-related events in the computer net-
work. In general, each event contains the following attributes:
• Type of Event
• Source IP Address
• Source Port
• Destination IP Address
• Destination Port
• Protocol (TCP, UDP, ICMP, etc.)
• Timestamp
• User name
Tools such as INFERD [5] and ArcSight [6] are able to

correlate these security-related events into individual attack
tracks, which in their basic form are groupings of related
events. An example attack track is shown below which is an
excerpt of a scenario in [8]. The scenario begins by scanning
and intruding the external web server. The web server is then
used as a stepping stone to attack the e-mail and FTP servers.

1) SSH Buffer Overflow
140.203.195.48:80 → 192.168.1.2:80

2) WEB-MISC http directory traversal
140.203.195.48:80 → 192.168.1.2:80

3) WEB-IIS .asa HTTP header buffer overflow attempt
140.203.195.48:80 → 192.168.1.2:80

4) POP3 USER overflow attempt
192.168.1.2:110 → 192.168.1.3:110

5) FTP adm scan
192.168.1.2:21 → 192.168.1.4:21

6) FTP ADMw0rm ftp login attempt
192.168.1.2:21 → 192.168.1.4:21

FuSIA treats each attack indepedently and as a local situa-
tion. In fact, IDS alerts in each attack track are observations of
a local situation, and, thus, need to be referenced to the virtual
terrain so as to estimate the state of objects in the network.

For each step in an attack track, the situation can be
determined by answering the following two questions:

1) Was the observation indicative of a successful attack
step?

2) Did the event cause the compromise of any objects of
interest?

To answer the first question, the algorithm for detecting il-
logical attacks proposed in [8] can be executed. This algorithm
first looks at the targeted host using the virtual terrain to see
if it is vulnerable to the given attack. If it is vulnerable then it
analyzes the path the traffic took to infer if it was filtered out
before it reached the target. If the target is both vulnerable
and the traffic was not filtered before it reached the target,
then the attack can be assumed to be successful. If an attack
was not successful, it is still of interest because the hacker
demonstrated the ability to execute that attack. If an attack
was successful, the next step is to determine if it compromised
any objects of interest. Using these algorithms, objects in the
virtual terrain can be assigned one of the following object
states:

1) Normal - the current situation has no effect on the object.
2) Attacked - the object was unsuccessfully attacked.

3) Discovered - the object was discovered, but was not
compromised.

4) Partially Compromised - the object was compromised
but is not in full control by the attacker.

5) Compromised - the object is in complete control by the
attacker.

Figure 4 shows the state of four hosts and associated
services from the virtual terrain after the first five steps of
the above attack were executed. We will look at the sixth step
once the plausible futures have been generated to compare
FuSIA’s output with the last event. The external web server
is not vulnerable to the SSH Buffer Overflow attack, so it
was not successful and did not compromise anything on the
network. The WEB-IIS .asa HTTP header buffer overflow
attempt and POP3 USER overflow attempt both indicate the
complete compromise of the external web server and mail
server, respectively. The fifth step is simply a scan of the
FTP server, but does not actually compromise the service or
host. Since there are a number of hosts and services that have
already been compromised, FuSIA does not need to assign
plausibility scores to these objects. The objects of interest,
J∗, that have not yet been fully compromised in this example
are the host and service objects corresponding to the External
FTP Server and Internal Web Server.

C. LSPA Algorithms

The TANDI framework [2] fused capability with opportu-
nity to derive the intent of the hacker. FuSIA extends this
methodology by defining two different LSPA’s - capability and
opportunity. The capability generates plausibility scores based
on the attacks he has executed. The opportunity algorithm
analyzes traffic flow using the virtual terrain in order to
determine which hosts and services are actually accessible
by the compromised hosts. Each of these algorithms will be
described in how they assign plausibility scores to hosts and
services.

1) Demonstrated Capability: One LSPA generates plau-
sible futures based on the capability of the hacker. Ideally,
capability would be modeled using an accurate behavioral
model. However, not much is currently known about the
modeling the behavior of a hacker [13] and such a model
could arguably change as technology evolves. Therefore, this
LSPA will focus on the demonstrated capability (DC) of the
hacker. If a hacker has demonstrated knowledge of a certain
attack or service, it is plausible that the same (or similar) attack
can be executed in the future. The following four parameters
are used to assign plausibility scores for a service:

1) pss is the plausibility score where a host that contains a
service has been discovered but not compromised.

2) psu is the plausibility score where a host that has
not been discovered contains the same service as one
discovered on another host.

3) psk is the plausibility score where a host that has been
discovered contains the same service as one discovered
on another host.
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Figure 4. The estimated local situation of the network based on the attack track. Darkened hosts and services indicate compromised entities. The solid arrows
indicate the sequence of the exploits.

4) pcu is the plausibility score where a host that has not
been discovered but contains the same service as one
that has already been compromised.

Figure 5 illustrates the execution of the DC algorithm. The
algorithm first looks at each compromised and discovered
services and determines if there are any other hosts with
those services. Using the parameters above, the plausibility
scores are assigned to each service. In this example, the Web
service in the external web server was compromised. This
same service is running on the internal web server, so the
algorithm sets the plausibility score of that web service to pcu

(which is 0.8 in this example). The FTP service has also been
discovered on the FTP server, so that service is assigned the
value of pss (which is 0.9 in this example). If the algorithm
needs to assign multiple values to a service, the maximum of
the values is used as the plausibility score.

The plausibility scores for each host are calculated using
the plausibility scores assigned to the host’s service. The
plausibility score for the host is the maximum weighted
plausibility score of the services. Some services do not run at a
system level on a host, so even if that service is compromised,
it does not completely compromise the host. Therefore the
weights of each service are defined based on the privilege
level the service is running at. The external FTP server’s FTP
service is running at the system level, so the plausibility score
for the host is set to 0.9. Likewise, the internal web server’s
web service is also running at the system level, so it is assigned
a value of 0.8.

2) Opportunity: The opportunity exposed to a hacker de-
pends on the progress he made on the network. In a tightly
configured network, some servers or hosts are hidden behind
one or more firewalls. Hackers may use compromised ma-
chines as stepping stones to penetrate the network. Referencing
to the virtual terrain, the opportunity algorithm analyzes the

firewall rules between the compromised machines and the rest
of the network and determines the level of threats imposed on
each machine.

In the example, the two compromised hosts (192.168.1.1
and 192.168.1.3) are in the same subnet as the External FTP
Server (192.168.1.4), and the Internal Web Server is separated
by two firewalls and is in a different subnet - recall Figure 3.

The algorithm determines the closed ports between all pairs
of compromised and non-compromised hosts using the known
firewall rules.1 The closed ports between a compromised host,
i, and non-compromised host, j, are denoted by Cij . Let
Sjk denote the set of ports the kth service of host j. Define
djk as the discounting factor for services that are still in the
normal state, i.e., they have not been discovered, attacked,
or compromised. Let djk ∈ (0, 1) if the service is still in the
normal state and djk = 1 otherwise. The following parameters
define the plausibility score, pjk assigned to that service:

pjk =

 popen ∗ djk for Cij ∩ Sjk = {}
pclosed ∗ djk for Cij ∩ Sjk = ∅
ppartopen ∗ djk otherwise

(6)

where popen, pclosed, and ppartopen all are in the closed
interval of [0, 1].

The final plausibility score assigned to a service is the
maximum of the values assigned based on the above equation.
A host’s plausibility score is the maximum plausibility score
of its child services.

Figure 6 shows the plausibility scores assigned to the hosts.
In this example, ppartopen = 0.6, popen = 0.8 and the
discounting factor is 0.5. The FTP service on the External
FTP Server is assigned a value of popen since there are no

1An efficient algorithm, such as breadth-first search, is under investigation
to provide scalable implementation of the opportunity algorithm.
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Figure 5. Example Capability Algorithm Execution

Figure 6. Example Opportunity Algorithm Execution

restrictions on the ports between it and the two compromised
hosts. That score is then propagated up to the host. The Internal
Web Server is assigned the value of ppartopen ∗ d = 0.3 since
there are some firewall restrictions between it and the two
compromised hosts.

3) Example Assessment using Dempster-Shafer Fusion:
Figure 7 shows the plausible futures due to the first five
steps of the example attack. The top portion of the table
shows the plausibility scores for the External FTP Server
and the bottom portion shows the plausibility scores for the
Internal Web Server. The sixth step in the example attack
is the compromise of the External FTP Server. Examining
the plausibility scores of both hosts, one can identify the
compromise of the External FTP server as being more likely
than the Internal Web Server. This deduction makes sense

because the hacker exhibits knowledge about the FTP server
by scanning it, which can be a direct indication that the hacker
wishes to exploit that service. However, it may not have
been as obvious that the Internal Web Server could also be
compromised. The capability algorithm reveals that the hacker
has demonstrated his skill in exploiting web services and the
opportunity algorithm reveals that the network, in fact, permit
malicious traffic to reach the Internal Web Server from the
compromised external servers.

The FTP and web services running on their respective
hosts have an identical score as their hosts. This is intuitively
correct since a compromise of either service would also lead
to the compromise of the host. Recall that the opportunity
algorithm propagates the plausibility score from the host if the
relevant ports or protocols used are blocked. In this situation,
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Figure 7. Example Dempster-Shafer Combination

the plausibility score of the service would differ from the
plausibility score of the host since the opportunity algorithm
assigned them different scores.

Recall Figure 1, which shows how FuSIA generates plausi-
ble futures not only for identifying future situations, but also
for determining future impact. In most computer networks,
the data stored on the internal network is often more critical
than the data stored on the external servers. The internal
web server would generally contain information that should
only be accessible to employees and would contain sensitive
information. The fact that it is plausible for the hacker to attack
the internal web server could be cause for concern, especially
if it might not have been obvious to the analyst. The plausible
futures could be used by an impact assessment system to
identify the impact each plausible futures might impose.

IV. CONCLUSIONS/FUTURE DIRECTION

This paper presented a framework named FuSIA to generate
potential future situations, called plausible futures, to aid in
the calculation of future impact and illustrated an example of
how it is applied to computer security. FuSIA generates plau-
sible futures by executing multiple algorithms in parallel that
each generates estimates of plausible futures with associated
reliability. These (potentially conflicting) estimates are then
fed into a fusion process, driven by DST, that weights the
assessments based on the reliability to calculate a final fused
estimate of the situation.

An ongoing work is to test FuSIA over a large dataset to
analyze its performance and the effect of parameters defined in
each LSPA. In addition, FuSIA will incorporate more LSPAs,
such as the behavioral model presented in [13], as well as an
impact assessment algorithm to determine current and future
impact. Finally, the authors plan to apply FuSIA to other
application domains.
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