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Abstract: Indoor user localization and tracking are instrumental to a broad range of services and

applications in the Internet of Things (IoT) and particularly in Body Sensor Networks (BSN) and

Ambient Assisted Living (AAL) scenarios. Due to the widespread availability of IEEE 802.11, many

localization platforms have been proposed, based on the Wi-Fi Received Signal Strength (RSS)

indicator, using algorithms such as K-Nearest Neighbour (KNN), Maximum A Posteriori (MAP) and

Minimum Mean Square Error (MMSE). In this paper, we introduce a hybrid method that combines

the simplicity (and low cost) of Bluetooth Low Energy (BLE) and the popular 802.11 infrastructure,

to improve the accuracy of indoor localization platforms. Building on KNN, we propose a new

positioning algorithm (dubbed i-KNN) which is able to filter the initial fingerprint dataset (i.e., the

radiomap), after considering the proximity of RSS fingerprints with respect to the BLE devices. In this

way, i-KNN provides an optimised small subset of possible user locations, based on which it finally

estimates the user position. The proposed methodology achieves fast positioning estimation due

to the utilization of a fragment of the initial fingerprint dataset, while at the same time improves

positioning accuracy by minimizing any calculation errors.

Keywords: indoor positioning; indoor localization; fingerprint; bluetooth low energy (BLE); Internet

of Things (IoT); Body Sensor Networks (BSN); positioning algorithms

1. Introduction

In the Internet of Things (IoT) and Body Sensor Networks (BSN), several scenarios envision

the integration of various wireless technologies that will provide services based on the user

behaviour [1,2]. Typical scenarios enabled by BSN technologies, include m-Health, e-Sport, e-Fitness,

and e-Wellness. In all these applications, numerous programmable wireless sensors, with enhanced

capabilities, are combined and configured in order to directly monitor several parameters in a

non-invasive way [3]. A comprehensive and systematic review of the state-of-the-art techniques

on multi-sensor fusion in the BSN research area is provided in [4]. Nowadays, where user profiling

is very important, user localization and tracking are instrumental to a broad range of such services

and applications [5–8]. User localization, in areas where the Global Positioning System (GPS) is

not available, is typically achieved by utilizing several wireless communication technologies (Wi-Fi,

Bluetooth, Long Term Evolution (LTE), Zigbee, Visual Light Communication (VLC), etc.).

To improve localization accuracy, the research community investigated more sophisticated

solutions that are often sought through hybrid approaches. Such methods involve the combination

of different parameters such as Time of Flight (TOF), Received Signal Strength (RSS), RSS Difference
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(RSSD), Angle of Arrival (AOA), Time Of Arrival (TOA), Time Difference Of Arrival (TDOA), etc.

Wireless Indoor Positioning Techniques have been surveyed in [9–12], while key approaches on

Visual Light Positioning Systems (VLP) were discussed in [13]. Among all of these, fingerprint-based

positioning is one of the most popular indoor localization techniques implemented by Real-Time

Localization Systems (RTLS).

Localization applications implementing fingerprint methods can find use in malls, for navigating

people and providing marketing alerts; in hospitals, for monitoring patients, doctors and critical

equipment; in logistics, for tracking assets and optimizing empty spaces in ports or inland storages;

and in homes, for Ambient Assisted Living (AAL) services [14]. The main advantage of fingerprinting

techniques is that they can utilize the existing wireless communication infrastructures, without the

need to deploy any additional, specialized equipment. The dataset of fingerprints, called a “radiomap”,

is the basis behind the positioning algorithms. Radiomaps can be generated rapidly and at a relatively

low cost, particularly when a deterministic radio propagation simulator is used, instead of performing

costly and lengthy measurement campaigns [15]. Fingerprinting requires both an offline and an online

phase. During the offline phase, the radiomap is generated by recording the Access Points (AP) RSS

values (that can be either measured or obtained through a simulator) for each location in the area of

interest. Calibration and training techniques are usually used during this phase, in order to improve

the quality of the radiomap [16]. During the online phase, the Mobile Station (MS) performs network

discovery as well as real-time RSS measurements. Different positioning algorithms are then applied

in order to identify the best match between the observed RSS fingerprint and the respective mean

value of the fingerprints recorded during the offline phase. An overview of the most significant

fingerprint-based methods is provided in [17].

New opportunities in user’s localization and indoor positioning have emerged with the

introduction of Body Sensor Networks and smart devices that are able to support several IEEE

technologies like 802.15.4 and IEEE 802.11 technologies. A promising research direction is based

on Visual Light Positioning (VLP). In this case, positioning accuracy can be achieved only through

dense smart light grids, thus incurring excessive infrastructure costs [12]. In addition, mobile users

need to have a line-of-sight with smart lights while their smart devices have to support the required

technology and provide the necessary processing power [18]. On the other hand, by combining

existing well-established Wi-Fi positioning systems with Bluetooth Low Energy (BLE) i-beacons,

an excellent opportunity is created to enhance the user’s localization accuracy. This approach can

make fingerprinting even more favourable, particularly in smart homes, since localization accuracy

can be pursued by deploying only a small number of low-cost BLEs on top of the existing Wi-Fi

infrastructure. This is, in fact, the methodology pursued in this paper, whereby we introduce a new

method to combine BLE with Wi-Fi fingerprint positioning, in order to significantly improve the

achieved localization accuracy.

The rest of the paper is organised as follows: Section 2 presents related work on radio RSS

fingerprint-based methods and summarizes the BLE technology. We introduce our method in Section 3,

explaining the rationale for the formulation of the i-KNN algorithm. Sections 4 and 5 describe

the testing methodology and performance evaluation that is based on both simulations and actual

measurements. Finally, Section 6 draws the conclusions and makes suggestions for future work.

2. Related Work

2.1. Radio RSS Fingerprint-Based Indoor Positioning Methods

RSS fingerprint–based positioning methods are utilized in various wireless technologies (IEEE

802.11, IEEE 802.15.4, etc.). The main advantage of these methods is the relatively low complexity of

the positioning system, which utilizes existing infrastructure, rather than requiring the deployment

of specialized equipment. The positioning algorithms retrieve the RSS at the user location and

implement either deterministic or probabilistic methodologies to estimate the actual user location.

The concept that lies behind both methodologies is common; searching a database of fingerprints
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and identifying one or more positions whose RSS signature has the highest similarity with the

observed one. More specifically, deterministic positioning methods estimate location ℓ̂ as a convex

combination of the K reference locations with the shortest distance between ri and s in the

n-dimensional space [19–21]. The aforementioned statement is mathematically expressed with the

following equation:

ℓ̂ =
K

∑
i=1

(
wi

∑
K
j=1 wj

ℓ
′
i

)
. (1)

The set {ℓ′1, . . . , ℓ′l} denotes the ordering of reference locations with respect to increasing distance

Di, which is measured between the respective database fingerprint ri and the observed measurement

during positioning s, i.e., Di = ‖ri − s‖. The distance can be calculated using standard norms, such as

the Manhattan (1-norm) [22], the Euclidean (2-norm) [23] or the Mahalanobis norm [24]. Focusing on

the Euclidean distance, Di can be expressed by the following equation:

Di =

√√√√
N

∑
j=1

(
rij − sj

)2
. (2)

The non-negative weight coefficient wi in Equation (1) represents a value that can be allocated

to each reference location in the radiomap and differentiates its weight, hence its importance from

other fingerprints. In other words, the value of this wi coefficient may vary in a way that each

fingerprint influences differently the positioning estimation. In such a case of weight allocation,

Equation (1) expresses the Weighted K-Nearest Neighbour (WKNN) algorithm [22]. A typical

value for wi can be the inverse of ‖ri − s‖. Simplifying the aforementioned algorithm, it can be

assumed that equal weights are allocated to all utilized fingerprints. Such an assumption results

in the elimination of wi and the equation is converted to the K-Nearest Neighbour (KNN) method.

Finally, setting K = 1, the formula leads to the simple Nearest Neighbour (NN) method [23,25].

According to [22,23], KNN and WKNN methods provide higher positioning accuracy compared to

the NN, for K = 3 and K = 4. On the other hand, NN seems to perform satisfactorily and provides

equally good results in scenarios with high density RSS radiomaps [19]. More complex deterministic

algorithms are discussed in literature, such as the linear discriminant analysis [26] and the Database

Correlation Method (DCM) [27]. They generally claim better localization accuracy but at a higher

computational cost.

In probabilistic methods, location ℓ can be estimated by calculating and maximising the conditional

posterior probabilities p(ℓi|s), where i = 1, . . . , l, given an observed point s and a reference radiomap

of l fingerprints.

The posterior probability p(ℓi|s) is obtained by applying Bayes’ rule:

p(ℓi|s) =
p(s|ℓi)p(ℓi)

∑
l
i=1 p(s|ℓi)p(ℓi)

, (3)

where p(s|ℓi) is a conditional probability calculated through statistics at the survey stage and p(ℓi) is

the a priori probability, a weighting factor based on the probability distribution of the observation over

the reference position candidates included in the fingerprint database. In case of no prior knowledge,

this prior is assumed to be unity, meaning that all fingerprint candidates have equal a priori probability.

Probabilistic methods have been used in the Maximum A Posteriori (MAP) approach [28] and the

Minimum Mean Square Error (MMSE) approach [29] to estimate the expected value of ℓ.

In a continuous effort for improving localization accuracy in fingerprint-based systems, the

research community investigated the fusion of data retrieved by the indoor mapping of buildings.

Towards this direction, Evennou et al. in [30] proposed the use of particle filters to make use

of the inherent structure of indoor environments, while, more recently, Kokkinis et al. in [21],
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proposed a method of imposing map-constraints into the positioning algorithms in the form of

a-priori knowledge. Finally, the fusion of information received by several sources was examined

in [31], while the incorporation of wearable devices for indoor localization was also investigated

in [14].

2.2. BLE and the iBeacon Technology

BLE was introduced as part of Bluetooth 4.0 specifications, allowing the devices to support both

BLE and classic Bluetooth protocols simultaneously [32]. The power efficiency of Bluetooth with low

energy functionality was especially created for IoT applications. It allows devices to run for long

periods on extremely low power sources, such as coin-cell batteries or energy-harvesting devices.

BLE operates at 2.4 GHz and uses Gaussian Frequency Shift Key (GFSK) modulation in 40 channels

of 2 MHz. Three of the channels, called “advertising channels”, are used to ensure connectivity with

other nodes, while the remaining 37 are the “data channels”. BLE has a range of around 100 m in

an outdoor environment, a maximum data rate of 1 Mbit/s and an application throughput up to

305 kbit/s [32]. Finally, it supports point-to-point and mesh networks.

iBeacon was developed by Apple (Cupertino, CA, USA) in order to provide a higher level of

location awareness, by utilizing the BLE technology. iBeacon is a cross platform technology for both

Android and iOS devices that are able to support the BLE standard [33]. Devices, acting as beacons,

generate iBeacon advertisements through which they establish a region around them. Android and

iOS mobile devices receiving the advertisements can determine the entrance and exiting borders from

each Beacon’s region, can estimate the nearest beacon and can approximate the distance between the

two devices. The aforementioned advertisements contain three identifying fields, as described in [34]:

• UUID: Universally Unique Identifier is a 128-bit integer used as an ID for all beacons in

an application;
• Major: is a 16-bit integer, used to differentiate Beacons with the same UUID;
• Minor: is a 16-bit integer used to further differentiate Beacons that have the same UUIDs and

Major values.

Due to their design philosophy, iBeacons are flexible in deployment and can be used in mobile

objects or to temporarily define a region and subregions.

The possibilities introduced by BLE and iBeacon technologies in indoor positioning are currently a

topic of investigation from the research community. The authors of [35] proposed a software framework

that can be used to automate IoT applications based on the proximity triggered by AltBeacon devices.

AltBeacon is an open and interoperable specification that defines the format of the advertisement

message that BLE proximity beacons broadcast. In [36], InLoc is introduced, which is a positioning and

tracking system using commercial mobile devices, with a navigation (routing) capability. With InLoc,

the authors propose, among others, a method for independent fusion of location information from

phone Inertial Measurement Unit (IMU) sensors and BLE beacons. In [37], the authors propose a

solution for the creation of study groups in future smart libraries, featuring a smart-phone application

to create study groups and a hybrid BLE and Wi-Fi indoor positioning system. Their hybrid indoor

positioning system calculates two probable user locations every time, utilizing each technology

separately, compares the estimated conditional probabilities and selects the most reliable. Following a

different approach, researchers in [38] assume a very dense IoT environment with BLE compatible

devices and propose an Iterative Weighted KNN (IW-KNN) indoor localization method based on RSS of

the BLE, which has a low power consumption and hence a long life expectancy. Finally, a combination

of Wi-Fi and BLE fingerprints was implemented in [39], utilizing the conventional WKNN algorithm.

The test case included the deployment of 17 Estimote BLEs (Estimote Inc., New York, NY, USA)

on top of the existing Wi-Fi network, in a study area of 52 m × 43 m. Positioning was performed

by utilizing both BLE and Wi-FI RSS fingerprints, resulting in a 23% accuracy improvement of the

RTLS system.
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3. Proposed Approach

Our approach is to gather general localization data from BLE devices deployed in an IoT

environment and use them to optimize the data retrieved from existing popular and low cost IEEE

802.11 RSS fingerprint-based indoor positioning systems, in order to improve the provided positioning

accuracy. Implementing this concept, a new enhanced KNN positioning algorithm was developed

(i-KNN), which is able to filter the initial Wi-Fi fingerprint dataset (radiomap), taking into consideration

the proximity of the RSS fingerprints to the BLE devices. By choosing to filter the initial dataset instead

of simply combining BLE and Wi-Fi fingerprints, i-KNN utilizes an optimised small size subset of

possible user locations for the final position estimation.

The i-KNN algorithm uses the data transmitted from the i-Beacons concerning the estimated

distance between a BLE device and the mobile user (mobile device or body sensor), as well as

the information referring to the nearest i-Beacon of the whole BLE network. These data are used

as an input to the filtering processes of the i-KNN in order to roughly estimate a probable area

A which encloses the user’s position. The aforementioned donut-shape area, A, is formulated

between a minimum and a maximum radius (RBLEmin
and RBLEmax ) measured from a center point,

where the BLE device is located. The RBLEmin
and RBLEmax values are calculated, taking into

consideration a predefined tolerance (Tol) parameter, which accommodates any positioning error

factors. As illustrated in Figure 1, area A is then used to screen the number of candidate fingerprints,

down to a subset (S : {ℓ1, . . . , ℓk}) extracted from the initial IEEE 802.11 fingerprint dataset

(D : {ℓ1, . . . , ℓj}Wi−Fi
). The filtered fingerprint data subset S is finally used as the optimized input,

to typical indoor positioning algorithms (in our case the KNN). The proposed methodology serves

two purposes: firstly, achieving fast positioning estimation due to the utilization of a fragment of the

initial fingerprint dataset and secondly achieving improved positioning accuracy by constraining any

possible calculation errors within a very specific area A, where the user is actually located. The latter

is achieved due to the inherited short range of IEEE 802.15 and its capability to identify the nearest

i-beacon device to each mobile user. For clarity, a self-explanatory pseudocode of the i-KNN filtering

algorithm used to calculate the subset S : {ℓ1, . . . , ℓk} is presented in Algorithm 1 and explained in

Subsection 3.1.

Figure 1. Concept of the proposed i-KNN algorithm: Bluetooth Low Energy (BLE) utilization for Wi-Fi

radiomap subset generation.
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3.1. i-KNN Algorithm Explanation

The filtering algorithm receives as an input the Wi-Fi radiomap D : {ℓ1, . . . , ℓj}Wi−Fi
and BLE

locations B : {BLE1 . . . , BLEi}. A procedure named FINGERPRINTS TO BLE DISTANCE pre-calculates

in advance distances between BLE devices and all fingerprint locations for easier estimation of

the final output, which is subset S. Calculated distances are given at the form of a matrix

L : {rℓ1,BLE1
. . . , rℓj ,BLEi

}. During the real-time positioning estimation, the algorithm initially scans for

traceable BLEs by running BLE DISCOVERY (B) procedure, retrieves their parameters and sorts them

accordingly based on their Received Signal Strength. Upon retrieval of BLE information, i-KNN selects

the nearest BLE device and utilizes the distance information broadcast by the beacon (RangeBLEi
) to

additionally calculate the Tolerance Tol level and designate the donut-shape area, A, shown in Figure 1.

Tol can be either a constant number as in this research work, or can be dynamically calculated as a

percentage b% of the distance information: ±RangeBLEi
b%. In the latter case, the closer the MS user is

to the BLE, the smaller the Tol will be, and hence a smaller optimized dataset will be selected. This

methodology is a more optimized option, since the BLE-MS user distance calculation is more reliable

at smaller distances. In either case, upon calculation of area A, the optimized dataset, S : {ℓ1, . . . , ℓk},

is extracted by utilizing the pre-calculated distances retrieved from L : {rℓ1,BLE1
. . . , rℓj ,BLEi

} matrix.

Finally, instead of utilizing the heavy initial radiomap D, the much smaller dataset S feeds the typical

KNN methods in order to estimate the location of the MS user.

3.2. i-KNN in Pseudocode Form

For clarity reasons, the i-KNN is presented below in the form of a pseudo-code:

Algorithm 1 : i− KNN

BLE FILTER (D : {ℓ1, . . . , ℓj}Wi−Fi
, B : {BLE1 . . . , BLEi})

procedure FINGERPRINTS TO BLE DISTANCE(D, B)
for i← 1 to nB

for j← 1 to nD

rℓj ,BLEi

return (L : {rℓ1 ,BLE1
. . . , rℓj ,BLEi

})

procedure BLE DISCOVERY(B)
for i← 1 to nBLE

do
if (BLEi ∈ B)

then

{
Retrieve BLE Parameters
Sort BLEs based on Nearest

return (BLENearest : ID, RSSI, Range)

main
comment: Calculate BLE - Fingerprints distances

output (FINGERPRINTS TO BLE DISTANCE(D, B))
comment: Calculate filtering criteria

output (BLE DISCOVERY(B))
while (BLENearest ! = null)

do



for i← 1 to nB

if (BLEi == BLENearest)
then



comment: Calculate Tollerance (Tol) in [m]

Tol ← ±RangeBLEi
b%

comment: Calculate Subset of Radiomap D (S)

for j← 1 to nL

if ((RangeBLEi
+ Tol ≤ rℓj ,BLEi

)

or (RangeBLEi
− Tol ≥ rℓj ,BLEi

))

then ℓj ∈ S
return (S : {ℓ1, . . . , ℓk})
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4. Test Environment

The i-KNN algorithm was tested by combining actual measurements and simulations. In order

to accomplish this task, two independent networks were deployed in an indoor environment of

approximately 160 m2. The IEEE 802.11 wireless network is composed of six D-Link 802.11 APs,

the allocation of which is shown in Figure 2. The BLE network consisted of four IEEE 802.15 BLE

Estimote devices. Each device was located in a different room of the test environment as illustrated in

Figure 2. Two radiomaps were then generated: the first one through a measurement campaign; and the

second one through TruNET wireless, a full 3D Ray tracing simulator [40].

Figure 2. Combined BLE and Wi-Fi fingerprint based indoor positioning.

4.1. Radiomap from Actual Measurements

During the measurement campaign, fingerprints collected at 110 equally-spaced (1 m spacing)

locations, at a constant height of 90 cm. At every measurement point, 30 district RSS samples

(1 sample/sec) were recorded using an application developed for Android-based MS devices. The RSS

values recorded in the radiomap ranged from –99 dBm to –34 dBm. During the network discovery

procedure, the system recorded data from 24 APs from other neighbouring networks, hence a filtering

procedure was implemented prior to the finalization of the dataset.

4.2. Simulated Radiomap

The second radiomap was generated by using a deterministic 3D Ray Tracing propagation model,

employed by TruNET wireless [40]. The building structure and the different furniture were configured

using material constitutive parameters as obtained from literature [41]. They were finally calibrated

as presented in Table 1 in order to better match the MS device characteristics. A detailed analysis of

the Ray tracing calibration procedure can be found in [42]. The same 110 measurement points, were

defined as receiver cells. Finally, the six APs were configured as per the characteristics provided by

the manufacturers.
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Table 1. Material constitutive parameters of the test environment.

Material Electrical Permittivity (F/m) Loss Tangent

Concrete 3.9 0.23
Wood 2 0.025
Brick 5.5 0.03
Metal 1 1,000,000
Plasterboard 3 0.067
Glass 4.5 0.007

4.3. BLE Filtering

Initially, testing measurements were performed by implementing the simple KNN algorithm

(K = 4) on an IEEE 802.11 typical radiomap, in order to retrieve reference benchmark values,

at 12 randomly selected locations. This strategy allowed the authors to perform result analysis that

could objectively depict the improvement on the localization accuracy of the positioning algorithms

under study. Objective evaluation is achieved through the use of benchmark values by maintaining

the external environment unmodified during the experiment execution, keeping the testing locations

constant and performing the measurements under static conditions (no mobility allowed). After the

retrieval of the benchmark values, the proposed i-KNN filtering algorithm was implemented for two

different scenarios and test measurements were once again performed at the same 12 locations. The first

scenario assumed that only one i-Beacon device existed in the study area, while the second scenario

took into consideration that all four i-Beacons were deployed as per Figure 2. In all test cases, an average

number of 28 samples was collected, in order to ensure that the sample size was large enough for the

normal distribution statistical parameters to apply. In other words, the calculated standard deviation

values, and consequently any extracted confidence levels, were statistically acceptable and could

provide reliable result analysis [16]. The user orientation was also examined for investigating the body

presence effect. Finally, the influence of i-Beacon number and location was also examined by varying

the number of active BLEs. The variation of the localization error in the above cases defined the

maximum tolerance Tol parameter value at Tol = 2 m. In this way, it was ensured that the user’s actual

location was falling within the candidate fingerprints chosen in the optimized dataset. Our findings

were consistent with [38], where BLE RSS indication fluctuated up to 10 dB. Error factors covered

by the introduction of the Tol parameter included the actual number of active BLEs, user/device

orientation, body and multipath effects.

5. Performance Evaluation

For the practical implementation and testing of the positioning algorithms, an Android

fingerprint-based localization platform (φ map) was developed, providing configuration capabilities for

several parameters related with KNN and i-KNN algorithms. The most important parameters include

K value, number of samples recorded per point, time interval between each sample and Tolerance (Tol)

value. φ map also provides the possibility to select between different radiomaps (generated by both

actual measurements or simulations) and to upload a 2D blueprint of the study area for user friendly

visualization of the user position. A snapshot of the application is illustrated in Figure 3.

The Wi-Fi Indoor Positioning system was fully deployed, and tests were performed at 12 randomly

selected locations as described previously for the benchmark (Wi-Fi only) case and the two hybrid

(Wi-Fi and BLE) scenarios. Data retrieval was performed with the MS user to be static, in order to

retrieve a statistically adequate number of samples allowing a valid statistical analysis. However,

both φ map platform and i-KNN algorithm can support real-time moving MS users, within the typical

constraints of the KNN algorithm. In other words, a time delay may occur on tracking a fast moving

user, depending on the K value and the number of samples retrieved per point. The experimental

results concerning the positioning error of the platform utilizing only the IEEE 802.11 radiomap and

implementing the typical KNN algorithm, is presented in Table 2. An average positioning error of
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e = 4.05 m with standard deviation σ = 2.13 is achieved for the specific environment under study.

The findings of the benchmark case are aligned with the performance of other typical Wi-Fi indoor

localization systems, a comparison of which is illustrated in Table 3. A general conclusion extracted

from the aforementioned table is that typical RSS fingerprint-based positioning systems can provide

an accuracy ranging from 3 m to 7 m, practically meaning a room level designation.

Figure 3. φ map and localization platform.

Table 2. Positioning error of Wi-Fi Received Signal Strength (RSS) fingerprint-based positioning system.

Test Point eaverage (m) σ Radiomap Size (%) Samples No.

1 5.09 2.96 100 19
2 2.45 1.79 100 21
3 3.81 2.15 100 21
4 4.70 3.76 100 20
5 4.15 2.56 100 25
6 6.55 2.26 100 23
7 5.21 2.02 100 16
8 2.91 1.56 100 29
9 5.61 2.02 100 37
10 3.50 1.58 100 50
11 3.02 1.01 100 30
12 2.58 1.72 100 45

Table 3. Positioning error of typical indoor Wi-Fi positioning systems.

System Accuracy/Error Methodology Complexity

TIX, [43] 5.4 m linear mapping of RSS light algorithm with AP modifications
EZ, [44] 2.0–7.0 m model based complex algorithm
SDM, [45] 3 m linear mapping of RSS light algorithm with sniffers
Zee, [46] 3 m RSS fingerprints combined with Horus or EZ
LiFS, [47] 89% room level RSS fingerprints complex training phase
WILL, [48] 86% room level RSS fingerprints complex mapping of virtual floor
φ map, Wi-Fi only 4.05 m RSS fingerprints light algorithm
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Test results for the first hybrid scenario (existence of a single BLE device) are shown in Table 4.

The positioning error e is improved to 3.07 m with a smaller standard deviation of σ = 1.60, while

the utilized fingerprint dataset size is reduced to an average of 67%. At five out of 12 test points, the

i-KNN algorithm utilized the total number of fingerprints as included in the initial radiomap, since

no BLE signal was identified in these specific locations, due to wall attenuation effects. Although

BLE signals could penetrate single plasterboard walls and double glass windows, they were heavily

weakened when transmission occurred through cement and brick walls. At those five test points, the

i-KNN algorithm did not have any effect and φ map operated as a Wi-Fi only platform. During the

second hybrid scenario, the full deployment of the BLE devices ensured that location information from

at least one i-Beacon was retrieved in all 12 test locations. Test results of this scenario are presented in

Table 5. A radical improvement of the positioning accuracy and optimization of the utilized dataset

occurred. More specifically, the error was reduced to 2.33 m for the same study area, indicating an

improvement of 42%. Standard deviation was also significantly reduced to 1.22, depicting the much

higher concentration of results around the mean values of positioning results. Additionally, the utilized

dataset size was significantly reduced, ranging between 12% and 37%, depending on the test point.

Taking into consideration the comparison Table 3, it is observed that the proposed i-KNN algorithm

overperforms the typical Wi-Fi localization platforms. As a price for increased accuracy, the RTLS

operators need to deploy a number of BLE systems is such a geometry that can cover the maximum

area of interest. Obviously, such a deployment depends on the complexity of the indoor environment;

open plan spaces require less BLE devices than wall-separated areas.

Table 4. Positioning error of combined BLE (single BLE) and Wi-Fi RSS fingerprint-based

positioning system.

Test Point eaverage (m) σ Radiomap Size (%) Samples No.

1 1.60 1.22 29 19
2 2.62 1.75 53 21
3 2.77 2.01 38 21
4 3.63 2.65 45 20
5 3.64 2.35 40 25
6 2.17 2.16 39 23
7 5.21 2.02 100 16
8 2.91 1.56 100 29
9 3.20 1.90 69 37
10 3.50 1.58 100 50
11 3.02 1.01 100 30
12 2.58 1.72 100 45

Table 5. Positioning error of combined BLE (all deployed BLEs) and Wi-Fi RSS fingerprint-based

positioning system.

Test Point eaverage (m) σ Radiomap Size (%) Samples No.

1 1.96 1.44 22 19
2 1.70 0.93 12 21
3 1.22 0.81 12 21
4 1.52 0.62 16 20
5 2.38 1.14 12 25
6 2.12 0.63 16 23
7 2.33 0.67 16 16
8 2.91 0.65 12 29
9 3.84 1.89 37 37
10 3.17 0.79 22 50
11 2.97 1.26 28 30
12 1.87 0.55 19 45
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Figures 4 and 5 provide a visual performance comparison for the first scenario, while

Figures 6 and 7 refer to the outcomes of the second scenario. What is obvious from the graphs is that

the combination of Wi-Fi and BLE systems in the proposed i-KNN algorithm constantly outperforms

the simple KNN, especially when the BLE deployment is such that it can provide adequate signal

coverage in the study area. In such scenarios, accuracy is improved and positioning results fluctuate

much less, as indicated by the lower standard deviation. Dataset utilization is optimized to an average

of 20% for typical scenarios and can be further improved if the set Tolerance Tol factor is further

optimized to a minimum value. Overall, the findings provide hard evidence that the proposed i-KNN

algorithm improves the computational and processing requirements, provides faster and more accurate

positioning and incurs lower power consumption.

Figure 4. Positioning error comparison: Wi-Fi only vs. single BLE and Wi-Fi.

Figure 5. Fingerprint dataset size utilization: Wi-Fi only vs. single BLE and Wi-Fi.

Figure 6. Positioning error comparison: Wi-Fi only vs. nearest BLE and Wi-Fi.
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Figure 7. Fingerprint dataset size utilization: Wi-Fi only vs. nearest BLE and Wi-Fi.

6. Conclusions

In this work, a novel positioning algorithm (i-KNN) is proposed, which fuses information

available from the emerging low cost BLE technology with popular IEEE 802.11 based fingerprint

localization platforms. The new algorithm was tested by combining actual measurements and

simulations, and evidence was provided that it significantly improves localization accuracy and

computational performance. Localization accuracy for the test case was improved from 4.05 m to

2.33 m. Computational performance was indicated by the reduction of the utilized dataset size, to a

range between 12% and 37% of the initial radiomap size. The scalability of the i-KNN algorithm makes

it ideal for advancing the performance of existing fingerprint based RTLS systems. BLE devices can

be either deployed solely for positioning purposes or can be combined with other uses. Future work

includes investigating an optimal BLE deployment and an in-depth analysis of the body effect and

sensor orientation, in order to further optimize the indoor localization performance. Computational

performance improvements as well as battery saving may also be investigated, utilizing different

models of smart devices under intensive use of the i-KNN algorithm versus other hybrid solutions.
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The following abbreviations are used in this manuscript:

AAL Ambient Assisted Living

AOA Angle of Attack

AP Access Point

BLE Bluetooth Low Energy

BSN Body Sensor Networks

DCM Database Correlation Method

DOAJ Directory of Open Access Journals

GFSK Gaussian Frequency Shift Key

i-KNN intelligent KNN

IMU Inertial Measuring Unit

IoT Internet of Things

IW-KNN Iterative Weighted KNN

KNN K-Nearest Neighbour

LTE Long Term Evolution
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MAP Maximum A Posteriori

MDPI Multidisciplinary Digital Publishing Institute

MMSE Minimum Mean Square Error

MS Mobile Station

NN Nearest Neighbour

RSS Received Signal Strength

RSSD RSS Difference

RTLS Real-Time Localization System

TDOA Time Difference of Arrival

TOA Time of Arrival

TOF Time of Flight

VLC Visual Light Communication

VLP Visual Light Positioning

WKNN Weighted K-Nearest Neighbour
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