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Abstract—In a setup where camera measurements are used to 

estimate 3D ego-motion in an Extended Kalman Filter (EKF) 

framework, it is well known that inertial sensors (i.e., 

accelerometers and gyroscopes) are especially useful when the 

camera undergoes fast motion. Inertial sensor data can be fused 

at the EKF with the camera measurements in either the 

correction stage (as measurement inputs) or the prediction stage 

(as control inputs). In general, only one type of inertial sensor is 

employed in the EKF in the literature, or when both are 

employed they are both fused in the same stage. In this paper, we 

provide an extensive performance comparison of every possible 

combination of fusing accelerometer and gyroscope data as 

control or measurement inputs using the same data set collected 

at different motion speeds. In particular, we compare the 

performances of different approaches based on 3D pose errors, in 

addition to camera reprojection errors commonly found in the 

literature, which provides further insight into the strengths and 

weaknesses of different approaches. We show using both 

simulated and real data that it is always better to fuse both 

sensors in the measurement stage and that in particular, 

accelerometer helps more with the 3D position tracking accuracy 

whereas gyroscope helps more with the 3D orientation tracking 

accuracy. We also propose a simulated data generation method, 

which is beneficial for the design and validation of tracking 

algorithms involving both camera and IMU measurements in 

general. 

Index Terms—Inertial sensor fusion, Extended Kalman Filter, 

3D camera tracking, inertial measurement unit, accelerometer, 

gyroscope.  

I. INTRODUCTION 

CCURATE 3D tracking is important for many 
applications including navigation, visualization, human-

computer interaction and augmented reality [1]. Although 
there are various methods proposed for 3D tracking, those that 
use GPS or cellular technologies are not suitable for indoor 
applications [2]. Methods using IR light and RF signals 
require the placement of IR light emitters or RFID tags on the 
scene [3], which may not be acceptable, or even possible, for 
some applications such as cultural heritage. Computer vision 
based tracking methods that rely on camera measurements 
only, do not possess these problems and perform well only at 
slow motion [4]. However, fast camera motion may result in 
blurred features that may not be localized accurately, thereby 
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resulting in degradation in estimated tracking accuracy. 
Inertial sensors (i.e., accelerometers and gyroscopes), on the 
other hand, measure the derivatives of motion and their signals 
are more reliable at fast motion since their SNR improves with 
the amount of motion. However, 3D pose estimation using 
inertial sensors alone suffers from drift [5]. Thus, it is 
suggested to fuse inertial sensor data with camera 
measurements for 3D tracking [6][7]. 

There are many approaches to fuse the inertial sensor data 
with camera data in the literature [8][9][10]. One popular 
approach is to fuse them in an Extended Kalman Filter (EKF) 
[10][11][12][13]. EKF has two stages, namely the time update 
(i.e., prediction) stage and the measurement update (i.e., 
correction) stage. Hence, there are two alternative ways to fuse 
inertial sensor data in an EKF: one option is to use inertial 
sensor data at the correction stage, which we refer to as using 
inertial sensor data as measurement input, and the second 
option, is to use inertial sensor data at the prediction stage, 
which we refer to as using inertial sensor data as control input. 
Therefore, there are a total of eight possible approaches for 
fusing accelerometer and gyroscope data in an EKF 
framework: both used as control inputs, both used as 
measurement inputs, one is used as control input while the 
other one is used as measurement input, and finally, only one 
is used as control or measurement input while the other one is 
not used.  

Five of the above eight combinations, namely, fusing both 
inertial sensor data as measurement or control inputs, fusing 
only accelerometer as measurement or control input, and 
fusing only gyroscope as measurement have been investigated 
in the literature [12][13][14]. Ref. [12] compares three of these 
cases, namely, both inertial sensor data fused as measurement 
inputs, both fused as control inputs, and only gyroscope data 
fused as measurement input, and suggests that all three cases 
perform similarly well at fast and slow speeds except that 
gyroscope only as measurement input case results in poor 
tracking quality at fast speeds. Ref. [13] compares two cases, 
namely, both inertial sensor data fused as measurement inputs 
and only gyroscope data fused as measurement input, and 
concludes that the case of fusing both sensor data significantly 
outperforms the gyroscope only case. Our previous work [14] 
fuses only accelerometer data, and suggests that fusing 
accelerometer data either as measurement or as control input 
brings about similar improvement to tracking accuracy. To the 
best of our knowledge, the three remaining cases, i.e., only 
gyroscope data fused as control input, gyroscope data fused as 
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measurement input while accelerometer data fused as control 
inputs, and accelerometer data fused as measurement input 
while gyroscope data fused as control input are not covered in 
the literature before. Furthermore, there is no previous work 
that compares all eight cases using the same data set.  

In this paper, we compare, using both realistic extensive 
simulations and real data, the tracking accuracies of all 
possible eight configurations of fusing inertial sensor data at 
different motion speeds. In addition to the common approach 
of using 2D reprojection errors, we use 3D pose errors to 
compare the performances of these configurations, which 
provides further insight into the strengths and weaknesses of 
different tracking approaches.   

In Section 2, we present background information regarding 
EKF, use of quaternions, and camera-inertial sensor set-up. In 
Section 3, we provide for the first time in the literature a 
complete set of EKF equations including Jacobian matrices 
corresponding to all cases of camera-inertial sensor fusion 
approaches. In Section 4, we describe our simulation setup. In 
Sections 5 and 6 we present the results of our simulations and 
real experiments, respectively. Discussions and conclusions 
are given in Section 7. 

II. PRELIMINARIES 

A. Extended Kalman Filter Equations 

In the following, we provide the EKF equations for the 
purpose of completeness and establishing the notation. We 
make discrete-time assumption, since measurements are 
obtained in discrete intervals. Let 𝑋𝑋! = 𝑓𝑓(𝑋𝑋!!!, 𝑢𝑢! , 𝜌𝜌! , 𝜁𝜁!)    and    𝑦𝑦! = ℎ(𝑋𝑋! , 𝜂𝜂!) (1)  

represent the process and measurement models, respectively, 
where 𝑋𝑋! denotes the state vector, 𝑢𝑢! denotes the control input, 
and 𝑦𝑦! denotes the measurement vector, all at time 𝑡𝑡. 𝜌𝜌!, 𝜁𝜁!, 
and 𝜂𝜂!  denote the process, control, and measurement noise 
vectors, which are assumed to be zero-mean white Gaussian 
noise processes independent of each other with sample 
covariance matrices Γ, Π, and Σ, respectively. When there is 
no control input, the terms 𝑢𝑢 and 𝜁𝜁 are dropped from (1). 
 Depending on which process model is used, the 
content of the state 𝑋𝑋  changes. For example, when 
accelerometer is used as measurements, the state has to 
include the acceleration since the measurement model requires 
it. On the other hand, if it is used as control input, we do not 
include acceleration in the state for the sake of reducing the 
computational complexity [14]. Similarly, the angular velocity 
is included (vs. not included) in the state when gyroscope data 
are used as measurements (vs. control inputs).  Define 𝑥𝑥! = Ε 𝑋𝑋!|𝑦𝑦!, 𝑦𝑦!,… , 𝑦𝑦!!! , 

 𝑥𝑥! = Ε 𝑋𝑋!|𝑦𝑦!, 𝑦𝑦!, . . . , 𝑦𝑦! , 
 𝑃𝑃! = Ε 𝑋𝑋!𝑋𝑋!!|𝑦𝑦!, 𝑦𝑦!,… , 𝑦𝑦!!!   −  𝑥𝑥!𝑥𝑥!!, 
 𝑃𝑃! = Ε 𝑋𝑋!𝑋𝑋!!|𝑦𝑦!, 𝑦𝑦!, . . . , 𝑦𝑦! −  𝑥𝑥!𝑥𝑥!!, 

(2)  

where Ε ⋅  denotes the expectation operator. Then, starting 
with initial state mean 𝑥𝑥! and covariance matrix 𝑃𝑃!, the time 
update equations for state mean  𝑥𝑥 and state covariance matrix 

𝑃𝑃  are given as: 𝑥𝑥! = 𝑓𝑓(𝑥𝑥!!!, 𝑢𝑢! , 𝜌𝜌! , 𝜁𝜁!)|!!,!!!!, 
 𝑃𝑃! = 𝐹𝐹!𝑃𝑃!!!𝐹𝐹!! + 𝑉𝑉!Γ!𝑉𝑉!! + 𝐿𝐿!Π!𝐿𝐿!!, 

(3)  

where the Jacobians are defined as 𝐹𝐹! = !"!" |!!!!!!,!!  !!,!,!!!,   𝑉𝑉! = !"!" |!!!!!!,!!  !!,!,!!!, 
 

and   𝐿𝐿! = !"!" |!!!!!!,!!  !!,!,!!!. 
(4)  

When there is no control input, the variables 𝑢𝑢! , 𝜁𝜁!  are 
dropped from (3) and (4), and consequently, 𝐿𝐿! vanishes. 

The Kalman gain 𝐾𝐾! and innovation 𝑧𝑧! are calculated as 𝐾𝐾! = 𝑃𝑃!𝐻𝐻!!𝑆𝑆!!!,    where   𝑆𝑆! = 𝐻𝐻!𝑃𝑃!𝐻𝐻!! + 𝛴𝛴!,    𝑧𝑧! = 𝑦𝑦! − ℎ 𝑥𝑥! , 𝜂𝜂! |!!!!,   (5)  

and the measurement update equations for state mean and state 
covariance matrix are given as 𝑥𝑥! = 𝑥𝑥! + 𝐾𝐾!𝑧𝑧!          and          𝑃𝑃! = 𝑃𝑃! − 𝐾𝐾!𝐻𝐻!𝑃𝑃! ,   (6)  

where the measurement Jacobian is defined as 𝐻𝐻! = 𝜕𝜕ℎ𝜕𝜕𝜕𝜕 |!!!!!!,!!! (7)  

In the rest of the paper, we will omit the time index for brevity 
whenever it is clear from the context. 

B. Representation of Rotation in EKF 

One of the components of the state vector 𝑋𝑋  is a unit 
quaternion representing the orientation of the camera. A unit 
quaternion 𝑞𝑞 is a 4D vector composed of a number 𝜆𝜆 and a 3D 
vector 𝜑𝜑 defined as 𝑞𝑞 = 𝜆𝜆 𝜑𝜑! !,     where          𝜆𝜆! + 𝜑𝜑 ⋅ 𝜑𝜑 = 1. (8)  

A unit quaternion represents a rotation by an angle 𝜃𝜃 around a 
unit axis 𝑛𝑛, which are related to the quaternion components as 𝜆𝜆 = 𝑐𝑐𝑐𝑐𝑐𝑐 !!     and     𝜑𝜑 = 𝑠𝑠𝑠𝑠𝑠𝑠 !! 𝑛𝑛. (9)  

The corresponding rotation matrix 𝑅𝑅  is obtained using the 
formula [15] 𝑅𝑅 = 𝐼𝐼 + 2𝜆𝜆 𝜑𝜑 × + 2 𝜑𝜑 ×!  (10)  

where 𝜑𝜑 ×  represents a matrix that implements a cross 
product with 𝜑𝜑, i.e., 𝜑𝜑 ×𝜎𝜎 = 𝜑𝜑×𝜎𝜎. 

It is also possible to represent a rotation in terms of angles 
of rotation 𝛿𝛿!,!, 𝛿𝛿!,!, and 𝛿𝛿!,!, around coordinate axes 𝑥𝑥, 𝑦𝑦, 

and 𝑧𝑧, respectively. Resulting orientation depends on the order 
of rotations around the coordinate axes, however, this 
dependence nearly disappears if the angles are small, and the 
corresponding unit quaternion is approximately given as 𝛿𝛿! ≈ 𝑐𝑐𝑐𝑐𝑐𝑐 !!! !!!!! 𝑠𝑠𝑠𝑠𝑠𝑠 !!! !

, (11)  

where 𝛿𝛿! = 𝛿𝛿!,! 𝛿𝛿!,! 𝛿𝛿!,! !. If the angles are very small, 
the above approximation can be further simplified to 𝛿𝛿! ≈ 1 !!𝛿𝛿!! !

. (12)  
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Although this further simplification results in a non-unit 
quaternion, it proves to be very useful in simplifying EKF 
calculations. Note that, after the prediction and correction 
stages of the EKF, the quaternion in the state vector has to be 
normalized, and the state covariance has to be updated 
accordingly as in [12]. 

C. Camera-IMU Setup and Camera Measurement Model 

We use a setup where a camera and an inertial measurement 
unit (IMU) containing an accelerometer and a gyroscope that 
are rigidly fixed together. Since gyroscope measures angular 
velocity, its readings are independent of its location. 
Therefore, the relative location of the gyroscope with respect 
to the accelerometer and/or the camera does not need to be 
known or taken into account in EKF equations.  Without loss 
of generality, we assume that the accelerometer and the 
gyroscope have the same orientation, therefore, we call their 
poses simultaneously as the IMU pose.  

EKF equations turn out to be simpler if one uses the IMU 
pose in the state vector rather than that of the camera. Let 𝑠𝑠 
denote the position of the IMU in World FoR and 𝑅𝑅 represent 
the rotation from the world frame of reference (FoR) to IMU 
FoR (see Figure 1). Note that 𝑅𝑅  is the rotation matrix 
corresponding to quaternion in state 𝑋𝑋. Also let 𝑄𝑄 represent 
the rotation from IMU FoR to camera FoR and 𝜏𝜏 denote the 
IMU to camera displacement in IMU FoR. We assume 𝑄𝑄 and 𝜏𝜏 are obtained in a calibration step and the tracking problem 
becomes estimating 𝑅𝑅 and 𝑠𝑠 over time.  

We assume that a 3D map, i.e. 3D coordinates 𝜅𝜅 of a set of 
feature points, of the scene is available. Such a map can be 
obtained from a recorded video of the scene prior to tracking 
[14]. During tracking, these feature points are detected in the 
captured images and their 2D positions on the image plane 
become the camera measurements 𝜇𝜇!. In the EKF, we assume 
a pinhole camera model for these measurements: 𝜇𝜇! = 𝑓𝑓𝑓𝑓!,!/𝑝𝑝!,!𝑓𝑓𝑓𝑓!,!/𝑝𝑝!,! + 𝜀𝜀!,!, (13)  

where 𝑓𝑓 is the focal length of the camera, and 𝜀𝜀!,! denotes the 

camera measurement noise, all in pixels, and 𝑝𝑝! is the position 
of a 3D scene point 𝜅𝜅 in camera FoR: 𝑝𝑝! = 𝑝𝑝!,! 𝑝𝑝!,! 𝑝𝑝!,! ! = 𝑄𝑄 𝑅𝑅!(𝜅𝜅 − 𝑠𝑠!) − 𝜏𝜏 . (14)  

Such calibrated 2D measurements can be obtained after 
correcting images for any possible lens distortions, optical 
center shifts, and non-rectangular and skewed pixels [15].  

III.  IMU FUSION APPROACHES FOR EKF 

Inertial sensor data can be included in an EKF as control or 
measurement inputs. We have implemented EKFs for all 
possible combinations of using gyroscopes and accelerometers 
as control or measurement inputs. Note that camera and 
inertial sensors may have different sampling rates. While EKF 
performs both prediction and correction when a measurement 
input arrives, it performs only correction when a control input 
arrives. 

As a shorthand notation, we use a three-letter abbreviation. 
As there is no direct way of fusing camera measurements as 
control inputs in the EKF, they are always used as 
measurements, therefore the first letter in the three-letter 
abbreviation is always “M”. The second and third letters 
indicate whether accelerometer and gyroscope data, 
respectively, are used as control input (C), or as measurement 
(M), or not used (X). 

In the following, we give the detailed expressions for 
process and measurement equations, as well as the expressions 
for Jacobian matrices, for all possible fusion approaches. The 
derivation steps of these matrices are omitted due to space 
considerations. Sensor measurements are represented in their 
own frames of reference. 

A. Camera Only Approach (MXX) 

This case is provided to serve as a baseline for the various 
fusion approaches. In the camera-only approach, neither 
accelerometer nor gyroscope data are employed. Therefore, 
there are only camera measurements and no control inputs. In 
this case, EKF process and measurement variables become  𝑋𝑋 = 𝑠𝑠𝑣𝑣𝑞𝑞 ,     𝑦𝑦 = 𝜇𝜇 ,     𝜌𝜌 = 𝜀𝜀!𝜀𝜀! ,     𝜂𝜂 = 𝜀𝜀! , (15)  

where 𝑠𝑠 and 𝑣𝑣 stand for the state variables corresponding to 
the 3D position and velocity of the IMU in the World FoR, 
and 𝑞𝑞 represents the orientation quaternion corresponding to 
rotation matrix R, 𝜇𝜇 stands for 2D camera measurements, 𝜀𝜀! 
and 𝜀𝜀!  stand for velocity and angle process noises, and 𝜀𝜀! 
stands for camera measurement noise. The process and 
measurement noises are all zero mean white Gaussian noises 
independent of each other (determination of their variances is 
explained in Sections IV and V). 

The process equations in (1) are given as follows: 𝑠𝑠! = 𝑠𝑠!!! + 𝑇𝑇𝑣𝑣!!! + 𝑇𝑇𝜀𝜀!,! ,  𝑣𝑣! = 𝑣𝑣!!! + 𝜀𝜀!,! ,  𝑞𝑞! = 𝛿𝛿!,! ⊙ 𝑞𝑞!!!,   (16)  

where ⊙  denotes quaternion product and 𝛿𝛿!,!  is the time 
change in orientation quaternion. Using the small angle 
approximation (12), the above process equation for the 
quaternion can be expressed in terms of the scalar and vector 
components of the quaternion as 𝜆𝜆! = 𝜆𝜆!!! − !!𝜑𝜑!!!! 𝛿𝛿!,!, 

 𝜑𝜑! = 𝜑𝜑!!! + !! 𝜆𝜆!!!𝛿𝛿!,! − !!𝜑𝜑!!!×𝛿𝛿!,!, (17)  

where we used the quaternion product formula [15]. In the 
following, we will simply give the expressions for 𝛿𝛿!,!  in 

 
Figure 1. World, IMU, and camera coordinate systems and their relative 
positions and orientations. 
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order to specify the process equation for the quaternion for 
different camera-IMU fusion approaches and implicitly 
assume the prediction model in (17) for all cases but with 
different 𝛿𝛿!. Thus, for the camera only case we have 𝛿𝛿!,! = 𝜀𝜀!,!. (18)  

The only measurement equation in this case is that of camera 
measurements (14). 

State Jacobian matrix 𝐹𝐹 for this case is given by  𝐹𝐹 = 𝐹𝐹! 0!×!0!×! 𝐼𝐼!×! ,      where       𝐹𝐹! = 𝐼𝐼!×! 𝑇𝑇𝑇𝑇!×!0!×! 𝐼𝐼!×! . (19)  

Process noise Jacobian matrix 𝑉𝑉 is calculated as 𝑉𝑉 = 𝑉𝑉! 0!×!0!×! 𝑉𝑉! ,      where        𝑉𝑉! = 𝑇𝑇𝑇𝑇!×!𝐼𝐼!×!     and   𝑉𝑉! = − !!𝜑𝜑!!! 𝜆𝜆𝜆𝜆 − !! 𝜑𝜑 × . 

(20)  

This case does not involve a control noise Jacobian matrix 𝐿𝐿 
as it does not employ a control input. Measurement Jacobian 
matrix 𝐻𝐻 is given as follows: 𝐻𝐻 = 𝐻𝐻!𝑄𝑄 −𝑅𝑅 0!×! 𝐻𝐻!(𝜅𝜅 − 𝑠𝑠) , (21)  

where 

𝐻𝐻! = 𝑓𝑓 !!! 0 − !!!!!0 !!! − !!!!! , (22)  

and 𝐻𝐻!(𝜎𝜎) = 2 𝜑𝜑 ×𝜎𝜎 −2 𝜆𝜆 𝜎𝜎 × + 𝜑𝜑 ×𝜎𝜎 × + 𝜑𝜑 × 𝜎𝜎 × . (23)  

B. Accelerometer As Control (MCX) [14] 

In this approach, accelerometer data 𝛾𝛾  are used as control 
inputs, gyroscope data are not employed, and only camera data 
are used as measurements. In this case, EKF process and 
measurement variables become: 

𝑋𝑋 = 𝑠𝑠𝑣𝑣𝑞𝑞 ,   𝑦𝑦 = 𝜇𝜇 , 𝑢𝑢 = 𝛾𝛾 ,  𝜌𝜌 = 𝜀𝜀!𝜀𝜀! ,   𝜁𝜁 = 𝜀𝜀! ,  𝜂𝜂 = 𝜀𝜀! . (24)  

The process equations are given as follows, where position 
and velocity terms include accelerometer data as control 
inputs: 𝑠𝑠! = 𝑠𝑠!!! + 𝑇𝑇𝑣𝑣!!! + !!𝑇𝑇! 𝑅𝑅!!!! 𝛾𝛾 + 𝜀𝜀! − 𝑔𝑔 + !!𝑇𝑇!𝜀𝜀!,! ,  𝑣𝑣! = 𝑣𝑣!!! + 𝑇𝑇 𝑅𝑅!!!! 𝛾𝛾 + 𝜀𝜀! − 𝑔𝑔 + 𝑇𝑇𝑇𝑇!,! ,  𝛿𝛿!,! =    𝜀𝜀!,! ,   (25)  

where 𝑔𝑔 is the gravity in World FoR. The only measurement 
equation is that of camera measurements (15).  

Jacobian matrices for this case are calculated as follows: 𝐹𝐹 = 𝐹𝐹! 𝐹𝐹!0!×! 𝐼𝐼!×! , (26)  

where 

𝐹𝐹! = 𝑇𝑇! 𝜑𝜑 ×𝛾𝛾 𝑇𝑇!(𝜆𝜆 𝛾𝛾 × − 𝜑𝜑 × 𝛾𝛾 × − 𝜑𝜑 ×𝛾𝛾 ×)2𝑇𝑇 𝜑𝜑 ×𝛾𝛾 2𝑇𝑇(𝜆𝜆 𝛾𝛾 × − 𝜑𝜑 × 𝛾𝛾 × − 𝜑𝜑 ×𝛾𝛾 ×) .   (27)  

Process noise Jacobian matrix 𝑉𝑉 is given by 

𝑉𝑉 = 𝑉𝑉! 0!×!0!×! 𝑉𝑉! ,     where    𝑉𝑉! = 12𝑇𝑇2𝐼𝐼!×!𝑇𝑇𝐼𝐼!×! . (28)  

while control noise Jacobian matrix 𝐿𝐿 is calculated as 𝐿𝐿 = 𝐿𝐿!0!×! ,     where      𝐿𝐿! = !!𝑇𝑇!𝑅𝑅!𝑇𝑇𝑅𝑅! . (29)  

Finally, measurement Jacobian matrix 𝐻𝐻 is given by (21).  

C. Accelerometer As Measurement (MMX) [14] 

In this approach, accelerometer data are used as 
measurements, whereas gyroscope data are not employed. 
Since accelerometer data are used as measurement input, 
acceleration of the IMU in the World FoR is included in the 
state vector. EKF process and measurement variables are: 

𝑋𝑋 = 𝑠𝑠𝑣𝑣𝑎𝑎𝑞𝑞 ,     𝑦𝑦 = 𝜇𝜇𝛾𝛾 ,     𝜌𝜌 = 𝜀𝜀!𝜀𝜀! ,     𝜂𝜂 = 𝜀𝜀!𝜀𝜀! . (30)  

The process equations are given as follows: 𝑠𝑠! = 𝑠𝑠!!! + 𝑇𝑇𝑣𝑣!!! + !!𝑇𝑇!𝑎𝑎!!! + !!𝑇𝑇!𝜀𝜀!,! ,  𝑣𝑣! = 𝑣𝑣!!! + 𝑇𝑇𝑎𝑎!!! + 𝑇𝑇𝑇𝑇!,! ,  𝑎𝑎! = 𝑎𝑎!!! + 𝜀𝜀!,! ,  𝛿𝛿!,! = 𝜀𝜀!,! .   (31)  

In addition to camera measurement equation (13), there is an 
IMU measurement equation involving accelerometer data:  𝛾𝛾! = 𝑅𝑅!(𝑎𝑎! + 𝑔𝑔) + 𝜀𝜀!,!. (32)  

Jacobian matrices for this case are calculated as follows: 𝐹𝐹 = 𝐹𝐹! 0!×!0!×! 𝐼𝐼!×! , (33)  

where 

𝐹𝐹! = 𝐼𝐼!×! 𝑇𝑇𝑇𝑇!×! !!𝑇𝑇!𝐼𝐼!×!0!×! 𝐼𝐼!×! 𝑇𝑇𝑇𝑇!×!0!×! 0!×! 𝐼𝐼!×! .   (34)  

Process noise Jacobian matrix 𝑉𝑉 is calculated as 

𝑉𝑉 = 𝑉𝑉! 0!×!0!×! 𝑉𝑉! ,            where           𝑉𝑉! = 12𝑇𝑇2𝐼𝐼!×!𝑇𝑇𝐼𝐼!×!𝐼𝐼!×! . (35)  

This case does not involve control noise Jacobian matrix 𝐿𝐿 as 
it does not employ a control input. Measurement Jacobian 
matrix 𝐻𝐻 is given by 𝐻𝐻 = 𝐻𝐻!𝐻𝐻! ,  where 𝐻𝐻! = 𝐻𝐻!𝑄𝑄 −𝑅𝑅 0!×! 𝐻𝐻!(𝜅𝜅 − 𝑠𝑠) , 

 
and   𝐻𝐻! = 0!×! 𝑅𝑅 𝐻𝐻!(𝑎𝑎 + 𝑔𝑔)  

(36)  
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D. Gyroscope As Control (MXC) 

In this approach, gyroscope data 𝛽𝛽 are used as control inputs 
and accelerometer data are not employed. EKF process and 
measurement variables are: 

𝑋𝑋 = 𝑠𝑠𝑣𝑣𝑞𝑞 ,  𝑦𝑦 = 𝜇𝜇 , 𝑢𝑢 = 𝛽𝛽 ,  𝜌𝜌 = 𝜀𝜀!𝜀𝜀! ,   𝜁𝜁 = 𝜀𝜀! ,  𝜂𝜂 = 𝜀𝜀! . (37)  

The process equations are given as follows, where 
quaternion update involves gyroscope data as control inputs: 𝑠𝑠! = 𝑠𝑠!!! + 𝑇𝑇𝑣𝑣!!! + 𝑇𝑇𝜀𝜀!,! ,  𝑣𝑣! = 𝑣𝑣!!! + 𝜀𝜀!,! ,  𝛿𝛿!,! = 𝑇𝑇 𝛽𝛽! +   𝜀𝜀!,! +   𝑇𝑇𝜀𝜀!,! .   (38)  

The only measurement equation is that of camera 
measurements.  

Jacobian matrices for this case are calculated as follows: 𝐹𝐹 = 𝐹𝐹! 0!×!0!×! 𝐹𝐹! , (39)  

where 

𝐹𝐹! = 1 − 12𝑇𝑇𝛽𝛽!12𝑇𝑇𝑇𝑇 𝐼𝐼 + 12𝑇𝑇 𝛽𝛽 ×  (40)  

Process noise Jacobian matrix 𝑉𝑉 is calculated as 𝑉𝑉 = 𝑉𝑉! 0!×!0!×! 𝑇𝑇𝑉𝑉! . (41)  

Control noise Jacobian matrix 𝐿𝐿 is calculated as  
𝐿𝐿 = 0!×!𝑇𝑇𝑇𝑇!  (42)  

Finally, measurement Jacobian matrix 𝐻𝐻 is given as 𝐻𝐻 = 𝐻𝐻!𝑄𝑄 −𝑅𝑅 0!×! 𝐻𝐻!(𝜅𝜅 − 𝑠𝑠) . (43)  

E. Gyroscope As Measurement (MXM) [12, 13] 

In this approach, in addition to camera data, gyroscope data 
are also used as measurements, whereas accelerometer data 
are not employed. Since gyroscope data are used as 
measurement input, angular velocity of the IMU in the IMU 
FoR is included in the state vector. EKF process and 
measurement variables are: 

𝑋𝑋 = 𝑠𝑠𝑣𝑣𝑞𝑞𝜔𝜔 ,     𝑦𝑦 = 𝜇𝜇𝛽𝛽 ,     𝜌𝜌 = 𝜀𝜀!𝜀𝜀! ,     𝜂𝜂 = 𝜀𝜀!𝜀𝜀! . (44)  

The process equations are given as follows: 𝑠𝑠! = 𝑠𝑠!!! + 𝑇𝑇𝑣𝑣!!! + 𝑇𝑇𝜀𝜀!,! ,  𝑣𝑣! = 𝑣𝑣!!! + 𝜀𝜀!,! ,  𝛿𝛿!,! = 𝑇𝑇𝜔𝜔!!! +   𝑇𝑇𝜀𝜀!,! ,  𝜔𝜔! = 𝜔𝜔!!! + 𝜀𝜀!,! .   (45)  

In addition to camera measurement equation, there is an IMU 
measurement equation involving gyroscope data:  

𝛽𝛽! = 𝜔𝜔! + 𝜀𝜀!,!. (46)  

Jacobian matrices for this case are calculated as follows: 𝐹𝐹 = 𝐹𝐹! 0!×!0!×! 𝐹𝐹! , (47)  

where  

𝐹𝐹! = 1 − !!𝑇𝑇𝑇𝑇! − !!𝑇𝑇𝜑𝜑!!!𝑇𝑇𝑇𝑇 𝐼𝐼 + !!𝑇𝑇 𝜔𝜔 × !!𝑇𝑇(𝜆𝜆𝜆𝜆 − 𝜑𝜑 ×)0!×! 0!×! 𝐼𝐼!×! . (48)  

Process noise Jacobian matrix 𝑉𝑉 is calculated as 𝑉𝑉 = 𝑉𝑉! 0!×!0!×! 𝑉𝑉!! ,     where     𝑉𝑉!! = 𝑇𝑇𝑉𝑉!𝐼𝐼!×! . (49)  

This case does not involve a control noise Jacobian matrix 𝐿𝐿 
as it does not employ a control input. Measurement Jacobian 
matrix 𝐻𝐻 is calculated as 𝐻𝐻 = 𝐻𝐻!𝐻𝐻! ,     where 

 𝐻𝐻! = 𝐻𝐻!𝑄𝑄 −𝑅𝑅 0!×! 𝐻𝐻!(𝜅𝜅 − 𝑠𝑠) 0!×! ,     and 
 𝐻𝐻! =    0!×!" 𝐼𝐼 . 

(50)  

F. Accelerometer and Gyroscope As Control (MCC) [12] 

In this approach, both accelerometer and gyroscope data are 
used as control inputs, hence, neither acceleration nor angular 
velocity appear in the state vector. EKF process and 
measurement variables are: 

𝑋𝑋 = 𝑠𝑠𝑣𝑣𝑞𝑞 ,  𝑦𝑦 = 𝜇𝜇 ,  𝑢𝑢 = 𝛾𝛾𝛽𝛽 ,  𝜌𝜌 = 𝜀𝜀!𝜀𝜀! ,  𝜁𝜁 = 𝜀𝜀!𝜀𝜀! ,  𝜂𝜂 = 𝜀𝜀! . (51)  

The process equations are given as follows where position 
and velocity update equations involve accelerometer data 
while quaternion update involves gyroscope data: 𝑠𝑠! = 𝑠𝑠!!! + 𝑇𝑇𝑣𝑣!!! + !!𝑇𝑇! 𝑅𝑅!!!! 𝛾𝛾 + 𝜀𝜀! − 𝑔𝑔 + !!𝑇𝑇!𝜀𝜀!,! ,  𝑣𝑣! = 𝑣𝑣!!! + 𝑇𝑇 𝑅𝑅!!!! 𝛾𝛾 + 𝜀𝜀! − 𝑔𝑔 + 𝑇𝑇𝑇𝑇!,! ,  𝛿𝛿!,! = 𝑇𝑇(𝛽𝛽! + 𝜀𝜀!,!) +   𝑇𝑇𝜀𝜀!,! .   (52)  

The only measurement equation is that of camera 
measurements.  

Jacobian matrices for this case are given as follows: 𝐹𝐹 = 𝐹𝐹! 𝐹𝐹!0!×! 𝐹𝐹! ,    𝑉𝑉 = 𝑉𝑉! 0!×!0!×! 𝑇𝑇𝑉𝑉! ,    𝐿𝐿 = 𝐿𝐿! 0!×!0!×! 𝑇𝑇𝑇𝑇! ,   (53)  

and, 𝐻𝐻 = 𝐻𝐻!𝑄𝑄 −𝑅𝑅 0!×! 𝐻𝐻!(𝜅𝜅 − 𝑠𝑠) .   (54)  

G. Accelerometer As Control, Gyroscope As Measurement 

(MCM)  

In this approach, accelerometer data are used as control inputs 
and gyroscope data are used as measurements. Hence, 
although angular velocity appears in the state vector, 
acceleration does not. EKF process and measurement 
variables are: 
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𝑋𝑋 = 𝑠𝑠𝑣𝑣𝑞𝑞𝜔𝜔 ,  𝑦𝑦 = 𝜇𝜇𝛽𝛽 , 𝑢𝑢 = 𝛾𝛾 ,  𝜌𝜌 = 𝜀𝜀!𝜀𝜀! ,  𝜁𝜁 = 𝜀𝜀! ,  𝜂𝜂 = 𝜀𝜀!𝜀𝜀! .   (55)  

The process equations are given as follows where position 
and velocity update involves accelerometer data: 𝑠𝑠! = 𝑠𝑠!!! + 𝑇𝑇𝑣𝑣!!! + !!𝑇𝑇! 𝑅𝑅!!!! 𝛾𝛾 + 𝜀𝜀! − 𝑔𝑔 + !!𝑇𝑇!𝜀𝜀!,! ,  𝑣𝑣! = 𝑣𝑣!!! + 𝑇𝑇 𝑅𝑅!!!! 𝛾𝛾 + 𝜀𝜀! − 𝑔𝑔 + 𝑇𝑇𝑇𝑇!,! ,  𝛿𝛿!,! =   𝑇𝑇𝜔𝜔!!! + 𝑇𝑇𝜀𝜀!,! ,  𝜔𝜔! = 𝜔𝜔!!! + 𝜀𝜀!,! .   (56)  

In addition to camera measurement equation, there is an IMU 
measurement equation involving gyroscope data:  𝛽𝛽! = 𝜔𝜔! + 𝜀𝜀!,!. (57)  

Jacobian matrices for this case are calculated as follows: 𝐹𝐹 = 𝐹𝐹! 𝐹𝐹!!0!×! 𝐹𝐹! ,          where      𝐹𝐹!! = 𝐹𝐹! 0!×! ,   (58)  and  𝑉𝑉 = 𝑉𝑉! 0!×!0!×! 𝑉𝑉!! ,   𝐿𝐿 = 𝐿𝐿!0!×! ,   and    𝐻𝐻 = 𝐻𝐻!𝐻𝐻! . (59)  

H. Accelerometer As Measurement, Gyroscope As Control 

(MMC) 

In this approach, accelerometer data are used as measurements 
and gyroscope data are used as control inputs. Hence, 
acceleration appears in the state vector, while angular velocity 
does not. EKF process and measurement variables are: 

𝑋𝑋 = 𝑠𝑠𝑣𝑣𝑎𝑎𝑞𝑞 ,  𝑦𝑦 = 𝜇𝜇𝛾𝛾 ,  𝑢𝑢 = 𝛽𝛽 ,  𝜌𝜌 = 𝜀𝜀!𝜀𝜀! ,  𝜁𝜁 = 𝜀𝜀! ,  𝜂𝜂 = 𝜀𝜀!𝜀𝜀! . (60)  

The process equations are given as follows, where 
quaternion update involves gyroscope data: 𝑠𝑠! = 𝑠𝑠!!! + 𝑇𝑇𝑣𝑣!!! + !!𝑇𝑇!𝑎𝑎!!! + !!𝑇𝑇!𝜀𝜀!,! ,  𝑣𝑣! = 𝑣𝑣!!! + 𝑇𝑇𝑎𝑎!!! + 𝑇𝑇𝑇𝑇!,! ,  𝑎𝑎! = 𝑎𝑎!!! + 𝜀𝜀!,! ,  𝛿𝛿!,! = 𝑇𝑇(𝛽𝛽! +   𝜀𝜀!,!) +   𝑇𝑇𝜀𝜀!,! .   (61)  

In addition to camera measurement equation, there is an IMU 
measurement equation involving accelerometer data:  𝛾𝛾! = 𝑅𝑅!(𝑎𝑎! + 𝑔𝑔) + 𝜀𝜀!,!. (62)  

Jacobian matrices for this case are calculated as follows: 𝐹𝐹 = 𝐹𝐹! 0!×!0!×! 𝐹𝐹! ,        𝑉𝑉 = 𝑉𝑉! 0!×!0!×! 𝑇𝑇𝑇𝑇! ,    𝐿𝐿 = 0!×!𝐿𝐿! ,    and    𝐻𝐻 = 𝐻𝐻!𝐻𝐻! . 

(63)  

I. Accelerometer and Gyroscope As Measurement (MMM) 

[12, 13] 

In this final approach, both accelerometer and gyroscope data 
are used as measurement inputs, hence, both acceleration and 
angular velocity appear in the state vector. EKF process and 
measurement variables are: 

𝑋𝑋 = 𝑠𝑠𝑣𝑣𝑎𝑎𝑞𝑞𝜔𝜔 ,    𝑦𝑦 = 𝜇𝜇𝛾𝛾𝛽𝛽 ,    𝜌𝜌 = 𝜀𝜀!𝜀𝜀! ,    𝜂𝜂 = 𝜀𝜀!𝜀𝜀!𝜀𝜀! .   (64)  

The process equations are given as follows: 𝑠𝑠! = 𝑠𝑠!!! + 𝑇𝑇𝑣𝑣!!! + !!𝑇𝑇!𝑎𝑎!!! + !!𝑇𝑇!𝜀𝜀!,! ,  𝑣𝑣! = 𝑣𝑣!!! + 𝑇𝑇𝑎𝑎!!! + 𝑇𝑇𝑇𝑇!,! ,  𝑎𝑎! = 𝑎𝑎!!! + 𝜀𝜀!,! ,  𝛿𝛿!,! =   𝑇𝑇𝜔𝜔!!! + 𝑇𝑇𝜀𝜀!,! ,  𝜔𝜔! = 𝜔𝜔!!! + 𝜀𝜀!,! .  
(65)  

In addition to camera measurement equation, there are two 
IMU measurement equations, one involving accelerometer 
data and the other one involving gyroscope data:  𝛾𝛾! = 𝑅𝑅!(𝑎𝑎! + 𝑔𝑔) + 𝜀𝜀!,!, 𝛽𝛽! = 𝜔𝜔! + 𝜀𝜀!,!. (66)  

Jacobian matrices for this case are calculated as follows: 

𝐹𝐹 = 𝐹𝐹! 0!×!0!×! 𝐹𝐹! ,    𝑉𝑉 = 𝑉𝑉! 0!×!0!×! 𝑉𝑉!! ,    and  𝐻𝐻 = 𝐻𝐻!𝐻𝐻!𝐻𝐻!  (67)  

where 𝐻𝐻! = 𝐻𝐻!𝑄𝑄 −𝑅𝑅 0!×! 𝐻𝐻!(𝜅𝜅 − 𝑠𝑠) 0!×! , 
 𝐻𝐻! = 0!×! 𝑅𝑅 𝐻𝐻! 𝑎𝑎 + 𝑔𝑔 0!×! , 
   𝐻𝐻! =    0!×!" 𝐼𝐼 . 

(68)  

This case does not involve control noise Jacobian matrix 𝐿𝐿 as 
it does not employ a control input. 

IV. SYNTHETIC DATA GENERATION 

This paper’s goal is to compare the different approaches of 
information fusion in an EKF for tracking the ego-motion of a 
system composed of a camera and an IMU unit. In order to be 
able achieve this goal, a systematic way of generating random, 
yet realistic, motions and corresponding IMU and camera 
measurements is needed. In this section, we will describe how 
we generated the data for the simulations and how we used 
them to compare nine different tracking approaches listed 
above, under varying motion speeds.  

The first task is to generate random “paths” of translation 
and rotation, which the system undergoes. Higher order 
derivatives of the paths will be needed to generate IMU data, 
thus, it is preferable to make such random paths analytical 
functions of time. The system motion must be realistic, thus, 
making a simplifying assumption such as circular motion, just 
for the sake of differentiability weakens the simulation results 
since the real-life motions cover a lot of motion patterns that 
are not represented well with such assumptions.  

In the light of above considerations, we first randomly 
choose within a rectangular prism, 𝑛𝑛  waypoints that the 
system is supposed to pass through. Then we fit cubic splines 
to these points. The splines are assumed to represent the 
position of the camera in the World FoR as a function of time. 
Since cubic splines are analytic functions, higher order 
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derivatives are readily available. If the total simulation period 
is 𝑇𝑇 seconds, the camera passes thorough the waypoints at 
time instants uniformly spaced in 0,𝑇𝑇 . Thus, depending on 
the length of the splines between different waypoints, the 
motion can become faster or slower throughout one path. 
Figure 2 below shows one sample translational path and 
corresponding accelerations at sample points computed by 
taking second derivatives of the fitted spline.  

Similar to translation, we also generated random 3D splines 
that represent rotational motion of the camera-IMU setup.  
These splines are assumed to correspond to the spherical 
angles of the orientation of the camera in the Camera FoR. We 
chose spherical angles instead of another common choice of 
yaw, pitch and roll angles, since the conversion from the 
spherical angles to quaternions and rotation matrices are 
independent of the order of rotations, which is not the case for 
yaw, pitch and roll angles. 

 
Figure 2. A sample translational path that camera-IMU system 
undertakes. The red line denotes the path that is a cubic spline fitted 
to waypoints, which are shown by green dots. The blue arrows denote 
the accelerations computed from the second derivative of the spline. 

From the spherical angles 𝜃𝜃(𝑡𝑡) , 𝜍𝜍(𝑡𝑡)  and 𝜓𝜓(𝑡𝑡)  generated 
above, the quaternion that represents the rotation from the 
World FoR to the Camera FoR at time instant 𝑡𝑡  can be 
calculated as follows 

𝑞𝑞!"! 𝑡𝑡 =    cos 𝜃𝜃2 sin 𝜃𝜃2 cos 𝜍𝜍 sin 𝜃𝜃2 sin 𝜍𝜍 cos𝜓𝜓 sin 𝜃𝜃2 sin 𝜍𝜍 sin𝜓𝜓 . (69)  

Note that, this quaternion is defined only for the generation of 
the simulation data, and is not the same as the quaternion in 
the state vector in EKF equations above.  

From the quaternion above, the rotation matrix from the 
World FoR to the Camera FoR 𝑅𝑅!"(𝑡𝑡) can be calculated using 
(10). Similarly, since analytical expressions for 𝜃𝜃(𝑡𝑡), 𝜍𝜍(𝑡𝑡) and 𝜓𝜓 𝑡𝑡  are available, it is possible to compute 𝑅𝑅!"(𝑡𝑡)  by 
differentiating (10) and (69).  Then we utilize the following 
identity [17] 𝑅𝑅!" = 𝜔𝜔! ×  𝑅𝑅!" (70)  

to obtain 𝜔𝜔! × = 𝑅𝑅!"𝑅𝑅!"! . (71)  

Above, 𝜔𝜔!  denotes the angular velocity of the camera in 
Camera FoR. From this, the gyroscope measurements become 

𝛽𝛽! = 𝑄𝑄!𝜔𝜔!(𝑡𝑡) +   𝜀𝜀!,! , (72)  

where 𝑄𝑄  is the rotation matrix from the IMU FoR to the 
Camera FoR. 𝜀𝜀!,! is a zero mean Gaussian distributed noise 

component with covariance matrix 𝜎𝜎!!𝐼𝐼. 
Let the position of the camera in World FoR be denoted by 𝑠𝑠! 𝑡𝑡   𝜖𝜖  ℝ!.  To reach the accelerometer measurements, we 

use the following relation [18] 𝑅𝑅!" 𝑠𝑠! + 𝑔𝑔! − 𝜉𝜉! =   𝜔𝜔!×𝜔𝜔!×𝜏𝜏 + 𝜔𝜔!×𝜏𝜏, (73)  

where, 𝜔𝜔! is the angular velocity of the IMU in the IMU FoR, 
and it is given by 𝑄𝑄!𝜔𝜔!. 𝜏𝜏 is the IMU to camera displacement 
in IMU FoR., 𝜔𝜔!  can be computed by differentiating (71). 𝑔𝑔! 
is the gravity in the World FoR. 𝜉𝜉! is the acceleration of the 
IMU in the IMU FoR. This component is computed from (73), 
and the accelerometer measurements are obtained as   𝛾𝛾!,! =    𝜉𝜉! 𝑡𝑡 +   𝜀𝜀!,! , (74)  

where 𝜀𝜀!,!  is a zero mean Gaussian distributed noise 

component with covariance matrix 𝜎𝜎!!𝐼𝐼. 
To generate camera readings, we first generated 𝑀𝑀 feature 

points randomly within a shell of inner radius 𝑅𝑅in and outer 
radius 𝑅𝑅out  around the path that the camera-IMU system 
traverses (Figure 3). Then we used the pinhole model given in 
(13) to generate the camera measurements. Only those features 
within the field-of-view of the camera are considered. To 
achieve this, we assumed an image sensor width 𝑖𝑖𝑖𝑖!  and 
height 𝑖𝑖𝑖𝑖!  and only those features that generate 
measurements within this width and height are kept.  

Since the motion blur due to faster motion results in higher 
detection error, such features should incur higher 
measurement noise. We obtained this effect as follows. For 
each feature point, we observed its amount of motion with 
respect to the previous frame. Let 𝑑𝑑!,!  be the motion in pixels 

in the first image dimension and 𝑑𝑑!,! be the one in the second 

dimension. Then the variances of the components of the zero 
mean Gaussian random variables 𝜀𝜀!,!  (i.e., the camera 

measurement noise) are assumed to be  𝜎𝜎!!,!! = 𝜎𝜎!! + 𝛼𝛼𝑑𝑑!,!! . (75)  

This way, an increased amount of noise is added to fast 
moving feature point measurements.  

V. SIMULATION RESULTS 

We generated random data as explained in Section IV for 110 
different simulation runs, each for a duration of 500 camera 
frames, which amounts to 33.33 seconds since the camera is 
assumed to run at 15 frames per second. The IMU unit is 
assumed to run at 120 Hz, thus, 4000 accelerometer and 
gyroscope measurements per run are also computed.  The 
dimensions of the rectangular prisms, inside of which the 
translational and angular waypoints are chosen, are 100 cm 
and 0.2𝜋𝜋. We assumed 𝑛𝑛 = 4 waypoints for translation and 
another 4 for rotation, however, in general, any number is 
possible using multiple connected splines.  
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The inner radius 𝑅𝑅in  of the shell in which features are 
placed is 200 cm, and the outer radius 𝑅𝑅out is 300 cm. We 
placed 𝑀𝑀 = 500  features in the shell randomly for each 
simulation. Noise variance  parameters  are 𝜎𝜎! = 1  pixel, 𝛼𝛼 = 0.2 , 𝜎𝜎! = 10!!  cm/s2 and 𝜎𝜎! = 10!!  rad/s. The focal 

length of the camera is assumed to be 700 pixels, while the 
imager width and height are assumed to be 640 and 480 pixels 
respectively, resulting in about 49∘ horizontal and 38∘ vertical 
field of view. Without loss of generality, we assumed 𝑄𝑄 = 𝐼𝐼 
and 𝜏𝜏 = 0. 

 
Figure 3. A snapshot of the camera measurement generation process. 
The red stick represents the camera, the green curve represents the 
path that the camera follows. The little hollow circles represent all the 
feature points in the 3D map, whereas the filled purple circles are the 
feature points that are in the current field-of-view of the camera. 

In the simulations, for the process noise standard deviations, 
we assumed 𝜎𝜎! = 0.1 rad/s (the standard deviation of 𝜀𝜀!,!) 
and 𝜎𝜎! = 0.15  cm/s (the standard deviation of 𝜀𝜀!,! ). The 

standard deviation of 𝜀𝜀!,! is assumed 𝜎𝜎!𝑇𝑇! and that of 𝜀𝜀!,! is 

assumed 𝜎𝜎!/𝑇𝑇!, where 𝑇𝑇!  is the simulation step size, and equal 
to 1/(120 Hz) = 0.0083 s. The EKF results do change with this 
choice. We first ran initial tests with several process noise 
standard deviation values and decided that these values give 
reasonable results. In reality, similar to our approach, one can 
first do these tests in simulation with motion patterns 
representative of real life, decide on the process noise standard 
deviation values and use them in real experiments. For 
different motion speeds, the process noise standard deviations 
are increased/decreased in proportion to the speed. 

For the simulations, first, 110 paths and corresponding 
camera and IMU data are generated and stored. The different 
flavors of EKF trackers are run on the same stored data and 
their 3D position and 3D orientation RMSEs are reported. The 
re-projection RMSEs are also calculated and in order to 
exclude possible outliers, the 10 runs with biggest re-
projection errors are thrown away and all RMSEs are 
calculated with the remaining 100.  

In this paper, another goal is to test the tracker flavors under 
different motion speeds. However, for a fair comparison, we 
would like to use similar motion patterns to the original 110, 
but just faster or slower. To achieve this, we multiplied the 
splines’ coordinates by 2 (for faster) or 0.5 (for slower), 

without changing the time instants. Thus, a data set of 110 
runs for the “fast” and another set of 110 runs for the “slow” 
motion case are obtained. The RMSEs for these cases are also 
calculated as explained above. 

In Figure 4, we report the RMSE results for fast, default and 
slow motion speeds and different tracker cases. The leftmost 
column has the RMSE in the tracked position of the IMU, the 
middle column has the RMSE of the tracked quaternion (as a 
measure of the orientation RMSE), and the rightmost column 
has the RMSE in pixels in the re-projection of the feature 
points using the tracked camera pose. The results in Figure 4 
reveal the following: 

i) As explained in the introduction, our extensive 
simulations confirm that the IMU information is useful in 
improving the tracking performance, and the benefits 
become more pronounced as the motion becomes faster. 

ii) Our extensive simulations suggest that it is better to use 
IMU data as measurement as opposed to control input; 
hence the best combination is the MMM case, across all 
speeds. It appears that the linearization approximation at 
the correction step does not effect the accuracy of the 
tracker to the point where using the measurements at the 
prediction step as control inputs is preferred. 
Furthermore, since gyroscope measurement equations are 
already linear in the state variables, the benefit of using 
IMU data as measurement is more pronounced for the 
gyroscope.  

iii) In general, the accelerometer data helps improve the 
position accuracy more than the orientation, whereas the 
gyroscope information helps improve the orientation 
accuracy more than the position. This makes sense, since 
accelerometer measures translational motion whereas the 
gyroscope measures rotational motion.  

iv) Gyroscope appears to have more influence in reducing 
the projection error than accelerometer. Errors in the 3D 
camera position translate to projection errors that 
diminish with the distance to the feature points in the 
scene. On the other hand, the projection errors due to 
camera orientation errors do not change with distance. 
Thus, the average projection error over near and distant 
feature points is more prone to camera orientation errors, 
which is improved most by the gyroscope data as 
explained in (iii).  

v) The improvement provided by gyroscope in position is 
more pronounced than the improvement provided by 
accelerometer in orientation. As explained in (iv), the 
gyroscope data has a bigger effect on the projection 
errors than the accelerometer data. During tracking, 
projection errors induce errors in the camera 
measurement innovations at the correction step of the 
EKF. This translates to errors in position, explaining the 
greater effect of gyroscope measurements to position 
accuracy. Hence, if only one inertial sensor is to be used, 
it should be gyroscope used as measurement.  

vi) For the simulation settings, it is possible to achieve less 
than 2 pixels RMS re-projection error with the MMM 
EKF (both inertial sensors used as measurement) even 
under fast translational and rotational motions. 
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VI. EXPERIMENTAL RESULTS WITH REAL DATA 

Results presented in the previous section provide a thorough 
comparison of different fusion approaches in a realistic 
simulation setting. In this section, we present experimental 
results with real data that corroborate the above simulation 
results. In order to collect visual and inertial sensor data we 
assembled a hand-held capture unit using a FIREFLY-FFMV-

03M2C camera and an STEVAL-MKI062V2 inertial sensor 
unit. The inertial sensor unit houses a triple-axis accelerometer 
and a triple-axis gyroscope which were both run at a rate of 
120 Hz. The camera was adjusted to capture 1600x1200 
resolution frames at a rate of 30 Hz. We recorded 10 seconds 
of synchronous video and inertial sensor data. The video data 
was processed using the SIFTGPU software [19] to extract 
and match 2D image features, and the BUNDLER software 
[20] to obtain a 3D map of the scene as well as the 3D pose 
sequence (Figure 5) of the camera during the 10 seconds. The 
2D features and the 3D map were used during EKF tracking, 
and the 3D pose sequence is used as the ground truth data to 
evaluate the RMSE performance of different EKF tracking 
schemes. Figure 6 shows the resulting RMSE values, which 
confirm that (i) both sensors help improve the tracking 
accuracy more when used as measurements as opposed to 
control inputs and (ii) accelerometer helps more with the 3D 
position accuracy while gyroscope helps more with the 3D 
orientation accuracy.  

VII. CONCLUSION 

In this paper, we provide a thorough analysis of different 
approaches of fusing accelerometer and gyroscope data to 
camera measurements in EKF. We compare all eight possible 
combinations of using inertial sensor data as control or 
measurement inputs, and the camera-only case to provide a 
baseline for comparisons, via extensive and realistic 
simulations using the same data set collected at different 
motion speeds, as well as real data. Three of these cases, 
namely, (i) gyroscope only as control, (ii) gyroscope as 
measurement and accelerometer as control, and (iii) 
accelerometer as measurement and gyroscope as control were 
not covered in the literature before.  

We provide a complete set of EKF equations including the 
Jacobian matrices employed by EKF for all eight fusion cases 
and the camera only case. Our major finding is that both 
inertial sensors improve 3D accuracy more when used as 
measurement inputs, hence the best combination is the MMM 

case, across all speeds. Furthermore, we find that the 
improvement provided by gyroscope in position is more 
pronounced than the improvement provided by accelerometer 
in orientation, hence if only one inertial sensor is to be used, it 
should be gyroscope used as measurement.  

Previous to our work, the most extensive study of fusing 
inertial sensor data at the EKF has been conducted in [12], 
where MXM, MCC, and MMM cases have been compared 
and it is concluded that MMM and MCC exhibit similar 
performance and both provide better tracking accuracy than 
MXM at fast motion speeds. However, with the confidence of 
our extensive simulations we believe that the correct ordering 
among these three cases should be MMM, MXM, and MCC, 
at all speeds, since using gyroscope only as measurement has 
more effect on the tracking performance than using both 
sensors as control inputs as explained in the simulations 
results section. 

Another important contribution of our work is a 3D spline 
based generation of realistic synthetic data corresponding to 
gyroscope, accelerometer and camera measurements. This 
simulation environment becomes instrumental in extensive 
testing of the EKF and other possible trackers under real-life 
motion patterns, assess their performance, as well as observe 
and compare with ground-truth the tracker’s inner workings 
and states. 
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Figure 4. RMSE results for different motion speeds and different tracker cases. Performances of different trackers for fast, default and 
slow motion speeds are given in sub-figures (a)–(c), (d)–(f) and (g)–(i), respectively. The leftmost column has the RMSE in the tracked 
position of the IMU, the middle column has the RMSE of the tracked quaternion (as a measure of the orientation RMSE), and the 
rightmost column has the RMSE in pixels in the reprojection of the feature points using the tracked camera pose. The thick solid bars 
represent the means of 100 simulation runs and the thin stick error bars represent one standard deviation. 
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Figure 6. Results of experiments with real data: (a) Position, (b) orientation, and (c) projection RMSE values for different tracker cases.  
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