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Fusing literature and full network data
improves disease similarity computation
Ping Li1,2, Yaling Nie1,2 and Jingkai Yu1*

Abstract

Background: Identifying relatedness among diseases could help deepen understanding for the underlying

pathogenic mechanisms of diseases, and facilitate drug repositioning projects. A number of methods for

computing disease similarity had been developed; however, none of them were designed to utilize information of

the entire protein interaction network, using instead only those interactions involving disease causing genes. Most

of previously published methods required gene-disease association data, unfortunately, many diseases still have

very few or no associated genes, which impeded broad adoption of those methods. In this study, we propose a

new method (MedNetSim) for computing disease similarity by integrating medical literature and protein interaction

network. MedNetSim consists of a network-based method (NetSim), which employs the entire protein interaction

network, and a MEDLINE-based method (MedSim), which computes disease similarity by mining the biomedical

literature.

Results: Among function-based methods, NetSim achieved the best performance. Its average AUC (area under the

receiver operating characteristic curve) reached 95.2 %. MedSim, whose performance was even comparable to

some function-based methods, acquired the highest average AUC in all semantic-based methods. Integration of

MedSim and NetSim (MedNetSim) further improved the average AUC to 96.4 %. We further studied the

effectiveness of different data sources. It was found that quality of protein interaction data was more important

than its volume. On the contrary, higher volume of gene-disease association data was more beneficial, even with a

lower reliability. Utilizing higher volume of disease-related gene data further improved the average AUC of

MedNetSim and NetSim to 97.5 % and 96.7 %, respectively.

Conclusions: Integrating biomedical literature and protein interaction network can be an effective way to compute

disease similarity. Lacking sufficient disease-related gene data, literature-based methods such as MedSim can be

a great addition to function-based algorithms. It may be beneficial to steer more resources torward studying

gene-disease associations and improving the quality of protein interaction data. Disease similarities can be computed

using the proposed methods at http://www.digintelli.com:8000/.
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Background

Discovering closely related diseases could be helpful in

revealing their common pathophysiology [1, 2]. It may

also be useful for identifying novel drug indications [3],

as similar diseases may have the same or similar thera-

peutic targets, which suggests they could be treated with

the same or similar drugs. There has been a growing

interest in quantitatively measuring similarities between

diseases [4–7].

Phenotypic similarity plays an important role in a

number of biological and biomedical applications [8].

During the past years, based on the Human Phenotype

Ontology (HPO) [9], researchers had designed several

methods to find related diseases and predict disease-

causing genes, such as Phenomizer [10], Exomiser [11]

and PhenIX [12]. The HPO provides a controlled and

standardized vocabulary of phenotypic abnormalities

that characterize human diseases. Phenotype similarity

also, becomes the most common way to define classifi-

cation rules for diseases. The classification of disease

terms in Medical Subject Headings (MeSH) [13] and

Disease Ontology (DO) [14] are taking this approach. To

quantify disease similarity, several semantic-based

methods had thus been proposed based on HPO, MeSH

or DO, such as Resnik [15], Lin [16] and Wang [17].

Resnik’s method measures disease similarity based on in-

formation content (IC) of the most informative common

ancestor (MICA) between two terms. Besides IC of

MICA, Lin’s method also considers the IC of the two

compared diseases [16]. Wang et al.’s method [17] com-

putes similarity of a disease pair by considering the con-

tribution of all common ancestors in the ontology. It

had been successfully applied to compute similarity be-

tween MeSH [18] terms. All of those semantic-based

methods exploited disease associations based on ontol-

ogies and/or gene annotations. They did not, however,

consider the functional associations between disease-

related gene sets. The BOG (based on overlapping gene

sets) method was thus designed by Mathur and Dinakar-

pandian [19], which calculates disease similarity by

exploiting the co-occurrence of disease-related genes.

Mathur et al. [20] also devised a process-similarity based

(PSB) method. Instead of defining disease similarity as a

function of genes, PSB computes disease similarity based

on Gene Ontology (GO) [21] biological process terms

associated with those genes. PSB achieved a better

performance than BOG [20]. Functional associations be-

tween genes involve not only GO terms [22], but also

co-expression [23], protein-protein interaction [24], etc.

Cheng et al. recently presented the method FunSim [25],

which measures disease similarity using a weighted hu-

man protein interaction network. The first neighbors of

disease-related genes in the protein network were taken

into account. FunSim further improved the results of

PSB [25].

Although a number of methods for computing disease

similarity had been developed, no method had been pro-

posed to take advantage of the entire protein interaction

network, beyond using only the first neighbors. A

network-based method (NetSim) is proposed which

takes advantage of the entire interaction network. The

effectiveness of different data sources were also evalu-

ated, including gene-disease associations and protein-

protein interactions. Most of the previously developed

methods were based on disease-related genes. However,

many diseases still have very few or no associated genes.

Relying entirely on disease-related genes greatly limits

the utility of those methods. To overcome the limitation,

a new semantic-based similarity measure (MedSim) is

developed to compute disease similarity based on the

MEDLINE database. MedSim and NetSim were eventu-

ally integrated into MedNetSim to further improve com-

puting performance.

Methods
Diseases and gene-disease association databases

The disease terms in DO were chosen as the vocabulary

for describing diseases. DO database is a biomedical re-

source of disease concepts with stable identifiers orga-

nized by disease etiology [14]. It contains 6,457 non-

obsolete disease terms and 6,819 ‘IS_A’ relationships

among diseases. The non-obsolete disease terms was

used as the disease vocabulary. Each disease in DO has a

unique identifier, called DOID.

SIDD [26] and DisGeNET [27] were adopted as two

disease-gene association databases (Fig. 1). SIDD inte-

grated five disease-related gene databases: GeneRIF [28],

Online Mendelian Inheritance in Man (OMIM) [29],

Comparative Toxicogenomics Database (CTD) [30],

Genetic Association Database (GAD) [31], and SpliceDi-

sease [32]. In total, SIDD contains 2,427 diseases and

104,052 gene-disease associations (see Additional file 1).
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The DisGeNET [27] database integrated human gene-

disease associations from various expert curated databases

and text-mining derived associations including Mendelian,

complex and environmental diseases. Compared to SIDD,

DisGeNET had more lower reliability disease-gene associ-

ations based on literature mining, i.e., LHGDN [33] and

BeFree data [34]. DisGeNET contains 14,619 diseases and

429,111 gene-disease associations. UMLS ID (Unified

Medical Language System Identifier) was used as the

unique identifier for each disease in DisGeNET. We

mapped UMLS ID to DOID, which produced 3,259 dis-

ease terms and 206,403 gene-disease associations (see

Additional file 2). Almost every disease term in DisGeNET

has more associated genes than that in SIDD. All source

data were downloaded until April 30, 2015.

Protein interaction datasets

Two protein interaction datasets were used (Fig. 2). One

is hPPIN, built in house, which integrated four existing

protein interaction databases, i.e., BioGrid [35], HPRD

[36], IntAct [37], and HomoMINT [38]. Protein identi-

fiers were mapped to the genes coding for the proteins,

and redundant interactions were removed. The acquired

protein interaction network covered 15,710 human

genes and 143,237 interactions (Fig. 2). The other is

HumanNet [39], which is a genome-scale functional net-

work for human genes. To build HumanNet, 21 diverse

functional genomics and proteomics datasets were eval-

uated for their tendencies to link human genes in the

same biological processes. Pairwise gene linkages derived

from the individual datasets were then integrated into a

comprehensive HumanNet [39]. HumanNet contains

476,399 functional linkages among 16,243 human genes

(Fig. 2). Unlike hPPIN which mainly focuses on experi-

mentally verified protein interactions, HumanNet was

constructed based on the functional probability that two

genes belonged to the same biological processes. The

two protein interaction datasets have 13,626 genes and

42,584 interactions in common (called comPPI, Fig. 2).

Additionally, different proportions of hPPIN (5 %, 10 %,

20 %, 40 %, 60 %, 80 %, 90 %) were randomly sampled 20

times and used as the protein interaction datasets to evau-

late the impact of data volume on the proposed method.

Medline-based disease similarity (MedSim)

Biomedical literature contains rich and diverse informa-

tion, such as disease symptoms, pathogenesis, thera-

peutic drugs, and so on. Features representing diseases

were generated through mining the biomedical literature

corpus; the features were then utilized to compute

disease similarity (MedSim method, Fig. 3). MedSim was

not limited to use only one aspect of disease information

(i.e., disease-related genes), but took advantages of all

relevant information that had already been archived in

the literature.

Disease corpus

The text corpus contains all MEDLINE abstracts pub-

lished up to year 2015. The non-obsolete disease terms

in DO were used as the disease vocabulary. Each disease

Fig 1 Gene-disease association databases. a : The number of

diseases, b: The number of associations between genes and diseases

Fig 2 Protein interaction datasets. a: The number of genes, b: The

number of interactions between genes, *: The common

protein-protein interactions
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term was mapped to Unified Medical Language System

(UMLS) [40] so that its synonyms could be retrieved. Syn-

onyms were taken directly from DO for diseases that

could not be mapped to UMLS. Every disease term and its

synonyms were then used as keywords to perform

keyword-based queries into MEDLINE to retrieve ab-

stracts related to that disease. To limit computational cost,

only the top 100 most relevant abstracts were selected to

construct the bag-of-words model for diseases. The rele-

vance of an abstract to a disease was defined in Eq. 1.

Rabstract ¼
X

W

W df �W of ð1Þ

Where Wdf and Wof represent document frequency

and occurrence frequency of a word X, respectively.

Document frequency Wdf is the proportion of abstracts

that contain word X. Wdf represents the relevance of

word X to a disease. Occurrence frequency Wof repre-

sents the number of times word X occurs in an abstract,

measuring the importance of word X in a specific ab-

stract. For a specific disease, W is defined as the set of

nouns (Xs) which appeared in abstracts when Wdf is

greater than 0.005. Larger Rabstract means that an ab-

stract is more closely related to the disease. Some dis-

eases were not yet broadly studied, so their number of

retrieved abstracts can be less than 100. For those cases,

all retrieved abstracts were used. For each disease, the

selected most relevant abstracts were merged into one

combined document. At the end of preprocessing, every

disease was associated with one document. These docu-

ments together made up the disease corpus.

Constructing the bag-of-words model and computing

MedSim

The disease corpus was tokenized to obtain word vo-

cabulary, using Python package NLTK (Nature Language

Toolkit, www.nltk.org) to remove non-alphabetic words

and reduce inflected/derived words to their stem. Overly

common (appeared in more than 60 % of the docu-

ments) or rare (appeared in less than 4 documents)

words were removed, as those words could not provide

meaningful information. Each disease was then repre-

sented by a word vector, whose dimensionality is the size

of the word vocabulary. Each dimension was assigned a

weight (TF-IDF, that is, TF times IDF) based on term fre-

quency (TF) and inverse document frequency (IDF)

values. TF is the number of times a word appears in a

document. IDF represents the inverse of the number of

documents containing the word. TF-IDF assigns larger

weights to words that appeared more often in a document

but only in a small percentage of all documents, as those

words are important and informative for that document.

With diseases represented as TF-IDF weighted vectors,

the MedSim of two diseases was measured by calculating

the cosine similarity of the two vectors. Python package

scikit-learn [41] was used to perform the computation.

Network-based disease similarity (NetSim)

Previously published methods weren’t designed to utilize

the entire protein interaction network. They instead fo-

cused only on the disease-related genes or their first

neighbors in the network. To take full advantage of the

entire protein interaction network, random walk with re-

start (RWR) [42, 43] (see [44] for working details) was

used to measure Functional Relevance (FR) between a

gene g and a gene set G, which is described in Eq. 2.

FRGðgÞ ¼

PRWR g ∈ protein interaction network

1 g ∉ protein interaction network and g∈G

0 g ∉ protein interaction network and g∉G
Þ

8

>

>

<

>

>

:

ð2Þ

Fig 3 Overview of MedSim. DO: Human Disease Ontology database; UMLS: Unified Medical Language System
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Where gene set G was defined to be the seed genes,

that is, the known set of genes associated with a disease.

The initial probability of each seed genes was set to 1.0.

PRWR represents the acquired steady-state probability of

gene g after running RWR in the whole protein inter-

action network. A larger probability (FRG(g)) will be

assigned to gene g when it sits more closely to the gene

set G in the network according to Eq. 2, which means that

gene g are more functionally related with gene set G.

Suppose that G1 = {g11,g12,…} and G2 = {g21,g22,…} are

the seed gene sets for disease d1 and d2, respectively.

Then, the NetSim of d1 and d2 is defined in Eq. 3.

NeSim G1;G2ð Þ ¼

X

1≤i≤len G1ð Þ

FRG2
g1i
� �

þ
X

1≤j≤len G2ð Þ

FRG1
g2j

� �

len G1ð Þþlen G2ð Þ ;

g1i∈G1; g2j∈G2

ð3Þ

Where len(G1) and len(G2) are the number of genes in

G1 and G2, respectively. The numerator is the sum of func-

tional relevance of g1i to G2 and g2j to G1. A higher NetSim

value represents closer connection between G1 and G2,

which suggests closer ties between diseases d1 and d2.

MedSim and NetSim is combined into MedNetSim,

which is defined in Eq. 4.

MedNetSim d1; d2ð Þ ¼ MedSim d1; d2ð Þ
� NetSim G1;G2ð Þ ð4Þ

Where d1 and d2 are two diseases in DO, G1 and G2

are the seed gene sets for d1 and d2, respectively.

Performance evaluation

Similarities of disease pairs in the benchmark set and

the random set were calculated and ranked in descend-

ing order, receiver operating characteristic (ROC) [45]

curves were then drawn to evaluate and quantify the

predictive power of the proposed methods. A ROC

curve is a plot of the true positive rate of a classifier as a

function of the false positive rate. The area under the

ROC curve (AUC) is used as a quantitative measure of a

classifier’s quality [46]. Disease pairs in the benchmark

set and the random set are defined as positives and neg-

atives, respectively. True positives are the disease pairs

in the benchmark set that are correctly predicted by a

classifier, and false positives are those disease pairs from

the random set that are predicted to be positives but not

found in the benchmark set. More percentage of disease

pairs in the benchmark set receiving higher rankings

means better AUC values. The benchmark set was taken

from reference [25]. It had 47 diseases and 70 disease

pairs (see Additional file 3) with high similarity derived

from two manually checked datasets by Suthram et al.

[2] and Pakhomov et al. [47]. Cancers were omitted. The

benchmark set contains disease pairs that are expected

to be related to each other, such as Alzheimer’s disease

(DOID: 10652) and schizophrenia (DOID: 5419), dia-

betes mellitus (DOID: 9351) and obesity (DOID: 9970).

It also includes some pairs that are not apparently re-

lated, but were found to be correlated by various evi-

dences, such as asthma (DOID: 2841) and diabetes

mellitus, malaria (DOID: 12365) and anemia (DOID:

2355). 700 disease pairs were randomly selected from

DO to generate a random set, with disease pairs from the

benchmark set removed from the generated random set.

To get an average AUC of the proposed methods, the above

experiment was iterated 50 times by calculating similarities

of disease pairs in the benchmark set and 50 random sets.

MedSim was compared with other semantic-based

methods including Resnik [15], Lin [16] and Wang [17],

based on HPO and DO, respectively. For each disease,

the associated HPO annotations were acquired from

[48], which covered disease-phenotype associations for

over 6000 common, rare, infectious and Mendelian dis-

eases through text-mining approach. The HPO-based

disease similarities were defined by calculating the se-

mantic similarity of their associated HPO phenotypes.

For two diseases (d1, d2), the HPO-based similarity of d1
to d2 is defined as follows:

HPO sim d1→d2ð Þ ¼ avg
X

s∈d1

maxt∈d2SemSim s; tð Þ

2

4

3

5

ð5Þ

Where s and t are the annotated phenotypes of d1 and

d2, respectively. SemSim() is one of the methods applied to

compute the semantic similarity of two phenotype terms,

including Resnik, Lin and Wang. Eq. 5, for each pheno-

type term of d1, found the “best match” among the pheno-

type terms annotated to d2, and the average overall

phenotype terms was calculated. Note that this similarity

is asymmetric, i.e., HPO_sim(d1→ d2) is not always equal

to HPO_sim(d2→ d1). Therefore, we used a symmetric

HPO-based similarity, which is defined in Eq. 6:

HPO sim d1; d2ð Þ ¼
1

2
HPO sim d1→d2ð Þ

þ
1

2
HPO sim d2→d1ð Þ ð6Þ

The DO-based disease similarities were defined as the

directly semantic similarity of two disease terms in DO,

where the above mentioned three semantic-base

methods (Resnik, Lin and Wang) were applied, too. Net-

Sim was also compared with other function-based

methods including BOG [19], PSB [20] and FunSim [25].

Parameters of the aforementioned methods were set to

values used in the original paper.
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Constructing disease similarity network (DSN)

Disease terms from DO were used as nodes in the simi-

larity network between diseases (DSN). We computed

the pair-wise similarity for a total of 3,201 diseases (with

both associated genes and literature information) by the

proposed method MedNetSim. If the similarity of a dis-

ease pair was ranked in the top 0.5 %, an undirected

weighted edge between the disease pair was drawn. The

network was visualized with the force-directed layout al-

gorithm of Cytoscape [49] and colored according to top-

level DO categories.

Results and discussion
Utilizing the entire network benefits disease similarity

computation

Similarities of disease pairs in the benchmark set and a

random set were calculated by NetSim and other

function-based methods. As shown in Fig. 4a, the BOG

method, with an AUC of 83.3 %, had the worst perform-

ance among function-based methods. Linking genes

based on the GO biological process ontology [21], PSB

method had significantly improved performance, achiev-

ing an AUC of 91.1 %. Considering nearest neighbors of

disease-related genes in protein interaction network,

FunSim improved its AUC to 94.3 %. The proposed

method, NetSim, which utilized the entire protein inter-

action network, further improved its AUC to 95.1 %.

The results show that utilizing the entire network can

increase computing performance for disease similarity

calculation. Integrating MedSim (see next section) and

NetSim, the MedNetSim achieved the highest AUC

among all function-based methods, improving its AUC

to 96.5 %. The performance improvement indicates that

integration of MEDLINE and protein interaction net-

work can be an effective way to compute disease similar-

ities. To check the stability of NetSim and MedNetSim,

the above computation was repeated 50 times by calcu-

lating similarities using 50 randomly generated disease

pair sets. Fig 4b shows the average AUC of BOG

(82.6 %), PSB (90.9 %), FunSim (94.4 %), NetSim

(95.2 %) and MedNetSim (96.4 %), which is consistent

with Fig. 4a.

The MedNetSim similarity values of all disease pairs

were computed, and a distribution of 5,121,600 similar-

ity values (between 3,201 diseases) was acquired. The

ranking of a similarity value in the distribution was used

to compute its corresponding p-value. If the MedNetSim

similarity value of a disease pair is in the highest-ranking

5 % of the distribution (which generates a p-value of

0.05), the two diseases are considered related. To evalu-

ate the ability of MedNetSim in discriminating positive

and negative cases, the p-values of similarities of disease

pairs in the benchmark set and a random set were calcu-

lated (Additional file 4). For the benchmark set, 57 dis-

ease pairs were recognized as highly related diseases

correctly and 13 disease pairs did not show a significant

p-values (false negatives). The false negatives can be di-

vided into two groups. The first group had a non-

Fig 4 Performance of function-based methods. a ROC curves for the benchmark set and a random set. b Average AUC for the benchmark set

and 50 random sets
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significant p-value of MedSim similarity, but a signifi-

cant p-value of NetSim similarity, e.g., polycystic ovary

syndrome (DOID: 11612) & myocardial infarction

(DOID: 5844), malaria (DOID: 12365) & epilepsy syn-

drome (DOID: 1826) (Table 1). The missed calling of be-

ing positives for those disease pairs was mainly due to

the very bad results of MedSim. That is to say, the re-

search literature contains less information about their

relatedness, therefore dragging down the performance of

MedNetSim. For those disease pairs, NetSim may be a

better choice. In the second group, both MedSim and

NetSim similarities did not show significant p-values. A

representative disease of the second group was lipid

storage disease (DOID: 9455). 5 out of the 6 disease

pairs between lipid storage disease and other diseases in

the benchmark set were incorrectly identified, e.g., lipid

storage disease & obesity (DOID: 9970), lipid storage

disease & diabetes mellitus (DOID: 9351) (Table 1). The

number of associated genes of obesity and diabetes mel-

litus was 1,527 and 1,134, respectively. Lipid storage dis-

ease only had 35 associated genes. Out of the 35

associated genes, 15 and 12 genes were shared by obesity

and diabetes mellitus, respectively. Although more than

1/3 associated genes of lipid storage disease appeared in

obesity and diabetes mellitus, they still got a bad NetSim

results. That is because obesity and diabetes mellitus

had a much bigger number of associated genes than lipid

storage disease. This indicates that NetSim performs less

well when two diseases have a large difference in the

number of disease-associated genes. For the random set,

36 out of 700 disease pairs were recognized as related

diseases (false positives). More than half of the 36 dis-

ease pairs were cancer related diseases, e.g., penile neo-

plasm (DOID: 11624) & cecum cancer (DOID: 1521),

pancreatic cancer (DOID: 1793) & tubular adenocarcin-

oma (DOID: 4929) (Table 1). As cancer diseases were

omitted in selecting benchmark set, it is not surprising

that so many disease pairs related to cancers are de-

tected as false positives. The relatedness of diseases

belonging to different top-level DO categories was also

identified, e.g., essential hypertension (DOID: 10825) &

hyperthyroidism (DOID: 7998). Recently, Emokpae et al.

had pointed out that hyperthyroidism was the most

common thyroid disorder observed in patients with es-

sential hypertension [50]. It indicates that our method

can recognize related diseases which apparently seem

unrelated. In addition, the relationship of impulse con-

trol disorder (DOID: 10937) & narcissistic personality

disorder (DOID: 2745) was also detected (Table 1). The

two disease are both in the “disease of mental health”

(DOID: 150) category, but there is no report on their re-

latedness. Therefore, MedNetSim can also discover new

unknown relatedness among diseases.

MedSim can be a useful supplement to function-based

methods

ROC curves of MedSim and other semantic-based

methods based on HPO and DO, respectively, were also

generated (Fig. 5a). For the methods based on HPO,

Lin’s method (HPO_Lin) had the worst performance

with an AUC of only 54.4 %, and Wang et al.’s method

(HPO_wang, 67.3 %) acquired the best performance

among the three methods. As HPO was replaced by DO

to calculate disease similarity, Resnik’s method (64.7 %)

became the worst method, and Wang et al.’s method still

had the best performance with an AUC of 69.2 %. Over-

all, performances of HPO-based methods are similar to

DO-based methods. However, compared to computing

disease similarity based on ontologies, the proposed

MedSim had a significantly better performance than those

methods. MedSim achieved an AUC of 83.5 %, which is

even slightly better than the function-based method BOG.

Figure 5b shows the average AUC for all semantic-based

methods. The result is consistent with Fig. 5a.

Two reasons may explain why MedSim achieved the

best performance among semantic-based methods. On

the one hand, previous methods suffered from the in-

completeness of ontologies and the lack of coverage of

Table 1 Examples of false negatives and false positives with p-values from MedNetSim

Disease 1 Disease 2 P-value (MedSim) P-value (NetSim) P-value (MedNetSim)

False negatives

polycystic ovary syndrome myocardial infarction 0.663 0.004 0.051

lipid storage disease obesity 0.107 0.148 0.070

malaria epilepsy syndrome 0.675 0.016 0.075

lipid storage disease diabetes mellitus 0.108 0.156 0.075

False positives

impulse control disorder narcissistic personality disorder 0.023 0.001 0.002

penile neoplasm cecum cancer 0.023 0.007 0.004

pancreatic cancer tubular adenocarcinoma 0.003 0.107 0.006

essential hypertension hyperthyroidism 0.210 0.021 0.030
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gene-disease or phenotype-disease association data. For ex-

ample, only one-third of DO diseases have associated genes

(see Additional file 1). HPO is widely used in the rare dis-

ease community [51]. However, the infrastructure of

phenotype data for common and infectious diseases [48] is

still developing. On the other hand, MedSim considered

much richer and more diverse information included in lit-

erature, not only disease-related genes, but also disease

symptoms, pathogenesis, therapeutic drugs, and so on.

MedSim requires only biomedical literature, no re-

quirement to know disease-associated gene sets and on-

tologies. It thus has much broader applicability than

previously published methods, especially in the case of

no sufficient gene-disease association data.

The impact of different data sources

Gene-disease association databases

The effectiveness of different gene-disease association

data was evaluated. DisGeNET was used as a replace-

ment for SIDD. Compared to SIDD, DisGeNET has

much more lower reliability associations based on litera-

ture mining. Its disease-gene associations are nearly two

times of those in SIDD, with only 34 % more disease

terms (Fig. 1). Using DisGeNET as gene-disease associ-

ation data source, the AUC of NetSim (called as Net-

Sim_DGN) grew to 96.9 % (Fig. 6a), which is even better

than MedNetSim (AUC: 96.5 %, Fig. 4a) that fused Med-

Sim and NetSim. Integration of MedSim and

NetSim_DGN (MedNetSim_DGN) produced an AUC of

97.5 % (Fig. 6a). Fig. 6b shows the average AUC of Net-

Sim_DGN (96.7 %) and MedNetSim_DGN (97.5 %),

which is consistent with Fig. 6a too. The above observa-

tions show that a richer gene-disease association data,

even with a lower reliability, is favorable for discovering

relatedness between diseases.

Protein interaction datasets

To gauge the impact of different interaction datasets on

computing performance, HumanNet database was used

as the protein interaction network, substituting hPPIN.

The number of protein nodes in HumanNet and hPPIN

do not differ greatly, but the number of interactions in

HumanNet is more than three times that of hPPIN

(Fig. 2). However, the performance of NetSim while

using HumanNet (named as NetSim_HN) did not im-

prove at all compared to using hPPIN, with both achiev-

ing an AUC of 95.1 % (Fig. 6a). Furthermore, the

common interaction pairs of hPPIN and HumanNet (i.e.,

comPPI) were also applied as the protein interaction

network to evaluate the performance of NetSim (Net-

Sim_comPPI, Fig. 6a). Although comPPI had a much

smaller dataset than hPPIN or HumanNet, NetSim_-

comPPI achieved the same performance as NetSim and

NetSim_HN, with an AUC of 95.1 % too. The average

AUC of NetSim_HN and NetSim_comPPI (Fig. 6b) also

showed the same results.

Fig 5 Performance of semantic-based methods. a ROC curves for the experimental results on the benchmark set and a random set. b Average

AUC for the benchmark set and 50 random sets. HPO_Res, HPO_Lin and HPO_Wang denoted disease similarities computation by using Resnik,

Lin and Wang based on HPO, respectively
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Additionally, the average AUC of NetSim with differ-

ent proportions of hPPIN were also computed. As

shown in Fig. 7, the average AUC increased rapidly at

the beginning, it then leveled off and did not grow as

fast once the sampling rate hit 60 %. The average AUC

plateaued at a sampling rate of 80 %. The above results

indicate that merely using more protein interaction data

does not lead to improved performance of NetSim. It

might partially explain why using HumanNet, which has

more than three times protein interaction data than

hPPIN, did not improve the performance of NetSim.

Percentage of interaction pairs sharing GO annotation

was analyzed for HumanNet, hPPIN and their common

protein interactions (comPPI) (Table 2). For the entire

GO annotation and its three categories (GO_BP: bio-

logical process, GO_CC: cellular component, GO_MF:

molecular function), the percentage of pairs sharing an-

notation in hPPIN was higher than that in HumanNet,

suggesting hPPIN has a higher data quality than

HumanNet. The fact that HumanNet did not achieve

improved performance for NetSim may partially be due

to HumanNet’s lower data quality than that of hPPIN. In

addition, whether the entire GO or its three categories,

comPPI had the highest percentage of protein pairs shar-

ing annotation in the three datasets, indicating that

comPPI has the best data quality. The highest data qual-

ity of comPPI may be responsible for it acquiring same

performance as that of hPPIN or HumanNet. All those

results suggest that the quality of protein interaction

data is more important than its volume for the computa-

tion of disease similarity.

Disease similarity network

As shown in Fig. 8, a disease similarity network (DSN)

was generatedty based on MedNetSim from the top-

ranking 0.5 % of pair-wise similarity values among 3,201

Fig 6 The impact of different data sources. a ROC curves for the experimental results on the benchmark set and a random set. b Average AUC

for the benchmark set and 50 random sets

Fig 7 The average AUC of NetSim with different proportion of

hPPIN sampled
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diseases in DO. 2,885 of the 3,201 diseases showed at

least one connection to another disease, and 25,607

edges were formed between those diseases (Additional

file 5). Each node in the network represented a disease.

Those nodes belonged to 14 top-level DO categories and

were colored according to their corresponding DO cat-

egories, such as “respiratory system disease” (DOID:

1579), “metabolic disease” (DOID: 0014667), “infectious

disease” (DOID: 0050117), and so on. DO classified

diseases both by anatomical site or system, and by gen-

eral pathology. For each of the classifications, despite

these different criteria, diseases within one category were

usually in close proximity to each other (Fig. 8), such as

“disease of cellular proliferation” (DOID: 14566), “dis-

ease of mental health” (DOID: 150), “nervous system

disease” (DOID: 863), and so on.

MedNetSim can also identify related disease groups

belonging to different DO category. One example of

these is myasthenia gravis (DOID: 437) which belongs to

the “nervous system disease” (DOID: 863) category.

Figure 9a showed the sub-network around myasthenia

gravis (MG). It is not surprised that we found MG was

related with “immune system disease” (DOID: 2914). Ac-

tually, MG is associated with various autoimmune dis-

eases, including thyroid diseases [52] and lupus [53].

Thymoma (DOID: 3275) was found as the strongest as-

sociated partner of MG with a MedNetSim similarity up

Table 2 Percentage of interaction pairs sharing GO annotation

GO GO_BP GO_CC GO_MF

HumanNet 75.30 % 28.33 % 56.75 % 52.82 %

hPPIN 89.28 % 38.52 % 71.96 % 73.94 %

comPPIa 95.15 % 59.36 % 82.10 % 81.65 %

GO Gene Ontology, GO_BP biological process, GO_CC cellular component,

GO_MF molecular function
aThe common protein-protein interactions between HumanNet and hPPIN

Fig 8 An overview of disease similarity network (DSN) based on MedNetSim results. The graph was based on a force-directed layout using the

similarity between diseases as attraction force. Nodes were colored according to the top-level DO category to which they belong
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to 0.181 (p-value = 1.21 × 10−4), and vice versa. The rela-

tionship between thymic abnormalities and MG had also

been reported [54]. Additionaly, MedNetSim can also be

used to recognize new relatedness between diseases.

Fibromyalgia (DOID: 631), belonging to the “musculo-

skeletal system disease” (DOID: 17) category, was taken

as an example. As shown in Fig. 9b, fibromyalgia was as-

sociated to several mental health diseases, e.g., pain dis-

order (DOID: 0060164), postpartum depression (DOID:

9478). Studies has shown that fibromyalgia is frequently

associated with depression and chronic pain [55]. There

were a few reports on the relatedness between fibro-

myalgia and personality disorder (DOID: 1510) [56, 57].

However, fibromyalgia’s relationship with antisocial per-

sonality disorder (DOID: 10939) and avoidant personal-

ity disorder (DOID: 1509) are currently not reported.

Interestingly, their associations were found in Fig. 9b. It

was also found that melancholia (DOID: 2848) was re-

lated to fibromyalgia. Those new found relatedness be-

tween diseases might deserve further research to

understand their common pathophysiology and help

drug repositioning research.

Conclusions

Methods based on protein interaction networks, litera-

ture data (MEDLINE), and their integration, were devel-

oped to compute disease similarity (NetSim, MedSim

and MedNetSim). Taking advantage of the entire protein

interaction network, NetSim obtained the best perform-

ance in all function-based methods. Among semantic-

based methods, the performance of MedSim achieved

significantly better results. MedSim does not require

prior knowledge of disease-associated genes, enabling it

to have a wider range of application than the other

methods. MedSim can be a great supplement to

function-based algorithms, especially when there is not

enough gene-disease association data. The further im-

proved AUC of MedNetSim shows that integrating bio-

medical literature and protein interaction data can be an

effective way to improve computation for disease

similarities.

Quality of protein interaction data was found to be

more important than its volume, while higher volume of

gene-disease association data, even with lower reliability,

is more beneficial for disease similarity computation. In

a situation of limited resources, it maybe beneficial to

put more efforts toward obtaining more gene-disease as-

sociation data and improving the quality of protein-

protein interaction network.

MedSim, NetSim and MedNetSim are availalbe at

http://www.digintelli.com:8000/. The user can enter two

diseases of interest; the web service will compute their

similarity and present a corresponding p-value.

Additional files
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