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Fusing Monocular Information in
Multicamera SLAM

1

2

Joan Solà, André Monin, Michel Devy, and Teresa Vidal-Calleja3

Abstract—This paper explores the possibilities of using monocu-4

lar simultaneous localization and mapping (SLAM) algorithms in5

systems with more than one camera. The idea is to combine in a sin-6

gle system the advantages of both monocular vision (bearings-only,7

infinite range observations but no 3-D instantaneous information)8

and stereovision (3-D information up to a limited range). Such a9

system should be able to instantaneously map nearby objects while10

still considering the bearing information provided by the observa-11

tion of remote ones. We do this by considering each camera as an12

independent sensor rather than the entire set as a monolithic su-13

persensor. The visual data are treated by monocular methods and14

fused by the SLAM filter. Several advantages naturally arise as15

interesting possibilities, such as the desynchronization of the firing16

of the sensors, the use of several unequal cameras, self-calibration,17

and cooperative SLAM with several independently moving cam-18

eras. We validate the approach with two different applications: a19

stereovision SLAM system with automatic self-calibration of the20

rig’s main extrinsic parameters and a cooperative SLAM system21

with two independent free-moving cameras in an outdoor setting.22

Index Terms—Calibration, image sequence analysis, Kalman fil-23

tering, machine vision, robot vision systems, stereovision.24

I. INTRODUCTION25

T
HE SIMULTANEOUS localization and mapping (SLAM)26

problem, as formulated by the robotics community, is that27

of creating a map of the perceived environment while localiz-28

ing oneself in it. The two tasks are coupled in such a way so29

as to benefit each other; a good localization is crucial to create30

good maps, and a good map is necessary for localization. For31

this reason, the two tasks must be performed simultaneously,32

and hence, the full acronym SLAM. In recent years, the ma-33

turity of both online SLAM algorithms, together with fast and34

reliable image processing tools from the computer vision liter-35

ature, has crystallized into a considerable quantity of real-time36

demonstrations of visual SLAM.37

In this paper, we insist on the quality of the achieved localiza-38

tion, which will impact in turn the map quality. The key to good39

localization is to ensure the correct processing of the geometrical40

information gathered by the cameras. In this long introduction,41

we present an overview of visual SLAM and related techniques42

to show that visual SLAM systems have historically discarded43
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precious sensory information. We present a novel approach that 44

uses the SLAM filter as a classical fusion engine that incor- 45

porates the full monocular information coming from multiple 46

cameras. 47

A. Monocular SLAM 48

Possibly, the best example of the aforementioned technolog- 49

ical crystallization is monocular SLAM, a particular case of 50

bearings-only (BO) SLAM (where the sensor does not provide 51

any range or depth). It is well known that the reduction in system 52

observability due to BO measurements has two main drawbacks: 53

the loss of the scale factor and the delay in obtaining good 3-D 54

estimates. Previous works either added some metric measure- 55

ment to observe the scale factor, such as odometry [1] or the 56

size of known perceived objects [2], [3], or have considered it 57

irrelevant [4]. The delay in getting good 3-D estimates comes 58

from the fact that such estimates require several BO observations 59

from different viewpoints. This makes landmark initialization 60

in BO-SLAM difficult, to the point that satisfactory methods 61

able to exploit all the geometrical information provided by the 62

cameras have only recently become available. We have wit- 63

nessed an evolution of the algorithms as follows. First, delayed 64

landmark initialization methods attempted to obtain a full 3-D 65

estimate before initialization via several observations from dif- 66

ferent viewpoints. Davison [3] showed real-time feasibility of 67

monocular SLAM with affordable hardware, using the original 68

extended Kalman filter (EKF) SLAM algorithm for all but the 69

unmeasured landmark’s depth, and a separate particle filter to 70

estimate this depth. Initialization was deferred to the moment 71

when the depth estimate was good enough. The consequence 72

of a delayed scheme is that we can only initialize landmarks 73

with enough parallax, i.e., those that are close to the camera 74

and situated perpendicularly to its trajectory, and therefore, the 75

need to operate in room-size scenarios with lateral motions. 76

Second, Solà et al. [1] showed that undelayed landmark initial- 77

ization (mapping the landmarks from their first, partial observa- 78

tion) was needed when considering low parallax landmarks, i.e., 79

those that are remote and/or situated close to the motion axis. 80

This permits mapping larger scenes while performing frontal 81

trajectories. Third, Civera et al. [5] have recently achieved the 82

mapping of landmarks up to infinity, due to an undelayed ini- 83

tialization via an inverse depth parameterization (IDP). IDP 84

has also been developed by Eade et al. [6] in a FastSLAM2.0 85

context. Today, the monocular SLAM systems exploit the geo- 86

metrical information in its entirety: from the first observation, 87

independently of the sensor’s trajectory, and up to the infinity 88

range. 89
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B. Structure From Motion (SFM)90

Monocular SLAM compares to a similar problem solved91

by the vision community: the structure from motion problem92

(SFM). In SFM, the goal is to determine, from a collection of93

images and up to an unrecoverable scale factor, the 3-D structure94

of the perceived scene and all 6-D camera poses from where the95

images were captured. When compared to SLAM, the structure96

plays the role of the map, while the set of camera poses defines97

all the successive observer’s localizations.98

Roboticists often claim that the main difference between99

SFM and SLAM is that the former is solved offline via100

the iterative nonlinear optimization method known as bun-101

dle adjustment (BA) [7], while the latter must be incremen-102

tally solved online, thus making use of stochastic estimators103

or filters that naturally provide incremental operation. This104

has been true for some years (today, SLAM is also solved105

online with iterative optimization [8]), but does not tell the106

whole story. The differences between SFM and SLAM are107

not only in the methods but also in the objectives, meaning108

that similar aspects of similar problems are given different109

priorities.110

In particular, SFM exploits the visual information in its en-111

tirety without the difficulties encountered in monocular SLAM.112

Let us try to understand this curious fact. SFM puts the struc-113

ture as a final objective, i.e., as a result of the whole process,114

and the emphasis is placed on minimizing the errors in the115

measurement space, thus using all the measured information.116

On the other hand, the SLAM map has a central role, with117

some of the operations (and particularly landmark initializa-118

tion) being performed in map space, which is the system’s state119

space. The fact that this state space is not statically observable,120

because it is of higher dimension than the observation space,121

leads to the difficulties exposed before. As an informal attempt122

to fill this gap, we could say that modern undelayed methods123

for monocular SLAM, with partial landmark initialization and124

partial updates, are almost equivalent to an operation in the125

measurement space: the information is initialized in the map126

space partially, i.e., exactly as it comes from the measurement127

space. A similar point of view over this concept can be found128

in [9].129

C. Stereovision SLAM130

Stereovision SLAM has also received considerable attention.131

The ability of a stereo assembly to directly and immediately pro-132

vide 3-D landmark estimates allows us to use the best available133

SLAM algorithms and rapidly obtain good results with little134

effort in the conceptual parts. Such SLAM systems consider135

the stereo assembly as being a single monolithic sensor, capa-136

ble of gathering 3-D geometrical information from the robot’s137

surroundings, e.g. [10]. This fact, which appears perfectly rea-138

sonable, is the main paradigm that this paper questions. By139

considering two linked cameras as a single 3-D sensor, SLAM140

is unable to face the following two issues.141

1) Limited 3-D Estimability Range: While cameras are ca-142

pable of sensing visible objects that are potentially at infinity,143

a stereo rig provides only reasonably good 3-D estimates up144

to a limited range, typically from 3 m to a few tens of meters 145

depending on the baseline. Because classical, nonmonocular 146

SLAM algorithms expect full 3-D estimates for landmark ini- 147

tialization (i.e., they are reasoned in the map space), information 148

belonging to only this limited region can be used for SLAM. 149

This is really a pity; it is like if, having our two eyes, we were 150

obliged to neglect everything outside a certain range from us, 151

what we could call “walking inside dense fog.” Without remote 152

landmarks, it is easy to lose spacial references, to become disori- 153

ented, and finally, find ourselves lost. Therefore, stereovision, 154

as it is classically conceived, is a bad starting point for visual 155

SLAM. 156

2) Mechanical Fragility: If we aim at extending the 3-D 157

estimability range beyond these few tens of meters, we need 158

to increase the stereo baseline while keeping or improving the 159

overall sensor precision. This is obviously a contradiction: larger 160

assemblies are less precise when using the same mechanical 161

solutions. In order to maintain accuracy with a larger assembly, 162

we must use more complex structures that will be either heavier 163

or more expensive, if not both. The result for moderately large 164

baselines (>1 m) is a sensor that is very easily decalibrated, 165

and therefore, almost useless. Large rigs, however, are very 166

interesting in outdoor applications because they allow farther 167

objects to be positioned, thus making them contribute to the 168

observability of the overall scale factor. This is especially true 169

in aerial and underwater settings where, without nearby objects 170

to observe, a small stereo rig provides no significant gain with 171

respect to a single camera. Self-calibration can compensate for 172

the inherent lack of stability of large camera rigs. It also allows 173

multicamera platforms to start operation without undergoing a 174

previous calibration phase, making on-field system deployment 175

and maintenance easier. 176

To our knowledge, the only SLAM work that goes beyond the 177

current stereoparadigm (apart from our conference paper [11]) 178

is the one by Paz et al. [12], which uses a small-baseline, fully 179

calibrated stereo rig. Matched features presenting significant 180

disparity are initialized as classical Euclidean landmarks, while 181

those presenting low disparities are treated with the inverse 182

depth algorithm. 183

D. Visual Odometry (VO) 184

One could say that, in terms of methodology, visual odom- 185

etry (VO) is to stereovision SLAM what SFM is to monocular 186

SLAM. VO is conceived to obtain the robot’s ego motion from 187

a sequence of stereo images [13]. Visual features are matched 188

across two or more pairs of stereo images taken during the robot 189

motion. An iterative minimization algorithm, usually based on 190

BA, is run to recover the stereo rig motion, which is then trans- 191

formed into robot motion. For this, the algorithm needs to re- 192

cover the structure of the 3-D points that correspond to the 193

matched features. This structure is not exploited for other tasks 194

and can be usually discarded. Remarkably, when the structure 195

is coded in the measurement space (u, v, d), a disparity d → 0 196

allows points at infinity to be properly handled [14]. This is also 197

accomplished by using homogeneous coordinates [7]. VO must 198

work in real time because robot localization is needed online. 199
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Advanced VO solutions achieve very low drift levels after long200

distances by making use of: 1) hardware-based image process-201

ing with real-time construction and querying of large feature202

databases [15]; 2) dense image information matching via planar203

homographies and the use of the quadrifocal tensor [16]; or 3)204

bundle adjusting the set of N recent key frames together with205

additional fusion with an inertial measurement unit (IMU) [14].206

E. Sensor Fusion in SLAM207

The fact of SLAM being solved by filters allows us to envision208

SLAM systems as sensor fusion engines. Let us highlight some209

of the assets of filtering in sensor fusion.210

1) Multisensor operation: Any number of differing sensors211

can be operated together in a consistent framework.212

2) Sensors self-calibration: Unknown biases, gains, and213

other sensor’s parameters can be estimated provided that214

they are observable [17].215

3) Desynchronized operation: The data rates of all these sen-216

sors do not need to be synchronized.217

4) Decentralized operation: Advanced filter formulations218

such as those using channel filters [18] achieve a decen-219

tralized operation that should permit live connection and220

disconnection of sensors without the need for filter repro-221

gramming or reparameterization.222

This paper explores the first three points for the case of mul-223

tiple cameras.224

SLAM systems naturally fuse information from both propri-225

oceptive (odometry, GPS, and IMU) and exteroceptive (range226

scanners, sonar, and vision) sensors into the map. But our in-227

terest here is in fusing several exteroceptive sensors. We can228

distinguish two cases.229

1) Sensors of different kind: When using differing sensors230

(e.g., laser plus vision), the main problem is in finding a231

map representation well adapted to the different kinds of232

sensory data (i.e., the data association problem).233

2) Sensors of the same kind: The perceived information is of234

the same nature. This makes appearance-based matching235

possible, and therefore, makes map building easier. Nev-236

ertheless, most of such SLAM systems do not take advan-237

tage of fusion. Instead, the extrinsic parameters linking238

the sensors are calibrated offline, and the set of sensors239

is treated as a single supersensor. This is the case for240

two 180◦ range scanners simulating a 360◦ one, and for241

the previously mentioned stereo rig simulating a 3-D sen-242

sor. A sensor-fusion approach in these cases should nat-243

urally bring the aforementioned advantages to the SLAM244

system.245

F. Multicamera SLAM and the Aim of This Paper246

The key idea of this paper is very simple: by employing247

the SLAM filter as a fusion engine, we will be able to use248

any number of cameras in any configuration. And, by treat-249

ing them as BO sensors with the modern undelayed initializa-250

tion methods, we will extract the entire geometrical information251

provided by the images. The filter—not the sensor—will be re-252

sponsible for making the 3-D properties of the perceived world 253

arise. 254

Applications may vary from the simplest stereo system, 255

through robots with several differing cameras (e.g., a panoramic 256

one for localization and a perspective one looking forward 257

for reactive navigation), to multirobot cooperative SLAM 258

where BO observations from different robots are used to 259

determine the 3-D locations of very distant landmarks. Al- 260

though there certainly exist issues concerning multicamera 261

management, the main ideas we want to convey may be 262

demonstrated with systems of just two cameras. In this pa- 263

per, we will illustrate two cases: first, the case of a robot 264

equipped with a stereo rig, with its cameras being treated 265

as two individual monocular sensors and second, two cam- 266

eras moving independently and mapping together an outdoors 267

scene. 268

This paper draws on previous work published in the confer- 269

ence paper [11] and the author’s Ph.D. thesis [19]. These two 270

works use the federated information sharing algorithm (FIS) 271

in [1] to initialize the landmarks, which has been surpassed by 272

the inverse depth methods (IDP) [5]. The present paper takes 273

and extends all this research by developing a better founded jus- 274

tification (providing a wider scope to the proposed concepts), by 275

improving on the implementation with the incorporation of IDP 276

in the algorithms, and by extending the experimental validation 277

to a cooperative monocular SLAM setup. 278

This paper is organized as follows. Section II presents the 279

main ideas that will be exploited later and revises some back- 280

ground material for monocular SLAM. Section III explains how 281

to set up multicamera SLAM, an application for stereo benches 282

with self-calibration, and an application for two collaborative 283

cameras. Section IV presents the perception and map manage- 284

ment techniques used. Sections V and VI show the experimen- 285

tal results, and finally, Section VII gives conclusions and future 286

directions. 287

II. 3-D ESTIMABILITY IN VISUAL SLAM 288

In this section, we present the ideas that support our approach 289

to visual SLAM. We make use of the concept of estimability, 290

which will help understand the abilities of vision for observing 291

3-D structure in the presence of uncertainty. We clarify the key 292

properties of undelayed initialization in monocular SLAM, and 293

remark its importance in multicamera SLAM. We also remind 294

the key aspects of IDP-SLAM. 295

A. Geometrical Approach to 3-D Estimability 296

We are interested in finding the shape and dimensions of the 297

3-D-estimable region defined by two monocular views. 298

For this, we start with a couple of ideas to help understand- 299

ing the concept of estimability used. When a new feature is 300

detected in an image, the backprojection of its noisy-measured 301

position defines a conic-shaped pdf for the landmark position, 302

called ray, which extends to infinity (see Fig. 1). Let us con- 303

sider two features extracted and matched from a pair of images, 304

corresponding to the same landmark: their backprojections are 305

two conic rays A and B that extend to infinity. The angular 306
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Fig. 1. Conic ray backprojects the elliptic representation of the Gaussian 2-D
measure. It extends to infinity.

Fig. 2. Different regions of intersection for (solid) 4σ, (dashed) 3σ, and
(dotted) 2σ ray widths when the outer 4σ bounds are, parallel. (Shaded) The
parallax or angle between rays axes A and B is ψ = 4 σA + 4 σB .

widths of these rays can be defined as a multiple of the stan-307

dard deviations σA and σB of the angular errors (a composi-308

tion of the cameras extrinsic and intrinsic parameters errors,309

and of the image processing algorithms accuracy). Informally310

speaking, we may say that the landmark’s depth is fully esti-311

mated if the region of intersection of these rays is both closed312

and sufficiently small. If we consider, for example, the case313

where the two external 4σ bounds of the rays are parallel314

(see Fig. 2), then we can assure that the 3σ intersection re-315

gion (which covers 98% probability) is closed and that the 2σ316

one (covering 74%) is closed and small. The ratio between the317

depth’s standard deviation and its mean (a measure of linearity318

in monocular EKF-SLAM [1], [3]) is then better than 0.25. The319

parallax angle ψ between the two rays axes is therefore ψ =320

4(σA + σB ) = constant. This is the minimum parallax for full321

estimability.322

In 2-D, we can plot the locus of constant estimability.323

In the case, where σA and σB can be considered con-324

stant, ψ is constant too, and from the inscribed angle theo-325

rem, the locus is then circular (Fig. 3, see also [19]). Land-326

marks inside this circle are considered fully estimable—and327

partially outside. In 3-D, the fully 3-D estimable region is328

obtained by revolution of this circle around the axis join-329

ing both cameras, producing a torus-shaped region with a330

degenerated central hole. This shape admits the following331

interpretations.332

1) In a stereo configuration or for a lateral motion of a333

moving camera (see Fig. 3, left), the estimable region334

is located in front of the sensor. Beyond the region’s335

border stereo provides no profit: if we want to consider336

distant landmarks, we have to use undelayed monocular337

techniques.338

2) Depth recovery is impossible in the motion axis of a sin-339

gle camera moving forward (Fig. 3, right). Close to this340

axis, estimability is possible only if the region’s radius341

becomes very large. This implies the necessity of very342

large displacements of the camera during the initializa-343

Fig. 3. Simplified depth estimability regions in a (left) stereo rig and (right)
a camera traveling forward. The angle ψ is the one that assures estima-
bility via triangulation from different viewpoints. The maximum range is
2R = b/sin(ψ/2).

Fig. 4. Simplified depth estimability for a stereo rig moving forward. On both
sides, estimability depends on the baseline gained by motion. In front, by stereo.
Out of these bounds and up to infinity, landmarks are mapped partially. SLAM
keeps incorporating the visual information due to the undelayed monocular
methods, i.e., IDP in our case.

tion process. Again, this can be accomplished only with 344

undelayed initializations. 345

3) By combining both monocular and stereovision, we get 346

an instant estimability of close frontal objects while still 347

utilizing the information of distant ones (see Fig. 4). Land- 348

marks lying outside the estimability regions are not 3-D- 349

estimable but, when initialized using undelayed monocu- 350

lar methods, they will contribute to constrain the camera 351

orientation. Ideally, long-term observations of stable dis- 352

tant landmarks would completely cancel orientation drift 353

(visual compass). 354

B. Monocular IDP-SLAM 355

The core algorithm of this paper is an EKF-SLAM with an 356

IDP of landmarks during the initialization phase, as described 357

in [5]. In IDP-SLAM, partially observed landmarks are coded 358

as a 6-D-vector, 359

i = [x0 , θ, ψ, ρ] (1)

where x0 is the 3-D position of the camera at initialization time, 360

(θ, ψ) are the elevation and azimuth angles in global frame 361

defining the direction of the landmark’s ray, and ρ is the inverse 362

of the Euclidean distance from x0 to the landmark’s position 363

(notice that ρ is usually known as inverse depth but it is rather 364

an inverse distance). After the first observation, all parameters 365

of i except ρ are immediately observable, and their values and 366

covariances are obtained by proper inversion and linearization 367

of the observation functions. The inverse depth ρ is initialized 368
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with a Gaussian N (ρ − ρ̄;σ2
ρ ) such that in the depth dimension369

s = 1/ρ, we have370

s(−nσ ) =
1

ρ̄ − nσρ
= ∞ (2)

s(+nσ ) =
1

ρ̄ + nσρ
= smin (3)

with smin the minimum considered depth and n the inverse depth371

shape factor. This gives ρ̄ = 1/(2smin) and, more remarkably372

nσρ = ρ̄. (4)

Importantly, values of 1 ≤ n ≤ 2 assure from (2) that the infinity373

range is included in the parametrization with ample probability.374

On subsequent updates, IDP achieves correct EKF operation375

(i.e., quasi-linear behavior) along the whole ray as long as the376

parallax shown by the new viewpoint is not too large. The lin-377

earity test in [20] is regularly evaluated. If passed, the landmark378

can be safely transformed into a 3-D Euclidean parametrization.379

III. MULTICAMERA SLAM380

The general scheme for the multicamera SLAM system is381

presented in this section. This scheme is particularized to deal382

with two different problems. The first one is the automatic self-383

calibration of a stereo rig while performing SLAM. The second384

one is a master–lave solution to cooperative monocular SLAM.385

Both setups are explained here, and their corresponding experi-386

ments are presented in Sections V and VI.387

A. System Overview388

We implement the multicamera SLAM system as follows. A389

central EKF-SLAM will hold the stochastic representation of390

the set of all cameras Ci plus the set of landmarks Lj391

X⊤ = [C⊤
1 · · · C⊤

N L⊤
1 · · · L⊤

M ] (5)

where the cameras states contain position and orientation quater-392

nion [Ci = (ri ,qi) ∈ R
7 ], and landmarks can be coded either393

in inverse depth (Lj = ij ∈ R
6) or in Euclidean coordinates394

(Lj = pj ∈ R
3). Any number of cameras can be considered395

this way. As each camera needs to remain localized properly,396

it needs to observe a minimum number of landmarks at each397

frame. The algorithm’s complexity increases linearly with the398

number of cameras if this number is small with respect to the399

map.400

For camera motions, we consider two possible models. In401

the first one, a simple odometer provides motion predictions402

[∆x,∆y,∆ψ] in the robot’s local 2-D plane. Gaussian uncer-403

tainties are added to the 6-DOF linear and angular components404

[x, y, z, φ, θ, ψ] with a variance proportional to the measured405

forward motion ∆x406

{σ2
x , σ2

y , σ2
z } = k2

L · ∆x (6)

{σ2
φ , σ2

θ , σ2
ψ} = k2

A · ∆x. (7)

The variance in [φ, θ, ψ] is mapped to the quaternion space using407

the corresponding Jacobians.408

The second model is a 6-DOF constant velocity model 409

r+ = r + v ∆t

q+ = q × v2q(ω ∆t)

v+ = v + ηv

ω+ = ω + ηω

where ( )+ means the updated value, × is the quaternions prod- 410

uct, and v2q(ω ∆t) transforms the local incremental rotation 411

vector ω ∆t into a quaternion (quaternions are systematically 412

normalized). This way, the camera state vector Ci is augmented 413

to Ci = (ri ,qi ,vi , ωi) ∈ R
13 . At each time step, perturbations 414

{ηv , ηω} ∼ N (0; {σ2
v , σ2

ω}) add variances to the linear and an- 415

gular velocities proportionally to the elapsed time ∆t 416

σ2
v = k2

v · ∆t (8)

σ2
w = k2

ω · ∆t. (9)

The events of camera motion, landmark initialization, and 417

landmark observation are handled as in regular IDP-SLAM by 418

just selecting the appropriate block elements from the SLAM 419

state vector and covariances matrix, and applying the corre- 420

sponding motion or observation models. For example, at the 421

observation of landmark j from camera i, we would use the 422

function ui
j = h(Ci ,Lj ), which will be explained later for the 423

case of an IDP ray [see 11]. Before transforming IDP rays into 424

points, the linearity test in [20] needs to hold for all cameras. 425

B. Stereo SLAM With Extrinsic Self-Calibration 426

Our approach is relevant to fully calibrated stereo rigs if they 427

are small (10–20 cm, as in [12]) or if, having long baselines, their 428

main extrinsic parameters can be continuously self-calibrated. 429

Not all of the six extrinsic parameters of a stereo rig (three for 430

translation, three for orientation) need to be calibrated. In fact, 431

the notion of self-calibration inherently requires the system to 432

possess its own gauge. In our case, the metric dimensions or 433

scale factor of the whole world–robot system can only be ob- 434

tained either from the stereo rig baseline, which is one of the 435

extrinsic parameters (then, it makes no sense to self-calibrate 436

the gauge), or from odometry, which is often much less accurate 437

than any coarse measurement we could make of this baseline. 438

Additionally, as cameras are actually angular sensors, vision 439

measurements are much more sensitive to the cameras orienta- 440

tions than to any translation parameter. This means that vision 441

measurements will contain little information about these trans- 442

lation parameters. In consequence, self-calibration may concern 443

only orientation, and more precisely, the orientation of one cam- 444

era with respect to the other. The error of the reconstructed map’s 445

scale factor will be the same as the relative error of the baseline 446

measurement. 447

With these assumptions, our self-calibration solution is 448

straightforward: for the second camera, we just include its ori- 449

entation in the map and let EKF make the rest. The state vector 450

(5) is modified and written as 451

X⊤ = [R⊤ q⊤
R L⊤

1 · · · L⊤
M ]
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where R and L1 · · · LM are the robot pose and landmarks map.452

The left camera pose CL has a fixed transformation with respect453

to the robot, and qR is the orientation part of the right-hand454

camera CR in the robot frame. The time-evolution function of455

the angular extrinsic parameters is simply q+
R = qR + γ, where456

γ is a white, Gaussian, low-energy process noise that accounts457

for eventual decalibrations, e.g., due to vibrations. For short-458

duration experiments, we set γ = 0. A coarse analysis of the459

stereo structure’s mechanical precision will be enough to set the460

initial uncertainty to a value of the order of 1◦ or 2◦ per axis.461

This can be reduced to a few tenths of degree in cases where we462

dispose of previous calibrated values about which we are not463

confident anymore.464

C. Cooperative Multicamera SLAM465

The ideal, most general case of cooperative SLAM (5), corre-466

sponds to a (not too large) number of cameras moving indepen-467

dently. Each camera is able to manage its own measurements468

and communicates directly with the map. The aim of this com-469

munication is to obtain information about existing landmarks470

to get localized, and provide information about new or reob-471

served landmarks. This way, the algorithms to be executed by472

each camera are absolutely symmetrical, without any kind of473

hierarchy. A simplified implementation considers cameras with474

different privileges.475

In our particular case, the cooperative SLAM system consid-476

ers two cameras. One of them takes the role of master, and477

is responsible for all landmarks detection and initialization.478

The second one acts as the slave. It follows the master at a479

close distance and reobserves the SLAM map that is being480

built by the master. By doing so, it provides a second view-481

point to landmarks just initialized, accelerating the convergence482

of the map. The master and slave trajectories are highly in-483

dependent, and for instance, they can cross paths. The only484

requirement is to look in the same direction. A trivial exten-485

sion to more than two cameras consists in including additional486

slaves.487

IV. PERCEPTION AND MAP MANAGEMENT488

Active search (AS, nicely described in [21] and also referred489

to as top-down in [6]) is a powerful framework for real-time490

image processing within SLAM. It has been successfully used in491

several monocular SLAM works [3], [5], [11], using a diversity492

of techniques for landmark initialization. The idea of AS is to493

exploit the information contained in the map to predict a number494

of characteristics of the landmarks to observe. AS is helpful in495

solving the following issues:496

1) selecting interesting image regions for initialization;497

2) selecting the most informative landmarks to measure;498

3) predicting where in the image they may be found, and with499

which probability;500

4) predicting the current landmark’s appearance to maximize501

the chances of a successful match.502

A. Feature Detection and Initialization 503

Based on the projection of the map information into the master 504

image, a heuristic strategy is used to select a region of interest 505

for a new initialization: we divide the image with a grid and 506

randomly select a grid element with no landmarks inside. We 507

extract the strongest Harris point [22] in this region and validate 508

it if its strength is above a predefined threshold. We store a small 509

rectangular region or patch of 15× 15 pixels around the point 510

as the landmark’s appearance descriptor, together with the pose 511

of the camera. Finally, we initialize the IDP ray in the SLAM 512

map. 513

B. Expectations: The Active Search Regions 514

Some considerations about AS can be made for its usage in 515

multicamera IDP–SLAM to improve performance. We use for 516

this the E1 and E∞ ellipses, defined and explained as follows. 517

1) E1 Ellipse: Expectation of the Inverse Depth Ray: The 518

inverse depth ray (1) is easily projected into a camera. We take 519

the transformation to camera frame given in [5]: 520

hC
1 = R(q)⊤ (ρ (x0 − r) + m(θ, ψ)) (10)

where R( ) is the rotation matrix corresponding to the camera 521

orientation q and r is the current camera position. This value 522

is then projected into the camera, described by intrinsic and 523

distortion parametersk andd (we use a classical radial distortion 524

model of up to three parameters, which is inverted as explained 525

in [19]). Let us call K = (k,d) the camera parameters, C = 526

(r,q) the camera pose, and i = (x0 , θ, ψ, ρ) the IDP ray. The 527

observation function is 528

u = h1(C,K, i) + η = project(hC
1 ,K) + η (11)

where project () takes into account the camera model (we use 529

perspective cameras) and η is the pixel Gaussian noise, with 530

covariance R. 531

We define the E1 ellipse as the Gaussian expectation 532

E1(u)
∆
= N (u − ē1 ;E1), with u being the pixel position, and 533

with mean and covariances matrix 534

ē1 = h1(C̄,K, ī) (12)

E1 = [HC Hi]PC,i [HC Hi]
⊤ + R. (13)

Here, HC and Hi are the Jacobians of h1 with respect to the 535

uncertain parameters C and i, •̄ are variable estimates from 536

the SLAM map, and PC,i is the joint covariances matrix (all 537

correlations and cross correlations) of C and i, also from the 538

map. In AS, E1 is usually gated at 3σ, giving place to an elliptic 539

region in the image where the landmark must project with 98% 540

probability. However, this is not necessarily true in cases of 541

noticeable parallax, as we examine now. 542

At landmark initialization, its inverse depth ρ is initialized 543

according to (2)–(4). When considering 3σ uncertainty regions, 544

(4) implies that ρ can go negative with a nonnegligible probabil- 545

ity, meaning that the coded landmarks might be situated behind 546

the camera. This becomes evident when projecting the IDP ray 547

into a second camera presenting some parallax: the projected 548

3σ E1 ellipse contains a region with negative disparity (see 549
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Fig. 5. 3σ search region defined by the E1 ellipse contains a significant part
that corresponds to negative disparities d < 0, where the feature should not be
searched. The final 3σ search region (gray) is defined by the E1 and E∞ ellipses.
The rightmost 3σ border of E∞ is where the probability to find the projection
of the infinity point has fallen below 2%.

Q1

Fig. 5). It is desirable to limit the search area to values of only550

positive disparity for two reasons: the correlation-based search551

(one of the most time-consuming processes) is faster and the552

possibility of including false matches as outliers is diminished.553

With nonrectified images and/or camera sets with uncertain ex-554

trinsic parameters, determining the null disparity bound is not555

straightforward. One solution is to use the E∞ ellipse, which we556

introduce in the following paragraph.557

2) E∞ Ellipse: Expectation of the Infinity Point: The infinity558

point is easily projected by considering the transformation (10)559

with ρ → 0560

hC
∞ ≈ R(q)⊤m(θ, ψ) (14)

where only the camera orientation q and the ray’s direction561

angles (θ, ψ) are present (the visual compass). Proceeding as562

before, we obtain the definition of the ellipse E∞(u)
∆
= N (u −563

ē∞;E∞) as564

ē∞ = h(q̄,K, θ̄, ψ̄) (15)

E∞ = [Hq Hθ Hψ ]P{q,θ ,ψ} [Hq Hθ Hψ ]⊤ + R (16)

where P{q,θ ,ψ} is the joint covariances matrix of the uncertain565

parameters. The E∞ 3σ region is composed of the previous E1566

region, as indicated in Fig. 5, to define the search area.567

C. Selection of the Best Map Updates568

Following the AS approach in [23], a predefined number of569

landmarks with the biggest E1 ellipse surfaces are selected in570

each camera as those being the most interesting to be measured.571

For each camera, we organize all candidates (visible landmarks)572

in descending order of expectation surfaces, without caring if573

they are points or rays. We update at each frame a predefined574

number of them (usually around 10, and no more than 20).575

Updates are processed sequentially, with all Jacobians being576

recalculated each time to minimize the effect of linearization577

errors.578

D. Feature Matching: Affine Patch Warping579

AS continues by warping the stored patch and searching for580

a correlation peak inside the search area earlier. The objec-581

tive of warping is to predict the landmark’s current appearance,582

maximizing the chances for a good match. In the absence of dis-583

tortion, a planar homography H ∈ R
3×3 , defined in the homo-584

geneous spaces, would be desirable [24]. This type of warping585

requires the online estimation of the patch normal in the 3-D586

Fig. 6. Similarity and affine warping on a sample patch. From left to right:
original patch; similarity warped patch (∼180% scale, 10◦ rotation); best match
in a later image affected by distortion and its zero mean normalized cross
correlation (ZNCC) score (0.82); affine warped patch; best match and score
(0.97). The affine warping contains a significant skew component mainly due
to image distortion. The improvement in the ZNCC score is very important.

space, and may become very time-consuming. A good simplifi- 587

cation considers this normal fixed at the initial visual axis [23]. 588

Further simplification applies just a similarity transformation 589

T = sR ∈ R
2×2 in the image Euclidean plane [19]. This ac- 590

counts only for scale changes s and rotations R obtained from 591

the stored information (landmark position, camera initial, and 592

current poses). However, in the presence of distortion, features 593

lying close to the image borders suffer from additional defor- 594

mations. We developed a warping approach that easily adds a 595

skew component to the operator T (thus achieving fully affine 596

warping, but not perspective warping; Fig. 6), based on the Ja- 597

cobian of the function linking the first observation to the current 598

one. Let us consider the backward observation model g( ) for a 599

camera A at initialization time t = 0, and the observation model 600

h( ) for a different camera B at current time t ≥ 0 601

p = g(CA (0),KA ,uA (0), sA )

uB (t) = h(CB (t),KB ,p).

602

Here, p is the landmark’s position, Ki = (ki ,di) are the intrin- 603

sic and distortion parameters of camera i, ui(t) is the measured 604

pixel, and sA is the landmark’s depth with respect to the initial 605

camera. We can compose these functions to obtain the expres- 606

sion linking the initial and the current pixels 607

uB (t) = h [CB (t),KB ,g(CA (0),KA ,uA (0), sA )] . (17)

When all but the pixel positions are fixed, this represents an 608

invertible mapping R
2 
→ R

2 from the pixels in the first image 609

to the pixels in the current one. The local linearization around 610

the initially measured pixel defines an affine warping expressed 611

by the Jacobian matrix 612

T =
∂uB

∂uA

∣

∣

∣

∣

(CA (0),CB (t),KA ,KB ,uA (0),sA )

. (18)

By defining ũi as the coordinates of the patch in camera i, with 613

the central pixel ui as the origin, we have ũB (t) = TũA (0). 614

Based on this mapping, we use linear interpolation of the pixels’ 615

luminosity to construct the warped patch. 616

V. EXPERIMENT 1: STEREO SLAM WITH SELF-CALIBRATION 617

The “White-board” indoor experiment aims at demonstrating 618

stereovision SLAM with self-calibration. A robot with a stereo 619

head looking forward is run for about 10 m in straight line inside 620

the robotics laboratory at the LAAS (see Fig. 7). Over 500 image 621

pairs are taken at approximately 5-Hz frequency. The robot 622
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Fig. 7. Laboratoire d’Analyse et d’Architecture des System (LAAS) robotics
laboratory. The robot will approach the scene in a straightforward trajectory.
We notice in the scene the presence of a robot ©1, a bin ©2, a box ©3, a trunk ©4,
a fence ©5, a table ©6 (hidden by the robot in this image), and the white board ©7
at the end wall.

TABLE I
STEREO RIG PARAMETERS IN THE “WHITE-BOARD” EXPERIMENT

moves towards the objects to be mapped at 0.15 m/s. The stereo623

rig consists of two intrinsically calibrated cameras arranged624

as indicated in Table I. The orientations of both cameras are625

specified with respect to the robot frame. The left camera is taken626

as reference, thus deterministically specified, and the orientation627

of the right one is initialized with an uncertainty of 1◦ standard628

deviation. We use the odometry model (Section III-A) with629

kL = 0.1 m/
√

m and kA = 0.05 rad/
√

m.630

We show details and results on the self-calibration procedure631

and the metric accuracy of the resulting map. The mapping632

process can be appreciated in the movie whiteboard.mov in633

the multimedia section.634

A. Self-Calibration635

We plot in Fig. 8 left the evolution of the three self-calibrated636

angles. We have also used the shape of the E∞ ellipses to pro-637

vide additional qualitative evidence of the calibration process638

(Fig. 9 and movie whiteboard− einf.mov). We observe the639

following behavior.640

1) Pitch θ: The pitch angle (cameras tilt, 5◦ nominal value) is641

observable from the first matched landmark. It rapidly converges642

to an angle of 4.77◦ and remains very stable during the whole643

experiment.644

2) Roll φ: Roll angle is observable after at least two land-645

marks are observed from the right camera. Once this condition646

holds, convergence occurs relatively fast.647

3) Yaw ψ: Yaw angle is very weakly observable because648

it is coupled with the landmarks depths: both yaw angle and649

landmark depth variations produce a similar uncertainty growth650

in the right image. For this reason, yaw converges slowly, only651

showing reasonable convergence after some 50 frames.652

Fig. 8. Extrinsic self-calibration. (Left) The three Euler angles of the right
camera orientation with respect to the robot during the first 60 frames. The 3σ
bounds are plotted in dotted line showing consistent estimation. (Right) Error
analysis after 100 MC runs using 200 frames per run (only the first 80 frames
are shown). The thick solid lines represent the means over the 100 runs. The
3σ bounds for each angle are plotted using thin solid lines. The dotted lines
represent the averaged 3σ bounds estimated by the EKF, showing consistent
calibration.

Fig. 9. Evolution of the E1 and E∞ ellipses during calibration. On the left
column, newly detected pixels in the left image. On the right, expectations in
the right image (green) E1 and (yellow) E∞ of the newly initialized IDP rays
(i.e., still with the full initial uncertainty in ρ). At frame 0, initial uncertainties
of 1◦ result in a big, round E∞ ellipse. After the first updated landmark from
the left camera (frame 2), the uncertainty in pitch decreases and E∞ becomes
flat. Successive updates further refine the calibrated angles. The yaw angle takes
longer to converge, but the tiny E∞ in frame 39 shows that the calibration is
already finished. The portion of the green ellipse on the right side of the yellow
one corresponds to negative disparities and is not searched for matches. This
portion is larger as parallax increases.

TABLE II
MC ANALYSIS OF THE SELF-CALIBRATION

In Fig. 8 right, we plot results of a Monte Carlo (MC) anal- 653

ysis, run over the data of this experiment, for the mean and 654

standard deviation of the Euler angles of the right camera. Be- 655

cause all MC runs are extracted from the same sequence, we 656

tried to maximize their independence by using a different ran- 657

dom seed in the algorithm (acting in the random selection of 658

the initialization region, Section IV-A), and by starting each run 659

at a different frame. The figure shows that the dynamic esti- 660

mation is consistent (the EKF estimated sigmas are larger than 661

the MC ones). After 200 frames, we compare these values with 662

those of the offline calibration [25]. Table II summarizes these 663

results, showing MC [(means and standard deviations (STD)] 664

and Kalman Filter (EKF, showing the estimated STD). All 665
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Fig. 10. Map produced during the “white board” experiment. We marked the
mapped robot ©1, the bin ©2, the box ©3, the trunk ©4, the fence ©5, the table ©6,
and the white board ©7 at the end wall.

Fig. 11. Metric mapping. The magnitudes of some segments in the real labo-
ratory are compared to those in the map (red lines). Ground truth corresponds
to metric measurements of the distances between landmarks that are identified
by zooming in the last image of the experiment (right) and translated to the real
world. Thirteen points on the end wall are tested for coplanarity.

TABLE III
WHITE BOARD: MAP TO GROUND TRUTH TOMPARISON

self-calibrated values lie within the 3σ bounds defined by the666

offline mean and STD values.667

B. Metric Accuracy668

We show in Fig. 10 a top view of the map generated during669

this experiment. To contrast this map against reality, two tests670

are performed: planarity and metric scale (see Fig. 11): 1) the671

four corners of the white board are taken together with nine672

other points at the end wall to test coplanarity: the 13 mapped673

points are found to be coplanar within 4.9 cm STD; 2) the674

lengths of the real and mapped segments marked in Fig. 11675

are summarized in Table III. The white board has a physical676

size of 120 cm× 90 cm, but we take real measurements from677

the approximated corners where the features are detected. We678

observe errors in the order of 1 cm for landmarks that are still679

about 4 m away from the robot.680

VI. EXPERIMENT 2: COOPERATIVE MONOCULAR SLAM681

This experiment shows independent cameras collaborating to682

build a 3-D map using exclusively bearings-only observations.683

Two independent cameras are placed on top of two bicycles684

looking forward, moving on different trajectories in the park-685

ing of the LAAS (see Fig. 12). Over 1000 images are taken686

by each camera at 15-Hz frequency, 512× 384 pixel resolution,687

100◦ field of view (FOV), and are processed offline. The cam-688

Fig. 12. Snapshots of master and slave sequences in cooperative SLAM.
Faraway landmarks (e.g., black arrowed), still initialized as rays (red), are the
ones fixing the orientation. Nearby landmarks, usually as Euclidean points
(blue), maintain the metric. A virtual model of the master camera is visible from
the slave camera (white arrowed). See cooperativeSLAM.mov.

Fig. 13. Top view of the map produced by cooperative SLAM of two inde-
pendent cameras, and their crossing trajectories. The grid spacing is 2 m.

eras travel approximately 28 m observing landmarks beyond 689

60 m. As in the previous experiment, the left camera is the mas- 690

ter. The two trajectories start parallel to each other, separated 691

75 cm perpendicularly to the motion direction. The reference 692

frame is defined by the master camera initial position and ori- 693

entation, which are initialized with null uncertainty. The scale 694

factor is determined by the initial baseline of 75 cm, meaning 695

that the position of the slave camera in the lateral Y -axis is also 696

initialized with null uncertainty. The orientations of the slave 697

camera start with an uncertainty of 2◦ STD, and its position in 698

the frontal Y - and vertical Z-axes with 75 cm·sin(2◦) = 2.6 cm 699

STD. With these uncertainties, the experiment’s initial configu- 700

ration can be set up manually by just observing the images and 701

centering the projections of some distant object. We use two 702

independent constant-velocity models with kv = 0.3 m/s · √s 703

and kw = 0.3 rad/s · √s. The measurement noise is 1 pixel. 704

Landmarks at infinity, illumination changes and few salient 705

features are some characteristics of this outdoors scene. It 706

presents relatively few stable landmarks, something that makes 707

the correct operation of the SLAM system difficult. In the case 708

of having crossing trajectories, the problem of one camera oc- 709

cluding the other could appear and severely affect the image 710

processing. To avoid this, we decided to take both image se- 711

quences shifted in time, i.e., one after the other, and make them 712

overlap for processing. The mapping process is presented in 713

the movie cooperativeSLAM.mov in the multimedia section. 714

Fig. 13 shows the top view of the map and the camera trajecto- 715

ries generated during this experiment. 716

A proper metrical evaluation of this experiment is difficult; 717

having a variable baseline does not allow us to compare the re- 718

sults, because there is no knowledge of the ground truth. In order 719

to evaluate this approach, we consider the setup in experiment 720
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Fig. 14. Final map in the “white board” setup using the cooperative monocular
SLAM algorithm. The cameras are modeled as being entirely independent using
the same data and initial configuration as in Experiment 1. The stereo rig on
the right shows (red) the final estimated relative position compared with (black)
ground truth.

1 and apply the same algorithm. The new experiment consists721

of recovering the full extrinsic calibration, which is fixed in re-722

ality, considering both cameras as independent. Again, we use723

a constant-velocity model for each camera. The initial setup724

including uncertainties is as in experiment 1.725

Fig. 14 shows the obtained map. We see that it compares726

very well to the map obtained in experiment 1 (see Fig. 10),727

where the motions of the two cameras were constrained by the728

stereo rig and a common motion was predicted using odometry.729

Fig. 14 bottom shows a detail of the cameras in their final relative730

position. We measure an error along the baseline of less than731

2 cm. The orientation errors are less than 0.7◦.732

VII. CONCLUSION733

We showed in this paper that fusing the visual information734

with monocular methods while performing multicamera SLAM735

provides several advantages: the ability to consider points at in-736

finity, desynchronization of the different cameras, the use of any737

number of cameras of different types, sensor self-calibration,738

and the possibility to conceive decentralized schemes that will739

make realistic multirobot monocular SLAM possible. Except for740

decentralization, these advantages have been explored with the741

inverse depth monocular SLAM algorithm, and applied to two742

different problems: stereovision SLAM with an extrinsically743

decalibrated stereo rig and cooperative SLAM of two indepen-744

dently moving cameras.745

Both demonstrations employed a master–slave approach,746

which made solving some of the issues of map and image747

management easier, and we are now improving on this by im-748

plementing a fully symmetrical approach. This approach should749

easily permit the extension of the presented applications to cases750

with more than two cameras. In parallel to these activities, we751

started new work on landmark parametrization to improve EKF752

linearity in cases of increasing parallax. Also, as parallax in-753

creases, landmarks appearances may change too much as to754

guarantee a stable operation with the matching methods pre-755

sented here. We believe that wide baseline feature matching756

will be the bottleneck of visual SLAM for some time to come.757

As for decentralization, we note that it demands a full reformu-758

lation of the fusion engines we use in this paper (one central759

EKF), for example, via channel filters, and is currently a subject760

of intense research at LAAS and other laboratories.761
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Doctorale Systèmes, Toulouse, France, in 2003, and841

the Ph.D. degree in control systems from the In-842

stitut National Polytechnique de Toulouse in 2007,843

where he was hosted by the Laboratoire d’Analyse et844

d’Architecture des System (LAAS), Centre National845

de la Recherche Scientifique (CNRS).846

He was a Postdoctoral Fellow at SRI International, Menlo Park, CA. He is847

currently at LAAS-CNRS, where he is engaged in research on visual localiza-848

tion and mapping. His current research interests include estimation and data849

fusion applied to off-road navigation, mainly using vision.850

851
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Fusing Monocular Information in
Multicamera SLAM

1

2

Joan Solà, André Monin, Michel Devy, and Teresa Vidal-Calleja3

Abstract—This paper explores the possibilities of using monocu-4

lar simultaneous localization and mapping (SLAM) algorithms in5

systems with more than one camera. The idea is to combine in a sin-6

gle system the advantages of both monocular vision (bearings-only,7

infinite range observations but no 3-D instantaneous information)8

and stereovision (3-D information up to a limited range). Such a9

system should be able to instantaneously map nearby objects while10

still considering the bearing information provided by the observa-11

tion of remote ones. We do this by considering each camera as an12

independent sensor rather than the entire set as a monolithic su-13

persensor. The visual data are treated by monocular methods and14

fused by the SLAM filter. Several advantages naturally arise as15

interesting possibilities, such as the desynchronization of the firing16

of the sensors, the use of several unequal cameras, self-calibration,17

and cooperative SLAM with several independently moving cam-18

eras. We validate the approach with two different applications: a19

stereovision SLAM system with automatic self-calibration of the20

rig’s main extrinsic parameters and a cooperative SLAM system21

with two independent free-moving cameras in an outdoor setting.22

Index Terms—Calibration, image sequence analysis, Kalman fil-23

tering, machine vision, robot vision systems, stereovision.24

I. INTRODUCTION25

T
HE SIMULTANEOUS localization and mapping (SLAM)26

problem, as formulated by the robotics community, is that27

of creating a map of the perceived environment while localiz-28

ing oneself in it. The two tasks are coupled in such a way so29

as to benefit each other; a good localization is crucial to create30

good maps, and a good map is necessary for localization. For31

this reason, the two tasks must be performed simultaneously,32

and hence, the full acronym SLAM. In recent years, the ma-33

turity of both online SLAM algorithms, together with fast and34

reliable image processing tools from the computer vision liter-35

ature, has crystallized into a considerable quantity of real-time36

demonstrations of visual SLAM.37

In this paper, we insist on the quality of the achieved localiza-38

tion, which will impact in turn the map quality. The key to good39

localization is to ensure the correct processing of the geometrical40

information gathered by the cameras. In this long introduction,41

we present an overview of visual SLAM and related techniques42

to show that visual SLAM systems have historically discarded43
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precious sensory information. We present a novel approach that 44

uses the SLAM filter as a classical fusion engine that incor- 45

porates the full monocular information coming from multiple 46

cameras. 47

A. Monocular SLAM 48

Possibly, the best example of the aforementioned technolog- 49

ical crystallization is monocular SLAM, a particular case of 50

bearings-only (BO) SLAM (where the sensor does not provide 51

any range or depth). It is well known that the reduction in system 52

observability due to BO measurements has two main drawbacks: 53

the loss of the scale factor and the delay in obtaining good 3-D 54

estimates. Previous works either added some metric measure- 55

ment to observe the scale factor, such as odometry [1] or the 56

size of known perceived objects [2], [3], or have considered it 57

irrelevant [4]. The delay in getting good 3-D estimates comes 58

from the fact that such estimates require several BO observations 59

from different viewpoints. This makes landmark initialization 60

in BO-SLAM difficult, to the point that satisfactory methods 61

able to exploit all the geometrical information provided by the 62

cameras have only recently become available. We have wit- 63

nessed an evolution of the algorithms as follows. First, delayed 64

landmark initialization methods attempted to obtain a full 3-D 65

estimate before initialization via several observations from dif- 66

ferent viewpoints. Davison [3] showed real-time feasibility of 67

monocular SLAM with affordable hardware, using the original 68

extended Kalman filter (EKF) SLAM algorithm for all but the 69

unmeasured landmark’s depth, and a separate particle filter to 70

estimate this depth. Initialization was deferred to the moment 71

when the depth estimate was good enough. The consequence 72

of a delayed scheme is that we can only initialize landmarks 73

with enough parallax, i.e., those that are close to the camera 74

and situated perpendicularly to its trajectory, and therefore, the 75

need to operate in room-size scenarios with lateral motions. 76

Second, Solà et al. [1] showed that undelayed landmark initial- 77

ization (mapping the landmarks from their first, partial observa- 78

tion) was needed when considering low parallax landmarks, i.e., 79

those that are remote and/or situated close to the motion axis. 80

This permits mapping larger scenes while performing frontal 81

trajectories. Third, Civera et al. [5] have recently achieved the 82

mapping of landmarks up to infinity, due to an undelayed ini- 83

tialization via an inverse depth parameterization (IDP). IDP 84

has also been developed by Eade et al. [6] in a FastSLAM2.0 85

context. Today, the monocular SLAM systems exploit the geo- 86

metrical information in its entirety: from the first observation, 87

independently of the sensor’s trajectory, and up to the infinity 88

range. 89

1234-5678/$25.00 © 2008 IEEE
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B. Structure From Motion (SFM)90

Monocular SLAM compares to a similar problem solved91

by the vision community: the structure from motion problem92

(SFM). In SFM, the goal is to determine, from a collection of93

images and up to an unrecoverable scale factor, the 3-D structure94

of the perceived scene and all 6-D camera poses from where the95

images were captured. When compared to SLAM, the structure96

plays the role of the map, while the set of camera poses defines97

all the successive observer’s localizations.98

Roboticists often claim that the main difference between99

SFM and SLAM is that the former is solved offline via100

the iterative nonlinear optimization method known as bun-101

dle adjustment (BA) [7], while the latter must be incremen-102

tally solved online, thus making use of stochastic estimators103

or filters that naturally provide incremental operation. This104

has been true for some years (today, SLAM is also solved105

online with iterative optimization [8]), but does not tell the106

whole story. The differences between SFM and SLAM are107

not only in the methods but also in the objectives, meaning108

that similar aspects of similar problems are given different109

priorities.110

In particular, SFM exploits the visual information in its en-111

tirety without the difficulties encountered in monocular SLAM.112

Let us try to understand this curious fact. SFM puts the struc-113

ture as a final objective, i.e., as a result of the whole process,114

and the emphasis is placed on minimizing the errors in the115

measurement space, thus using all the measured information.116

On the other hand, the SLAM map has a central role, with117

some of the operations (and particularly landmark initializa-118

tion) being performed in map space, which is the system’s state119

space. The fact that this state space is not statically observable,120

because it is of higher dimension than the observation space,121

leads to the difficulties exposed before. As an informal attempt122

to fill this gap, we could say that modern undelayed methods123

for monocular SLAM, with partial landmark initialization and124

partial updates, are almost equivalent to an operation in the125

measurement space: the information is initialized in the map126

space partially, i.e., exactly as it comes from the measurement127

space. A similar point of view over this concept can be found128

in [9].129

C. Stereovision SLAM130

Stereovision SLAM has also received considerable attention.131

The ability of a stereo assembly to directly and immediately pro-132

vide 3-D landmark estimates allows us to use the best available133

SLAM algorithms and rapidly obtain good results with little134

effort in the conceptual parts. Such SLAM systems consider135

the stereo assembly as being a single monolithic sensor, capa-136

ble of gathering 3-D geometrical information from the robot’s137

surroundings, e.g. [10]. This fact, which appears perfectly rea-138

sonable, is the main paradigm that this paper questions. By139

considering two linked cameras as a single 3-D sensor, SLAM140

is unable to face the following two issues.141

1) Limited 3-D Estimability Range: While cameras are ca-142

pable of sensing visible objects that are potentially at infinity,143

a stereo rig provides only reasonably good 3-D estimates up144

to a limited range, typically from 3 m to a few tens of meters 145

depending on the baseline. Because classical, nonmonocular 146

SLAM algorithms expect full 3-D estimates for landmark ini- 147

tialization (i.e., they are reasoned in the map space), information 148

belonging to only this limited region can be used for SLAM. 149

This is really a pity; it is like if, having our two eyes, we were 150

obliged to neglect everything outside a certain range from us, 151

what we could call “walking inside dense fog.” Without remote 152

landmarks, it is easy to lose spacial references, to become disori- 153

ented, and finally, find ourselves lost. Therefore, stereovision, 154

as it is classically conceived, is a bad starting point for visual 155

SLAM. 156

2) Mechanical Fragility: If we aim at extending the 3-D 157

estimability range beyond these few tens of meters, we need 158

to increase the stereo baseline while keeping or improving the 159

overall sensor precision. This is obviously a contradiction: larger 160

assemblies are less precise when using the same mechanical 161

solutions. In order to maintain accuracy with a larger assembly, 162

we must use more complex structures that will be either heavier 163

or more expensive, if not both. The result for moderately large 164

baselines (>1 m) is a sensor that is very easily decalibrated, 165

and therefore, almost useless. Large rigs, however, are very 166

interesting in outdoor applications because they allow farther 167

objects to be positioned, thus making them contribute to the 168

observability of the overall scale factor. This is especially true 169

in aerial and underwater settings where, without nearby objects 170

to observe, a small stereo rig provides no significant gain with 171

respect to a single camera. Self-calibration can compensate for 172

the inherent lack of stability of large camera rigs. It also allows 173

multicamera platforms to start operation without undergoing a 174

previous calibration phase, making on-field system deployment 175

and maintenance easier. 176

To our knowledge, the only SLAM work that goes beyond the 177

current stereoparadigm (apart from our conference paper [11]) 178

is the one by Paz et al. [12], which uses a small-baseline, fully 179

calibrated stereo rig. Matched features presenting significant 180

disparity are initialized as classical Euclidean landmarks, while 181

those presenting low disparities are treated with the inverse 182

depth algorithm. 183

D. Visual Odometry (VO) 184

One could say that, in terms of methodology, visual odom- 185

etry (VO) is to stereovision SLAM what SFM is to monocular 186

SLAM. VO is conceived to obtain the robot’s ego motion from 187

a sequence of stereo images [13]. Visual features are matched 188

across two or more pairs of stereo images taken during the robot 189

motion. An iterative minimization algorithm, usually based on 190

BA, is run to recover the stereo rig motion, which is then trans- 191

formed into robot motion. For this, the algorithm needs to re- 192

cover the structure of the 3-D points that correspond to the 193

matched features. This structure is not exploited for other tasks 194

and can be usually discarded. Remarkably, when the structure 195

is coded in the measurement space (u, v, d), a disparity d → 0 196

allows points at infinity to be properly handled [14]. This is also 197

accomplished by using homogeneous coordinates [7]. VO must 198

work in real time because robot localization is needed online. 199
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Advanced VO solutions achieve very low drift levels after long200

distances by making use of: 1) hardware-based image process-201

ing with real-time construction and querying of large feature202

databases [15]; 2) dense image information matching via planar203

homographies and the use of the quadrifocal tensor [16]; or 3)204

bundle adjusting the set of N recent key frames together with205

additional fusion with an inertial measurement unit (IMU) [14].206

E. Sensor Fusion in SLAM207

The fact of SLAM being solved by filters allows us to envision208

SLAM systems as sensor fusion engines. Let us highlight some209

of the assets of filtering in sensor fusion.210

1) Multisensor operation: Any number of differing sensors211

can be operated together in a consistent framework.212

2) Sensors self-calibration: Unknown biases, gains, and213

other sensor’s parameters can be estimated provided that214

they are observable [17].215

3) Desynchronized operation: The data rates of all these sen-216

sors do not need to be synchronized.217

4) Decentralized operation: Advanced filter formulations218

such as those using channel filters [18] achieve a decen-219

tralized operation that should permit live connection and220

disconnection of sensors without the need for filter repro-221

gramming or reparameterization.222

This paper explores the first three points for the case of mul-223

tiple cameras.224

SLAM systems naturally fuse information from both propri-225

oceptive (odometry, GPS, and IMU) and exteroceptive (range226

scanners, sonar, and vision) sensors into the map. But our in-227

terest here is in fusing several exteroceptive sensors. We can228

distinguish two cases.229

1) Sensors of different kind: When using differing sensors230

(e.g., laser plus vision), the main problem is in finding a231

map representation well adapted to the different kinds of232

sensory data (i.e., the data association problem).233

2) Sensors of the same kind: The perceived information is of234

the same nature. This makes appearance-based matching235

possible, and therefore, makes map building easier. Nev-236

ertheless, most of such SLAM systems do not take advan-237

tage of fusion. Instead, the extrinsic parameters linking238

the sensors are calibrated offline, and the set of sensors239

is treated as a single supersensor. This is the case for240

two 180◦ range scanners simulating a 360◦ one, and for241

the previously mentioned stereo rig simulating a 3-D sen-242

sor. A sensor-fusion approach in these cases should nat-243

urally bring the aforementioned advantages to the SLAM244

system.245

F. Multicamera SLAM and the Aim of This Paper246

The key idea of this paper is very simple: by employing247

the SLAM filter as a fusion engine, we will be able to use248

any number of cameras in any configuration. And, by treat-249

ing them as BO sensors with the modern undelayed initializa-250

tion methods, we will extract the entire geometrical information251

provided by the images. The filter—not the sensor—will be re-252

sponsible for making the 3-D properties of the perceived world 253

arise. 254

Applications may vary from the simplest stereo system, 255

through robots with several differing cameras (e.g., a panoramic 256

one for localization and a perspective one looking forward 257

for reactive navigation), to multirobot cooperative SLAM 258

where BO observations from different robots are used to 259

determine the 3-D locations of very distant landmarks. Al- 260

though there certainly exist issues concerning multicamera 261

management, the main ideas we want to convey may be 262

demonstrated with systems of just two cameras. In this pa- 263

per, we will illustrate two cases: first, the case of a robot 264

equipped with a stereo rig, with its cameras being treated 265

as two individual monocular sensors and second, two cam- 266

eras moving independently and mapping together an outdoors 267

scene. 268

This paper draws on previous work published in the confer- 269

ence paper [11] and the author’s Ph.D. thesis [19]. These two 270

works use the federated information sharing algorithm (FIS) 271

in [1] to initialize the landmarks, which has been surpassed by 272

the inverse depth methods (IDP) [5]. The present paper takes 273

and extends all this research by developing a better founded jus- 274

tification (providing a wider scope to the proposed concepts), by 275

improving on the implementation with the incorporation of IDP 276

in the algorithms, and by extending the experimental validation 277

to a cooperative monocular SLAM setup. 278

This paper is organized as follows. Section II presents the 279

main ideas that will be exploited later and revises some back- 280

ground material for monocular SLAM. Section III explains how 281

to set up multicamera SLAM, an application for stereo benches 282

with self-calibration, and an application for two collaborative 283

cameras. Section IV presents the perception and map manage- 284

ment techniques used. Sections V and VI show the experimen- 285

tal results, and finally, Section VII gives conclusions and future 286

directions. 287

II. 3-D ESTIMABILITY IN VISUAL SLAM 288

In this section, we present the ideas that support our approach 289

to visual SLAM. We make use of the concept of estimability, 290

which will help understand the abilities of vision for observing 291

3-D structure in the presence of uncertainty. We clarify the key 292

properties of undelayed initialization in monocular SLAM, and 293

remark its importance in multicamera SLAM. We also remind 294

the key aspects of IDP-SLAM. 295

A. Geometrical Approach to 3-D Estimability 296

We are interested in finding the shape and dimensions of the 297

3-D-estimable region defined by two monocular views. 298

For this, we start with a couple of ideas to help understand- 299

ing the concept of estimability used. When a new feature is 300

detected in an image, the backprojection of its noisy-measured 301

position defines a conic-shaped pdf for the landmark position, 302

called ray, which extends to infinity (see Fig. 1). Let us con- 303

sider two features extracted and matched from a pair of images, 304

corresponding to the same landmark: their backprojections are 305

two conic rays A and B that extend to infinity. The angular 306
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Fig. 1. Conic ray backprojects the elliptic representation of the Gaussian 2-D
measure. It extends to infinity.

Fig. 2. Different regions of intersection for (solid) 4σ, (dashed) 3σ, and
(dotted) 2σ ray widths when the outer 4σ bounds are, parallel. (Shaded) The
parallax or angle between rays axes A and B is ψ = 4 σA + 4 σB .

widths of these rays can be defined as a multiple of the stan-307

dard deviations σA and σB of the angular errors (a composi-308

tion of the cameras extrinsic and intrinsic parameters errors,309

and of the image processing algorithms accuracy). Informally310

speaking, we may say that the landmark’s depth is fully esti-311

mated if the region of intersection of these rays is both closed312

and sufficiently small. If we consider, for example, the case313

where the two external 4σ bounds of the rays are parallel314

(see Fig. 2), then we can assure that the 3σ intersection re-315

gion (which covers 98% probability) is closed and that the 2σ316

one (covering 74%) is closed and small. The ratio between the317

depth’s standard deviation and its mean (a measure of linearity318

in monocular EKF-SLAM [1], [3]) is then better than 0.25. The319

parallax angle ψ between the two rays axes is therefore ψ =320

4(σA + σB ) = constant. This is the minimum parallax for full321

estimability.322

In 2-D, we can plot the locus of constant estimability.323

In the case, where σA and σB can be considered con-324

stant, ψ is constant too, and from the inscribed angle theo-325

rem, the locus is then circular (Fig. 3, see also [19]). Land-326

marks inside this circle are considered fully estimable—and327

partially outside. In 3-D, the fully 3-D estimable region is328

obtained by revolution of this circle around the axis join-329

ing both cameras, producing a torus-shaped region with a330

degenerated central hole. This shape admits the following331

interpretations.332

1) In a stereo configuration or for a lateral motion of a333

moving camera (see Fig. 3, left), the estimable region334

is located in front of the sensor. Beyond the region’s335

border stereo provides no profit: if we want to consider336

distant landmarks, we have to use undelayed monocular337

techniques.338

2) Depth recovery is impossible in the motion axis of a sin-339

gle camera moving forward (Fig. 3, right). Close to this340

axis, estimability is possible only if the region’s radius341

becomes very large. This implies the necessity of very342

large displacements of the camera during the initializa-343

Fig. 3. Simplified depth estimability regions in a (left) stereo rig and (right)
a camera traveling forward. The angle ψ is the one that assures estima-
bility via triangulation from different viewpoints. The maximum range is
2R = b/sin(ψ/2).

Fig. 4. Simplified depth estimability for a stereo rig moving forward. On both
sides, estimability depends on the baseline gained by motion. In front, by stereo.
Out of these bounds and up to infinity, landmarks are mapped partially. SLAM
keeps incorporating the visual information due to the undelayed monocular
methods, i.e., IDP in our case.

tion process. Again, this can be accomplished only with 344

undelayed initializations. 345

3) By combining both monocular and stereovision, we get 346

an instant estimability of close frontal objects while still 347

utilizing the information of distant ones (see Fig. 4). Land- 348

marks lying outside the estimability regions are not 3-D- 349

estimable but, when initialized using undelayed monocu- 350

lar methods, they will contribute to constrain the camera 351

orientation. Ideally, long-term observations of stable dis- 352

tant landmarks would completely cancel orientation drift 353

(visual compass). 354

B. Monocular IDP-SLAM 355

The core algorithm of this paper is an EKF-SLAM with an 356

IDP of landmarks during the initialization phase, as described 357

in [5]. In IDP-SLAM, partially observed landmarks are coded 358

as a 6-D-vector, 359

i = [x0 , θ, ψ, ρ] (1)

where x0 is the 3-D position of the camera at initialization time, 360

(θ, ψ) are the elevation and azimuth angles in global frame 361

defining the direction of the landmark’s ray, and ρ is the inverse 362

of the Euclidean distance from x0 to the landmark’s position 363

(notice that ρ is usually known as inverse depth but it is rather 364

an inverse distance). After the first observation, all parameters 365

of i except ρ are immediately observable, and their values and 366

covariances are obtained by proper inversion and linearization 367

of the observation functions. The inverse depth ρ is initialized 368
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with a Gaussian N (ρ − ρ̄;σ2
ρ ) such that in the depth dimension369

s = 1/ρ, we have370

s(−nσ ) =
1

ρ̄ − nσρ
= ∞ (2)

s(+nσ ) =
1

ρ̄ + nσρ
= smin (3)

with smin the minimum considered depth and n the inverse depth371

shape factor. This gives ρ̄ = 1/(2smin) and, more remarkably372

nσρ = ρ̄. (4)

Importantly, values of 1 ≤ n ≤ 2 assure from (2) that the infinity373

range is included in the parametrization with ample probability.374

On subsequent updates, IDP achieves correct EKF operation375

(i.e., quasi-linear behavior) along the whole ray as long as the376

parallax shown by the new viewpoint is not too large. The lin-377

earity test in [20] is regularly evaluated. If passed, the landmark378

can be safely transformed into a 3-D Euclidean parametrization.379

III. MULTICAMERA SLAM380

The general scheme for the multicamera SLAM system is381

presented in this section. This scheme is particularized to deal382

with two different problems. The first one is the automatic self-383

calibration of a stereo rig while performing SLAM. The second384

one is a master–lave solution to cooperative monocular SLAM.385

Both setups are explained here, and their corresponding experi-386

ments are presented in Sections V and VI.387

A. System Overview388

We implement the multicamera SLAM system as follows. A389

central EKF-SLAM will hold the stochastic representation of390

the set of all cameras Ci plus the set of landmarks Lj391

X⊤ = [C⊤
1 · · · C⊤

N L⊤
1 · · · L⊤

M ] (5)

where the cameras states contain position and orientation quater-392

nion [Ci = (ri ,qi) ∈ R
7 ], and landmarks can be coded either393

in inverse depth (Lj = ij ∈ R
6) or in Euclidean coordinates394

(Lj = pj ∈ R
3). Any number of cameras can be considered395

this way. As each camera needs to remain localized properly,396

it needs to observe a minimum number of landmarks at each397

frame. The algorithm’s complexity increases linearly with the398

number of cameras if this number is small with respect to the399

map.400

For camera motions, we consider two possible models. In401

the first one, a simple odometer provides motion predictions402

[∆x,∆y,∆ψ] in the robot’s local 2-D plane. Gaussian uncer-403

tainties are added to the 6-DOF linear and angular components404

[x, y, z, φ, θ, ψ] with a variance proportional to the measured405

forward motion ∆x406

{σ2
x , σ2

y , σ2
z } = k2

L · ∆x (6)

{σ2
φ , σ2

θ , σ2
ψ} = k2

A · ∆x. (7)

The variance in [φ, θ, ψ] is mapped to the quaternion space using407

the corresponding Jacobians.408

The second model is a 6-DOF constant velocity model 409

r+ = r + v ∆t

q+ = q × v2q(ω ∆t)

v+ = v + ηv

ω+ = ω + ηω

where ( )+ means the updated value, × is the quaternions prod- 410

uct, and v2q(ω ∆t) transforms the local incremental rotation 411

vector ω ∆t into a quaternion (quaternions are systematically 412

normalized). This way, the camera state vector Ci is augmented 413

to Ci = (ri ,qi ,vi , ωi) ∈ R
13 . At each time step, perturbations 414

{ηv , ηω} ∼ N (0; {σ2
v , σ2

ω}) add variances to the linear and an- 415

gular velocities proportionally to the elapsed time ∆t 416

σ2
v = k2

v · ∆t (8)

σ2
w = k2

ω · ∆t. (9)

The events of camera motion, landmark initialization, and 417

landmark observation are handled as in regular IDP-SLAM by 418

just selecting the appropriate block elements from the SLAM 419

state vector and covariances matrix, and applying the corre- 420

sponding motion or observation models. For example, at the 421

observation of landmark j from camera i, we would use the 422

function ui
j = h(Ci ,Lj ), which will be explained later for the 423

case of an IDP ray [see 11]. Before transforming IDP rays into 424

points, the linearity test in [20] needs to hold for all cameras. 425

B. Stereo SLAM With Extrinsic Self-Calibration 426

Our approach is relevant to fully calibrated stereo rigs if they 427

are small (10–20 cm, as in [12]) or if, having long baselines, their 428

main extrinsic parameters can be continuously self-calibrated. 429

Not all of the six extrinsic parameters of a stereo rig (three for 430

translation, three for orientation) need to be calibrated. In fact, 431

the notion of self-calibration inherently requires the system to 432

possess its own gauge. In our case, the metric dimensions or 433

scale factor of the whole world–robot system can only be ob- 434

tained either from the stereo rig baseline, which is one of the 435

extrinsic parameters (then, it makes no sense to self-calibrate 436

the gauge), or from odometry, which is often much less accurate 437

than any coarse measurement we could make of this baseline. 438

Additionally, as cameras are actually angular sensors, vision 439

measurements are much more sensitive to the cameras orienta- 440

tions than to any translation parameter. This means that vision 441

measurements will contain little information about these trans- 442

lation parameters. In consequence, self-calibration may concern 443

only orientation, and more precisely, the orientation of one cam- 444

era with respect to the other. The error of the reconstructed map’s 445

scale factor will be the same as the relative error of the baseline 446

measurement. 447

With these assumptions, our self-calibration solution is 448

straightforward: for the second camera, we just include its ori- 449

entation in the map and let EKF make the rest. The state vector 450

(5) is modified and written as 451

X⊤ = [R⊤ q⊤
R L⊤

1 · · · L⊤
M ]
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where R and L1 · · · LM are the robot pose and landmarks map.452

The left camera pose CL has a fixed transformation with respect453

to the robot, and qR is the orientation part of the right-hand454

camera CR in the robot frame. The time-evolution function of455

the angular extrinsic parameters is simply q+
R = qR + γ, where456

γ is a white, Gaussian, low-energy process noise that accounts457

for eventual decalibrations, e.g., due to vibrations. For short-458

duration experiments, we set γ = 0. A coarse analysis of the459

stereo structure’s mechanical precision will be enough to set the460

initial uncertainty to a value of the order of 1◦ or 2◦ per axis.461

This can be reduced to a few tenths of degree in cases where we462

dispose of previous calibrated values about which we are not463

confident anymore.464

C. Cooperative Multicamera SLAM465

The ideal, most general case of cooperative SLAM (5), corre-466

sponds to a (not too large) number of cameras moving indepen-467

dently. Each camera is able to manage its own measurements468

and communicates directly with the map. The aim of this com-469

munication is to obtain information about existing landmarks470

to get localized, and provide information about new or reob-471

served landmarks. This way, the algorithms to be executed by472

each camera are absolutely symmetrical, without any kind of473

hierarchy. A simplified implementation considers cameras with474

different privileges.475

In our particular case, the cooperative SLAM system consid-476

ers two cameras. One of them takes the role of master, and477

is responsible for all landmarks detection and initialization.478

The second one acts as the slave. It follows the master at a479

close distance and reobserves the SLAM map that is being480

built by the master. By doing so, it provides a second view-481

point to landmarks just initialized, accelerating the convergence482

of the map. The master and slave trajectories are highly in-483

dependent, and for instance, they can cross paths. The only484

requirement is to look in the same direction. A trivial exten-485

sion to more than two cameras consists in including additional486

slaves.487

IV. PERCEPTION AND MAP MANAGEMENT488

Active search (AS, nicely described in [21] and also referred489

to as top-down in [6]) is a powerful framework for real-time490

image processing within SLAM. It has been successfully used in491

several monocular SLAM works [3], [5], [11], using a diversity492

of techniques for landmark initialization. The idea of AS is to493

exploit the information contained in the map to predict a number494

of characteristics of the landmarks to observe. AS is helpful in495

solving the following issues:496

1) selecting interesting image regions for initialization;497

2) selecting the most informative landmarks to measure;498

3) predicting where in the image they may be found, and with499

which probability;500

4) predicting the current landmark’s appearance to maximize501

the chances of a successful match.502

A. Feature Detection and Initialization 503

Based on the projection of the map information into the master 504

image, a heuristic strategy is used to select a region of interest 505

for a new initialization: we divide the image with a grid and 506

randomly select a grid element with no landmarks inside. We 507

extract the strongest Harris point [22] in this region and validate 508

it if its strength is above a predefined threshold. We store a small 509

rectangular region or patch of 15× 15 pixels around the point 510

as the landmark’s appearance descriptor, together with the pose 511

of the camera. Finally, we initialize the IDP ray in the SLAM 512

map. 513

B. Expectations: The Active Search Regions 514

Some considerations about AS can be made for its usage in 515

multicamera IDP–SLAM to improve performance. We use for 516

this the E1 and E∞ ellipses, defined and explained as follows. 517

1) E1 Ellipse: Expectation of the Inverse Depth Ray: The 518

inverse depth ray (1) is easily projected into a camera. We take 519

the transformation to camera frame given in [5]: 520

hC
1 = R(q)⊤ (ρ (x0 − r) + m(θ, ψ)) (10)

where R( ) is the rotation matrix corresponding to the camera 521

orientation q and r is the current camera position. This value 522

is then projected into the camera, described by intrinsic and 523

distortion parametersk andd (we use a classical radial distortion 524

model of up to three parameters, which is inverted as explained 525

in [19]). Let us call K = (k,d) the camera parameters, C = 526

(r,q) the camera pose, and i = (x0 , θ, ψ, ρ) the IDP ray. The 527

observation function is 528

u = h1(C,K, i) + η = project(hC
1 ,K) + η (11)

where project () takes into account the camera model (we use 529

perspective cameras) and η is the pixel Gaussian noise, with 530

covariance R. 531

We define the E1 ellipse as the Gaussian expectation 532

E1(u)
∆
= N (u − ē1 ;E1), with u being the pixel position, and 533

with mean and covariances matrix 534

ē1 = h1(C̄,K, ī) (12)

E1 = [HC Hi]PC,i [HC Hi]
⊤ + R. (13)

Here, HC and Hi are the Jacobians of h1 with respect to the 535

uncertain parameters C and i, •̄ are variable estimates from 536

the SLAM map, and PC,i is the joint covariances matrix (all 537

correlations and cross correlations) of C and i, also from the 538

map. In AS, E1 is usually gated at 3σ, giving place to an elliptic 539

region in the image where the landmark must project with 98% 540

probability. However, this is not necessarily true in cases of 541

noticeable parallax, as we examine now. 542

At landmark initialization, its inverse depth ρ is initialized 543

according to (2)–(4). When considering 3σ uncertainty regions, 544

(4) implies that ρ can go negative with a nonnegligible probabil- 545

ity, meaning that the coded landmarks might be situated behind 546

the camera. This becomes evident when projecting the IDP ray 547

into a second camera presenting some parallax: the projected 548

3σ E1 ellipse contains a region with negative disparity (see 549
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Fig. 5. 3σ search region defined by the E1 ellipse contains a significant part
that corresponds to negative disparities d < 0, where the feature should not be
searched. The final 3σ search region (gray) is defined by the E1 and E∞ ellipses.
The rightmost 3σ border of E∞ is where the probability to find the projection
of the infinity point has fallen below 2%.

Q1

Fig. 5). It is desirable to limit the search area to values of only550

positive disparity for two reasons: the correlation-based search551

(one of the most time-consuming processes) is faster and the552

possibility of including false matches as outliers is diminished.553

With nonrectified images and/or camera sets with uncertain ex-554

trinsic parameters, determining the null disparity bound is not555

straightforward. One solution is to use the E∞ ellipse, which we556

introduce in the following paragraph.557

2) E∞ Ellipse: Expectation of the Infinity Point: The infinity558

point is easily projected by considering the transformation (10)559

with ρ → 0560

hC
∞ ≈ R(q)⊤m(θ, ψ) (14)

where only the camera orientation q and the ray’s direction561

angles (θ, ψ) are present (the visual compass). Proceeding as562

before, we obtain the definition of the ellipse E∞(u)
∆
= N (u −563

ē∞;E∞) as564

ē∞ = h(q̄,K, θ̄, ψ̄) (15)

E∞ = [Hq Hθ Hψ ]P{q,θ ,ψ} [Hq Hθ Hψ ]⊤ + R (16)

where P{q,θ ,ψ} is the joint covariances matrix of the uncertain565

parameters. The E∞ 3σ region is composed of the previous E1566

region, as indicated in Fig. 5, to define the search area.567

C. Selection of the Best Map Updates568

Following the AS approach in [23], a predefined number of569

landmarks with the biggest E1 ellipse surfaces are selected in570

each camera as those being the most interesting to be measured.571

For each camera, we organize all candidates (visible landmarks)572

in descending order of expectation surfaces, without caring if573

they are points or rays. We update at each frame a predefined574

number of them (usually around 10, and no more than 20).575

Updates are processed sequentially, with all Jacobians being576

recalculated each time to minimize the effect of linearization577

errors.578

D. Feature Matching: Affine Patch Warping579

AS continues by warping the stored patch and searching for580

a correlation peak inside the search area earlier. The objec-581

tive of warping is to predict the landmark’s current appearance,582

maximizing the chances for a good match. In the absence of dis-583

tortion, a planar homography H ∈ R
3×3 , defined in the homo-584

geneous spaces, would be desirable [24]. This type of warping585

requires the online estimation of the patch normal in the 3-D586

Fig. 6. Similarity and affine warping on a sample patch. From left to right:
original patch; similarity warped patch (∼180% scale, 10◦ rotation); best match
in a later image affected by distortion and its zero mean normalized cross
correlation (ZNCC) score (0.82); affine warped patch; best match and score
(0.97). The affine warping contains a significant skew component mainly due
to image distortion. The improvement in the ZNCC score is very important.

space, and may become very time-consuming. A good simplifi- 587

cation considers this normal fixed at the initial visual axis [23]. 588

Further simplification applies just a similarity transformation 589

T = sR ∈ R
2×2 in the image Euclidean plane [19]. This ac- 590

counts only for scale changes s and rotations R obtained from 591

the stored information (landmark position, camera initial, and 592

current poses). However, in the presence of distortion, features 593

lying close to the image borders suffer from additional defor- 594

mations. We developed a warping approach that easily adds a 595

skew component to the operator T (thus achieving fully affine 596

warping, but not perspective warping; Fig. 6), based on the Ja- 597

cobian of the function linking the first observation to the current 598

one. Let us consider the backward observation model g( ) for a 599

camera A at initialization time t = 0, and the observation model 600

h( ) for a different camera B at current time t ≥ 0 601

p = g(CA (0),KA ,uA (0), sA )

uB (t) = h(CB (t),KB ,p).

602

Here, p is the landmark’s position, Ki = (ki ,di) are the intrin- 603

sic and distortion parameters of camera i, ui(t) is the measured 604

pixel, and sA is the landmark’s depth with respect to the initial 605

camera. We can compose these functions to obtain the expres- 606

sion linking the initial and the current pixels 607

uB (t) = h [CB (t),KB ,g(CA (0),KA ,uA (0), sA )] . (17)

When all but the pixel positions are fixed, this represents an 608

invertible mapping R
2 
→ R

2 from the pixels in the first image 609

to the pixels in the current one. The local linearization around 610

the initially measured pixel defines an affine warping expressed 611

by the Jacobian matrix 612

T =
∂uB

∂uA

∣

∣

∣

∣

(CA (0),CB (t),KA ,KB ,uA (0),sA )

. (18)

By defining ũi as the coordinates of the patch in camera i, with 613

the central pixel ui as the origin, we have ũB (t) = TũA (0). 614

Based on this mapping, we use linear interpolation of the pixels’ 615

luminosity to construct the warped patch. 616

V. EXPERIMENT 1: STEREO SLAM WITH SELF-CALIBRATION 617

The “White-board” indoor experiment aims at demonstrating 618

stereovision SLAM with self-calibration. A robot with a stereo 619

head looking forward is run for about 10 m in straight line inside 620

the robotics laboratory at the LAAS (see Fig. 7). Over 500 image 621

pairs are taken at approximately 5-Hz frequency. The robot 622
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Fig. 7. Laboratoire d’Analyse et d’Architecture des System (LAAS) robotics
laboratory. The robot will approach the scene in a straightforward trajectory.
We notice in the scene the presence of a robot ©1, a bin ©2, a box ©3, a trunk ©4,
a fence ©5, a table ©6 (hidden by the robot in this image), and the white board ©7
at the end wall.

TABLE I
STEREO RIG PARAMETERS IN THE “WHITE-BOARD” EXPERIMENT

moves towards the objects to be mapped at 0.15 m/s. The stereo623

rig consists of two intrinsically calibrated cameras arranged624

as indicated in Table I. The orientations of both cameras are625

specified with respect to the robot frame. The left camera is taken626

as reference, thus deterministically specified, and the orientation627

of the right one is initialized with an uncertainty of 1◦ standard628

deviation. We use the odometry model (Section III-A) with629

kL = 0.1 m/
√

m and kA = 0.05 rad/
√

m.630

We show details and results on the self-calibration procedure631

and the metric accuracy of the resulting map. The mapping632

process can be appreciated in the movie whiteboard.mov in633

the multimedia section.634

A. Self-Calibration635

We plot in Fig. 8 left the evolution of the three self-calibrated636

angles. We have also used the shape of the E∞ ellipses to pro-637

vide additional qualitative evidence of the calibration process638

(Fig. 9 and movie whiteboard− einf.mov). We observe the639

following behavior.640

1) Pitch θ: The pitch angle (cameras tilt, 5◦ nominal value) is641

observable from the first matched landmark. It rapidly converges642

to an angle of 4.77◦ and remains very stable during the whole643

experiment.644

2) Roll φ: Roll angle is observable after at least two land-645

marks are observed from the right camera. Once this condition646

holds, convergence occurs relatively fast.647

3) Yaw ψ: Yaw angle is very weakly observable because648

it is coupled with the landmarks depths: both yaw angle and649

landmark depth variations produce a similar uncertainty growth650

in the right image. For this reason, yaw converges slowly, only651

showing reasonable convergence after some 50 frames.652

Fig. 8. Extrinsic self-calibration. (Left) The three Euler angles of the right
camera orientation with respect to the robot during the first 60 frames. The 3σ
bounds are plotted in dotted line showing consistent estimation. (Right) Error
analysis after 100 MC runs using 200 frames per run (only the first 80 frames
are shown). The thick solid lines represent the means over the 100 runs. The
3σ bounds for each angle are plotted using thin solid lines. The dotted lines
represent the averaged 3σ bounds estimated by the EKF, showing consistent
calibration.

Fig. 9. Evolution of the E1 and E∞ ellipses during calibration. On the left
column, newly detected pixels in the left image. On the right, expectations in
the right image (green) E1 and (yellow) E∞ of the newly initialized IDP rays
(i.e., still with the full initial uncertainty in ρ). At frame 0, initial uncertainties
of 1◦ result in a big, round E∞ ellipse. After the first updated landmark from
the left camera (frame 2), the uncertainty in pitch decreases and E∞ becomes
flat. Successive updates further refine the calibrated angles. The yaw angle takes
longer to converge, but the tiny E∞ in frame 39 shows that the calibration is
already finished. The portion of the green ellipse on the right side of the yellow
one corresponds to negative disparities and is not searched for matches. This
portion is larger as parallax increases.

TABLE II
MC ANALYSIS OF THE SELF-CALIBRATION

In Fig. 8 right, we plot results of a Monte Carlo (MC) anal- 653

ysis, run over the data of this experiment, for the mean and 654

standard deviation of the Euler angles of the right camera. Be- 655

cause all MC runs are extracted from the same sequence, we 656

tried to maximize their independence by using a different ran- 657

dom seed in the algorithm (acting in the random selection of 658

the initialization region, Section IV-A), and by starting each run 659

at a different frame. The figure shows that the dynamic esti- 660

mation is consistent (the EKF estimated sigmas are larger than 661

the MC ones). After 200 frames, we compare these values with 662

those of the offline calibration [25]. Table II summarizes these 663

results, showing MC [(means and standard deviations (STD)] 664

and Kalman Filter (EKF, showing the estimated STD). All 665
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SOLÀ et al.: FUSING MONOCULAR INFORMATION IN MULTICAMERA SLAM 9

Fig. 10. Map produced during the “white board” experiment. We marked the
mapped robot ©1, the bin ©2, the box ©3, the trunk ©4, the fence ©5, the table ©6,
and the white board ©7 at the end wall.

Fig. 11. Metric mapping. The magnitudes of some segments in the real labo-
ratory are compared to those in the map (red lines). Ground truth corresponds
to metric measurements of the distances between landmarks that are identified
by zooming in the last image of the experiment (right) and translated to the real
world. Thirteen points on the end wall are tested for coplanarity.

TABLE III
WHITE BOARD: MAP TO GROUND TRUTH TOMPARISON

self-calibrated values lie within the 3σ bounds defined by the666

offline mean and STD values.667

B. Metric Accuracy668

We show in Fig. 10 a top view of the map generated during669

this experiment. To contrast this map against reality, two tests670

are performed: planarity and metric scale (see Fig. 11): 1) the671

four corners of the white board are taken together with nine672

other points at the end wall to test coplanarity: the 13 mapped673

points are found to be coplanar within 4.9 cm STD; 2) the674

lengths of the real and mapped segments marked in Fig. 11675

are summarized in Table III. The white board has a physical676

size of 120 cm× 90 cm, but we take real measurements from677

the approximated corners where the features are detected. We678

observe errors in the order of 1 cm for landmarks that are still679

about 4 m away from the robot.680

VI. EXPERIMENT 2: COOPERATIVE MONOCULAR SLAM681

This experiment shows independent cameras collaborating to682

build a 3-D map using exclusively bearings-only observations.683

Two independent cameras are placed on top of two bicycles684

looking forward, moving on different trajectories in the park-685

ing of the LAAS (see Fig. 12). Over 1000 images are taken686

by each camera at 15-Hz frequency, 512× 384 pixel resolution,687

100◦ field of view (FOV), and are processed offline. The cam-688

Fig. 12. Snapshots of master and slave sequences in cooperative SLAM.
Faraway landmarks (e.g., black arrowed), still initialized as rays (red), are the
ones fixing the orientation. Nearby landmarks, usually as Euclidean points
(blue), maintain the metric. A virtual model of the master camera is visible from
the slave camera (white arrowed). See cooperativeSLAM.mov.

Fig. 13. Top view of the map produced by cooperative SLAM of two inde-
pendent cameras, and their crossing trajectories. The grid spacing is 2 m.

eras travel approximately 28 m observing landmarks beyond 689

60 m. As in the previous experiment, the left camera is the mas- 690

ter. The two trajectories start parallel to each other, separated 691

75 cm perpendicularly to the motion direction. The reference 692

frame is defined by the master camera initial position and ori- 693

entation, which are initialized with null uncertainty. The scale 694

factor is determined by the initial baseline of 75 cm, meaning 695

that the position of the slave camera in the lateral Y -axis is also 696

initialized with null uncertainty. The orientations of the slave 697

camera start with an uncertainty of 2◦ STD, and its position in 698

the frontal Y - and vertical Z-axes with 75 cm·sin(2◦) = 2.6 cm 699

STD. With these uncertainties, the experiment’s initial configu- 700

ration can be set up manually by just observing the images and 701

centering the projections of some distant object. We use two 702

independent constant-velocity models with kv = 0.3 m/s · √s 703

and kw = 0.3 rad/s · √s. The measurement noise is 1 pixel. 704

Landmarks at infinity, illumination changes and few salient 705

features are some characteristics of this outdoors scene. It 706

presents relatively few stable landmarks, something that makes 707

the correct operation of the SLAM system difficult. In the case 708

of having crossing trajectories, the problem of one camera oc- 709

cluding the other could appear and severely affect the image 710

processing. To avoid this, we decided to take both image se- 711

quences shifted in time, i.e., one after the other, and make them 712

overlap for processing. The mapping process is presented in 713

the movie cooperativeSLAM.mov in the multimedia section. 714

Fig. 13 shows the top view of the map and the camera trajecto- 715

ries generated during this experiment. 716

A proper metrical evaluation of this experiment is difficult; 717

having a variable baseline does not allow us to compare the re- 718

sults, because there is no knowledge of the ground truth. In order 719

to evaluate this approach, we consider the setup in experiment 720
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Fig. 14. Final map in the “white board” setup using the cooperative monocular
SLAM algorithm. The cameras are modeled as being entirely independent using
the same data and initial configuration as in Experiment 1. The stereo rig on
the right shows (red) the final estimated relative position compared with (black)
ground truth.

1 and apply the same algorithm. The new experiment consists721

of recovering the full extrinsic calibration, which is fixed in re-722

ality, considering both cameras as independent. Again, we use723

a constant-velocity model for each camera. The initial setup724

including uncertainties is as in experiment 1.725

Fig. 14 shows the obtained map. We see that it compares726

very well to the map obtained in experiment 1 (see Fig. 10),727

where the motions of the two cameras were constrained by the728

stereo rig and a common motion was predicted using odometry.729

Fig. 14 bottom shows a detail of the cameras in their final relative730

position. We measure an error along the baseline of less than731

2 cm. The orientation errors are less than 0.7◦.732

VII. CONCLUSION733

We showed in this paper that fusing the visual information734

with monocular methods while performing multicamera SLAM735

provides several advantages: the ability to consider points at in-736

finity, desynchronization of the different cameras, the use of any737

number of cameras of different types, sensor self-calibration,738

and the possibility to conceive decentralized schemes that will739

make realistic multirobot monocular SLAM possible. Except for740

decentralization, these advantages have been explored with the741

inverse depth monocular SLAM algorithm, and applied to two742

different problems: stereovision SLAM with an extrinsically743

decalibrated stereo rig and cooperative SLAM of two indepen-744

dently moving cameras.745

Both demonstrations employed a master–slave approach,746

which made solving some of the issues of map and image747

management easier, and we are now improving on this by im-748

plementing a fully symmetrical approach. This approach should749

easily permit the extension of the presented applications to cases750

with more than two cameras. In parallel to these activities, we751

started new work on landmark parametrization to improve EKF752

linearity in cases of increasing parallax. Also, as parallax in-753

creases, landmarks appearances may change too much as to754

guarantee a stable operation with the matching methods pre-755

sented here. We believe that wide baseline feature matching756

will be the bottleneck of visual SLAM for some time to come.757

As for decentralization, we note that it demands a full reformu-758

lation of the fusion engines we use in this paper (one central759

EKF), for example, via channel filters, and is currently a subject760

of intense research at LAAS and other laboratories.761
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[11] J. Solà, A. Monin, and M. Devy, “BiCamSLAM: Two times mono is more 793

than stereo,” in Proc. IEEE Int. Conf. Robot. Autom., Rome, Italy, Apr. 794

2007, pp. 4795–4800. 795

[12] L. M. Paz, P. Piniés, J. Tardós, and J. Neira, “Large scale 6 DOF SLAM 796

with stereo-in-hand,” IEEE Trans. Robot., vol. 24, no. 5, Oct. 2008. 797

[13] A. Mallet, S. Lacroix, and L. Gallo, “Position estimation in outdoor envi- 798

ronments using pixel tracking and stereovision,” in Proc. Int. Conf. Robot. 799

Autom., San Francisco, CA, 2000, vol. 4, pp. 3519–3524. 800

[14] K. Konolige, M. Agrawal, and J. Solà, “Large-scale visual odometry for 801
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