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Fusing Multiple Features for Depth-Based Action Recognition

YU ZHU, WENBIN CHEN, and GUODONG GUO, West Virginia University

Human action recognition is a very active research topic in computer vision and pattern recognition. Recently,
it has shown a great potential for human action recognition using the three-dimensional (3D) depth data
captured by the emerging RGB-D sensors. Several features and/or algorithms have been proposed for depth-
based action recognition. A question is raised: Can we find some complementary features and combine them
to improve the accuracy significantly for depth-based action recognition? To address the question and have
a better understanding of the problem, we study the fusion of different features for depth-based action
recognition. Although data fusion has shown great success in other areas, it has not been well studied yet
on 3D action recognition. Some issues need to be addressed, for example, whether the fusion is helpful or
not for depth-based action recognition, and how to do the fusion properly. In this article, we study different
fusion schemes comprehensively, using diverse features for action characterization in depth videos. Two
different levels of fusion schemes are investigated, that is, feature level and decision level. Various methods
are explored at each fusion level. Four different features are considered to characterize the depth action
patterns from different aspects. The experiments are conducted on four challenging depth action databases,
in order to evaluate and find the best fusion methods generally. Our experimental results show that the four
different features investigated in the article can complement each other, and appropriate fusion methods
can improve the recognition accuracies significantly over each individual feature. More importantly, our
fusion-based action recognition outperforms the state-of-the-art approaches on these challenging databases.

Categories and Subject Descriptors: I.4.8 [Image Processing and Computer Vision]: Scene Analysis—
Motion; I.4.8 [Image Processing and Computer Vision]: Scene Analysis—Depth cues; I.4.8 [Image Pro-
cessing and Computer Vision]: Scene Analysis—Sensor fusion; I.4.9 [Image Processing and Computer
Vision]: Applications; I.4.7 [Image Processing and Computer Vision]: Feature Measurement—Feature
representation; I.5.2 [Pattern Recognition]: Design Methodology—Feature evaluation and selection

General Terms: Algorithms, Experimentation, Performance, Human Factors
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1. INTRODUCTION

Human action recognition has been an active research topic for more than two decades.
It has a wide range of applications in the real world, such as Human-Computer Inter-
action (HCI), video surveillance, and video retrieval and security [Poppe 2010]. Most of
the work has focused on action recognition using the videos captured in the visible spec-
trum [Turaga et al. 2008; Aggarwal and Ryoo 2011; Weinland et al. 2011]. Very recently,
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with the emerging, low-cost RGB-D sensors (e.g., the Kinect), human action recogni-
tion in three-dimensional (3D) data has gained great attention in computer vision.
Depth maps provide many advantages over traditional color images/videos. For exam-
ple, first the depth maps provide the 3D structure and shape information, which makes
several problems easier to deal with, such as segmentation and detection. Second, depth
images/videos are insensitive to illumination changes. Third, a quite accurate estima-
tion of 3D human skeleton joint positions can be obtained from the depth data [Shotton
et al. 2011]. Therefore, using the Kinect sensor, three channels (RGB, depth, and skele-
ton joint positions) of data are provided, which not only bring great benefits for robotics
and human-centered computing but also give a broader scope for action recognition as
well [Chen et al. 2013].

1.1. Related Work on Depth-Based Action Recognition

Depth-based action recognition has been actively studied since 2010 [Li et al. 2010].
Several algorithms and/or features have been proposed in the literature.

There are several representative works for action recognition with 3D depth data. Li
et al. [2010] proposed an action graph for depth action recognition. A bag of 3D points
sampled on depth data is used to encode the action posture, and the action graph is
used to model the dynamics of actions. Wang et al. [2012b] proposed to combine the
skeleton feature and local occupation feature, then learned an actionlets ensemble
model to represent actions. A multiple kernel learning method is used to combine
the actionlets. Wang et al. [2012a] also proposed a semilocal feature called Random
Occupancy Patterns (ROPs), which is extracted from four-dimensional (4D) volumes.
Sparse coding is utilized to encode the features and the Support Vector Machine (SVM)
is used for classification. Vieira et al. [2012] proposed the space-time occupancy patterns
to represent depth sequences. Both space and time axes are divided into multiple
segments. Occupancy feature is computed in each cell, and a nearest-neighbor classifier
is applied for recognition. A different approach based on Motion History Images (MHIs)
was proposed by Yang et al. [2012]. The main idea is to use accumulated depth maps
and compute Histogram of Gradients (HOGs) features to represent human actions.
More recently, Oreifej and Liu [2013] proposed a method called HON4D to describe the
depth sequence as a histogram captured in the 4D space of time, depth, and spatial
coordinates. A 600-cell polychoron is used to quantize and represent the features. They
used the SVM classifier and showed a good performance for action recognition. In Xia
and Aggarwal [2013], a modified spatiotemporal feature based on Cuboids is proposed
to capture the action motion and eliminate the flip noise on the depth video. A feature
selection scheme is applied to the proposed features and then the selected features are
fed into the SVMs for classification.

On the other hand, by modeling the skeleton joints, human actions in a depth video
can be represented by the sequence of human postures and can be fed into the learning-
based algorithms, such as Hidden Markov Models (HMMs) and Dynamic Time Warping
(DTW). In Sempena et al. [2011] and Reyes et al. [2011], similar ideas were proposed
where feature vectors defined by skeleton joints are used to model the human action,
and DTW is applied to the resulted feature vector for action recognition. Yang and Tian
[2012, 2013] proposed another skeleton feature to model the human action posture
frame by frame based on computing posture feature, motion feature, and the offset
feature, according to the relative frames in the action video. In Wang et al. [2012b],
pairwise skeleton joint positions were computed in each frame to shape the motion of
the human body. Xia et al. [2012] proposed an alternative feature called HOJ3D based
on the skeleton joints. A coordinate based on skeleton joints is constructed, and multiple
3D bins are used to extract histogram features, by counting the number of joints in
each bin. A HMM is used for action classification. Similarly, Miranda et al. [2012] used
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the pose descriptor in a torso-based coordinate system and the SVM classifier to learn
key poses. A decision forest is then used to recognize the action classes.

There are also works using both the RGB videos and depth maps for action recogni-
tion [Sung et al. 2012; Ni et al. 2011; Zhao et al. 2012]. The HOG feature was used as
the descriptor for both RGB and depth images in Sung et al. [2012]. The hand positions,
body pose, and motion features were also extracted from skeleton joints. A two-layer
maximum-entropy Markov model is trained for classification.

1.2. Related Work on Data Fusion

Data fusion has been studied extensively, and shown great performance in many areas,
including multisensor systems [Hall and Llinas 1997], multimedia analysis [Atrey et al.
2010], human identification [Ben-Yacoub et al. 1999], face recognition [Chang et al.
2003], handwriting recognition [Xu et al. 1992], biometrics [Ross and Jain 2003], and
so forth. Various methods have been proposed and investigated for data fusion.

In Atrey et al. [2010], a survey of multimodal fusion for multimedia analysis was
conducted. A categorization of different fusion methods with a thorough review of liter-
ature was given. They argued that the linear weighted fusion and SVM fusion methods
are more often used because of the efficiency of these methods. Kittler [1998] proposed
the theoretical framework for combining different classifiers, and Alkoot and Kittler
[1999] investigated various rule-based fusion methods and experimentally validated
the performance. Later on, a more extensive study was conducted in Kuncheva [2002]
on classifier fusion strategies. In Kuncheva et al. [2001], a decision template is pro-
posed to represent different fusion methods. In Ross and Jain [2003], different levels
of fusion methods were presented for biometrics applications.

The usefulness of data fusion in other areas motivated us to explore fusion-based
approaches for depth-based action recognition, which has not been well studied yet, to
the best of our knowledge. In this article, fusion methods are explored at two levels: fea-
ture level and decision level. For feature-level fusion, the random forests, joint mutual
information, and conditional mutual info maximization approaches are studied. For
decision-level fusion, the majority voting, naive-Bayes combination, rule-based fusion,
SVM-based fusion, and multiagent system approaches are studied. These approaches
are described in Section 3.

1.3. Our Approach

We study whether and how fusion-based approaches can help to improve the action
recognition accuracies in depth videos. The underlying assumption is that there are
complementary features that can be extracted in depth videos. For the purpose of fusion,
the complementary features should be extracted and combined together appropriately,
otherwise the overall accuracy might not be improved even with multiple features.
In our preliminary work [Zhu et al. 2013], the spatiotemporal features and skeleton
features were combined using the random forest method [Breiman 2001]. This fusion
approach improves the accuracies of depth-based action recognition significantly. In
this article, we will further explore our fusion-based idea, by combining more features
with diversity, investigating and evaluating a variety of fusion methods comprehen-
sively, and using more databases to validate the fusion methods for generality.

Several representative data fusion methods are explored for our problem. We com-
pare different fusion methods and find the best ones to solve the specific problem of
depth-based action recognition.

The major contributions of our work include the following: (1) Evaluation of different
features on depth-based action recognition, using the same experimental setting. There
are four different features chosen for the evaluation. Two of them capture local motions
and were originally proposed for action recognition in RGB videos, the third one extracts
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features according to the skeleton joints positions, and the last one extracts features
from 3D surface normal distributions. (2) Exploration of two levels of fusion schemes,
that is, the feature-level and decision-level fusions. Several methods are explored at
each fusion level. (3) Validation of the capability of different fusion methods and finding
the appropriate one for depth-based action recognition on four challenging databases.

The remaining of the article is organized as follows: In Section 2, we introduce four
different features for depth-based action characterization. Conceptually these features
represent the action patterns from different aspects. In Section 3, we describe dif-
ferent fusion methods belonging to two different fusion levels. The experiments are
conducted in Section 4 with comparisons to the state-of-the-art methods. Finally, we
draw conclusions.

2. FEATURE EXTRACTION AND DESCRIPTION ON DEPTH DATA

Feature extraction and representation is an important step for action recognition. To
develop our fusion-based approach to depth-based action recognition, we use multi-
ple, diverse representations to characterize the action patterns. In our preliminary
work [Zhu et al. 2013], the spatiotemporal interest point features (STIPs) and skele-
ton features are extracted and fused for action recognition in 3D. Here we expand the
preliminary work by integrating more features, and executing a systematic study of
various fusion methods. The 4D descriptor (HON4D) can characterize the normal dis-
tributions of the 3D surfaces in performing an action [Oreifej and Liu 2013], and the
space-time autocorrelation (STACOG) feature can represent statistical correlations of
local derivatives [Kobayashi and Otsu 2012]. Totally there are four different features
we have investigated to characterize depth action patterns from different aspects, and
develop our fusion-based recognition framework. We introduce these features in the
following.

2.1. Spatiotemporal Interest Point Features

STIP features capture the complex motion of human actions. These features are quite
popular for action representation in color videos [Shabani et al. 2012], but not often
in depth data. Here we adapt some STIP features to depth sequences. We attempted
several combinations of the detectors and descriptors and find the best ones for depth
action characterization. Because of the space limits, we briefly describe the STIP fea-
tures that we used, and only the best one will be reported in each dataset experimentally
(see Section 4).

The Harris3D detector [Laptev and Lindeberg 2004] computes the locations of the
interest points based on a second-moment matrix of gradients with the convolution of
spatiotemporal Gaussian kernel in the video sequence. It locates the spatiotemporal
volumes where large variations of gradient exist along space and temporal directions.
Specifically, a spatiotemporal second-moment matrix is computed from a video se-
quence f,

μ = g(·) ×
⎛
⎝ L2

x Lx Ly Lx Lt
Lx Ly L2

y LyLt

Lx Lt LyLt L2
t

⎞
⎠, (1)

where g(·) is a Gaussian weight function and L is the convolution of f with the spa-
tiotemporal gradient. The interest point locations are determined by computing the
local maxima of the response function R = det(μ) − k · trace3(μ).

Another detector applied in this article is the Hessian detector [Willems et al. 2008].
The Hessian detector uses the response function S = |det(H)| to measure the strength
of each interest point, where H is the Hessian matrix.
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Given the detected locations, various descriptors can be used to characterize the
local motion patterns. The HOG/HOF descriptor was proposed in Laptev et al. [2008]
to describe local human motion in RGB videos. It computes the HOG and Histogram
of Optical Flow (HOF) in each local volume. Klaser et al. [2008] extends the HOG
to HOG3D descriptor, which computes the 3D gradient and constructs a histogram
as the feature vector. It computes the histogram of 3D gradient orientations. The
integral videos can be precomputed to efficiently compute the gradients and combine
both shape and motion information at the same time. The extended SURF (ESURF)
descriptor [Willems et al. 2008] is an extension of the SURF [Bay et al. 2006] for action
representation.

2.2. STACOGs

A method called the STACOG was proposed with the bag-of-frame-features computa-
tion in Kobayashi and Otsu [2012] to extract motion features from RGB action videos.
It is computed with the frame-based STACOG features sampled densely along the time
axis. In order to extract the feature, space-time gradient vector is calculated by taking
derivatives (Ix, Iy, It) at each local space-time volume, around each space-time point.
The gradients can be represented by the angles θ = arctan(Ix, Iy) and φ = arcsin(It/m),

where m =
√

I2
x + I2

y + I2
t is the magnitude. Then a histogram is constructed by binning

the gradients in a unit sphere. The histogram is defined as Space-Time Orientation
Coding (STOC) vector. The autocorrelation functions can be computed for the space-
time gradients:

F0 = �rm(r)h(r), (2)

F1(a1) = �rmin[m(r), m(r + a1)]h(r)h(r + a1)T , (3)

where r is the reference point (x, y, t), h is the STOC vector, and a1 is the displacement
vector from the reference point, and F0 and F1 are the zero- and first-order autocorre-
lations. We adapt the STACOG features from RGB to depth data.

2.3. EigenJoints Feature

Human skeleton joints can be detected fast on depth data [Shotton et al. 2011]. The
skeleton joint positions can be viewed as an alternative modality for action charac-
terization. Features can be computed from skeleton joint positions to represent the
action patterns, which are usually not available in color videos. Several features ex-
tracted from skeleton joints are proposed for depth-based action recognition such as
Wang et al. [2012b], Xia et al. [2012], and Yang and Tian [2012]. We implemented these
features and found that the method in Yang and Tian [2013] gives a better representa-
tion. Thus, we chose the histogram of the skeleton joints features to represent human
actions.

Specifically, the features consist of three parts: (1) current posture: pairwise joint
distances in current posture compared in the current frame; (2) motion: joint differences
between current posture and the previous one; and (3) offset: joint differences between
current posture and the original (in the first frame). Denote each 3D skeleton joint by
pi = (xi(t), yi(t), zi(t)) at frame t. The number of skeleton joints in each frame is denoted
as N. The feature vector can be computed by

f = [ fcurrent fmotion foffset], (4)

fcurrent = {pi − pj | i �= j; i, j = 1..N}, (5)

fmotion = {pi(t) − pi(t − 1) | i = 1..N}, (6)
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Fig. 1. Illustrate the schemes of the decision-level/late fusion (left) and feature-level/early fusion (right) in
combining different features for 3D action recognition.

foffset = {pi(t) − pi(0) | i = 1..N}, (7)
where p(0) denotes the original posture in each action sequence.

2.4. Histogram of Oriented 4D Normals (HON4D)

The depth data can be represented as a surface in 4D space with a set of points (x, y, t, z),
where z is the depth value of the point. Then the normal to the surface can be computed
by

n = ∇S =
(

∂z
∂x

,
∂z
∂y

,
∂z
∂t

,−1
)T

. (8)

The surface normals over all voxels in the depth sequence can be used for action
representation [Oreifej and Liu 2013]. A 600-cell polychoron in 4D space is used to
quantize the 4D normals to derive the feature. The HON4D will be combined with
other features together to develop our fusion-based approach.

3. FUSION METHODS

Data fusion has gained much attention in recent years. It can be accomplished at
different levels [Ross and Govindarajan 2005], for example, early fusion (sensor, feature
levels), where fusion is conducted before matching, and late fusion (rank, score, decision
levels), where fusion is executed after matching. We present several fusion methods
at both the decision and feature levels to solve our problem of depth-based action
recognition (see Figure 1 for an illustration).

3.1. Feature-Level Fusion

According to Ross and Jain [2003], feature-level fusion is usually conducted through
feature normalization and feature selection or transformation because of the relation-
ship between different feature sets and the curse of dimensionality [Donoho et al. 2000].
The objective of feature-level fusion is to combine different feature sets to generate a
new feature vector. For feature selection, we adopt two representative approaches from
Brown et al. [2012]. Totally, we explore three methods for feature-level fusion to deal
with the problem of depth-based action recognition.

3.1.1. Random Forests. Random Forests (RFs) [Breiman 2001] are usually considered
as a classifier (or regressor) using tree predictors in which each tree splits the data
depends on the randomly selected features. The RFs can be considered as a fusion
method where the fusion is done through randomly selecting and combining differ-
ent features at each tree node. There are many nice properties of the RFs method:
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(1) robustness to noise, (2) efficiency for classification, and (3) improvement of accuracy
by growing multiple trees and voting for the most possible class. Here, we use the RFs
for fusion of distinct features and action classification jointly.

Let the feature vector be v ∈ R
N, where the number of the features for each sample is

N. A number n < N is specified at each node of the tree, where n features are randomly
selected to determine the split of that node. The randomly selected n features are used
in the tree node.

The best split is determined by the information gain using these features. Several
decision trees are growing to generate a forest, and each tree grows until it reaches the
maximum tree depth maxdep, or the tree node receives the given number of minimum
samples minnode. In the leaf nodes, the probabilistic distribution for each class is com-
puted. In this way, the feature fusion is executed randomly and naturally in the tree
building process.

In recognition phase, each new observation x goes down to one of the leaf nodes in
each tree, denoted as l(t, x), which contains the distribution Pn of all classes. The RFs
classifier chooses the class label that gets the most votes over all the trees:

ĉ = arg max
j

1
T

T∑
t=1

pj
l(t,x), (9)

where ĉ is the predicted class label, T is the total number of trees, and l(t, x) is the leaf
node of tree t where the test sample x falls into. pj

l(t,x) is the posterior probabilities for

class j at leaf node l(t, x), pj
n = |Sj |

|S| , where |S| is the total number of samples in this
leaf node and |Sj | is the number of samples of class j in S.

3.1.2. Joint Mutual Information. Joint Mutual Information (JMI) was proposed to select
a discriminative feature subset from the feature pool [Yang and Moody 1999]. In our
case, different features are normalized and concatenated to construct the feature pool.
We investigate if the feature selection by JMI can fuse different features for our action
recognition in 3D.

The mutual information between X and Y can be defined [Yang and Moody 1999] by

I(X; Y ) = H(X) − H(X|Y ) = �x∈X�y∈Y p(xy) log
p(xy)

p(x)p(y)
, (10)

where H(X) denotes the entropy of the random variable:

H(X) = −�x∈X p(x) log p(x), (11)

and the conditioned form of entropy H(X|Y ) can be written as

H(X|Y ) = −�y∈Y p(y)�x∈X p(x | y) log p(x | y). (12)

As a feature selection method, the JMI can be viewed as using a criterion J to
measure how useful a feature or feature subset is when used by a classifier. This
criterion is defined as

Jjmi(vk) = �vk∈S I(vkv j ; Y ), (13)

where S is the previously selected feature set, Y is class label, and vk is the kth feature
in the feature vector v.

The JMI pairs the candidate features in vk with each newly selected feature to
increase the complementary information between features [Brown et al. 2012].
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3.1.3. Conditional Mutual Info Maximization. Conditional Mutual Info Maximization
(CMIM) is an alternative feature selection method [Fleuret 2004]. Different from JMI,
the CMIM method adds a new feature only if the optimal value based on a criterion
is larger than using the features already selected, such that the information has not
been brought by any already selected features. This criterion is given by

Jcmim(vk) = minvk∈S
[
I(vk; Y | v j)

]
, (14)

which can be equally written as

Jcmim(vk) = I(vk; Y ) − maxvk∈S[I(vk; v j) − I(vk; v j | Y )], (15)

where S is the previously selected feature set, Y is class label, and vk is the kth feature
in the feature vector v.

Using the feature selection procedures, different feature sets can be fused together
to feed into a classifier for action recognition.

3.2. Decision-Level Fusion

Different from feature-level fusion, the decision-level fusion or late fusion deals with
the fusion process on the decision level, where classifier outputs are combined to make
the final decision.

Let v ∈ Rn be a feature vector extracted from an input pattern, and let {ω1, ω2, . . . , ωc}
be the class labels of c classes. For a classifier D, the output of D given the input pattern
v can have two representations: D(v) = [d1(v), d2(v), . . . dc(v)], where di(v) ∈ [0, 1], i =
1..c, is an estimate of the posterior probability P(ωi|v) offered by classifier D. The other
is D(v) = ωi, i ∈ {1 . . . c}, where ωi is the class label given by classifier D.

When there exist totally L classifiers, denoted by {D1, . . . , DL}, the representations
for multiclassifiers can be given [Kuncheva et al. 2001] by

(1) Decision Profile:

DP(v) =

⎡
⎢⎢⎢⎣

d1,1(v) · · · d1, j(v) · · · d1,c(v)
· · · · · · · · ·

di,1(v) · · · di, j(v) · · · di,c(v)
· · · · · · · · ·

dL,1(v) · · · dL, j(v) · · · dL,c(v)

⎤
⎥⎥⎥⎦, (16)

where di, j(v) denotes the estimate of posterior probability of class j made by classifier
Di, i ∈ [1, L], j ∈ [1, c].

(2) Decision Vector:

DV (v) = [
ωc

1 · · · ωc
i · · · ωc

L

]
, (17)

where ωc
i is the class label given by classifier Di. Given the preceding representations,

we will present specific fusion methods for decision-level fusion as follows.
Popular methods for decision-level fusion include (weighted) majority voting, naive-

Bayes combination, weighted sum, minimum, maximum, median, product, SVM-based
fusion, and multiagent system [Kuncheva et al. 2001; Ross and Jain 2003; Kittler 1998;
Atrey et al. 2010; Da C. A. and Fairhurst 2009].

3.2.1. Majority Voting. Majority voting is one of the most common approaches for
decision-level fusion [Kittler 1998]. The idea is to assign the final class label by “voting”
over the different classifiers, and select the one that the majority classifiers agree on.
For each classifier Di in L classifiers, the output of Di given an input pattern v is a
predicted class label ωc

i , and the final class label is assigned according to which class
label is the majority in the decision vector DV (v) = [ωc

1 · · · ωc
i · · · ωc

L]. If more than
one label occurs, the class label will be randomly selected from those labels.
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It is reasonable to assign different weights to the decisions made by different classi-
fiers, when the performance of these classifiers is quite different. Larger weights can
be assigned to the decisions made by more accurate classifiers. So the discriminant
function for class ωk can be rewritten as

gk = �L
i=1wisk

i , (18)

where wi is the weight of classifier Di, and sk
i is an indicator function defined as

sk
i =

{
1, if the classifier Di outputs class label ωk
0, otherwise. (19)

The weights for each classifier can be learned in a validation set.

3.2.2. Naive-Bayes Combination. The naive-Bayes fusion method relies on transforming
decision labels into probabilities, under the assumption that different classifiers are
mutually independent in the multiclassifier system [Xu et al. 1992]. The first step is
to construct Confusion Matrix CMi for each classifier Di. Each element on the kth row
and sth column denotes the number of patterns of the training dataset of which the
true label is ωk but is assigned to class ωs by Di. The next step is to construct the Label
Matrix LMj for each classifier, where each element is defined by

lmi
k,s = P̂(ωk | Di(v) = ωs) = cmi

k,s

cmi
�,s

, (20)

where cmi
k,s denotes the element on the kth row and sth column of CMi, and cmi

�,s
denotes the sum of the sth column of CMi.

For each pattern v, classifier Dj outputs a class label; the estimated probability of
the class label ωi is computed by

θi(v) = �L
j=1 P(i | Dj(v) = sj) = �L

j=1lmj
i,sj

. (21)

We found that the preceding multiplication in Xu et al. [1992] cannot work well for
our problem. Replacing it with summation can result in much better results:

θi(v) = �L
j=1lmj

i,sj
. (22)

3.2.3. Sum, Minimum, Maximum, Median, and Product Rules. These fusion methods can be
categorized as rule-based methods [Kittler 1998; Kuncheva 2002]. These basic rules
are defined to combine multiple classifiers and can generally perform well if the quality
of temporal alignment between different modalities is good [Atrey et al. 2010].

Denote θ the predicted class label, and P(ω j | di) the posteriori probability of θ
assigned as class ω j by the measurement vector di from the ith classifier. We have

(i) Sum rule: Assign θ → ω j if

(1 − L)P(ω j) + �L
i=1 P(ω j | di) = c

max
j=1

[
(1 − L)P(ω j) + �L

i=1 P(ω j | di)
]
. (23)

(ii) Maximum rule: Assign θ → ω j if

L
max

i=1
P(θ = ω j | di) = c

max
j=1

L
max

i=1
P(θ = ω j | di). (24)

(iii) Minimum rule: Assign θ → ω j if

L
min
i=1

P(θ = ω j | di) = c
max

j=1

L
min
i=1

P(θ = ω j | di). (25)
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(iv) Product rule: Assign θ → ω j if

P−(L−1)(ω j)�L
i=1 P(θ = ω j | di) = c

max
j=1

P−(L−1)(ω j)�L
i=1 P(θ = ω j | di). (26)

(v) Median rule: Assign θ → ω j if

L
max

i=1
P(θ = ω j | di) = c

max
j=1

medianL
i=1 P(θ = ω j | di). (27)

3.2.4. SVM-Based Fusion. SVM-based fusion is a decision-level fusion method that
combines multiple individual SVM classifiers by a new SVM classifier using their
confidence scores. Basically, given the training samples xi ∈ Rn and the class labels
yi ∈ {−1, 1} , the SVM [Vapnik 1998] has the following optimization problem:

min
W,b,

1
2

w · w + C�l
i=1ξi, s.t. yi(w · xi + b) ≥ 1 − ξi, ξi ≥ 0, i = 1, . . . , l. (28)

The SVM-based fusion is based on a two-layer structure, where the input to the higher-
layer SVM is the confidence scores given by individual lower-layer SVM classifiers
[Atrey et al. 2010]. Each lower-layer SVM classifier uses one feature set and outputs
the confidence scores instead of class labels. The confidence scores of all individual
classifiers are combined into a new feature vector, and then fed into the higher-layer
SVM for final classification.

3.2.5. Multiagent System. A Multiagent System (MAS) was proposed to solve the mul-
ticlassifier classification problem [Da C. A. and Fairhurst 2009]. An auction-based ne-
gotiation is used for classification. The idea is that all agents/classifiers are considered
to be the buyers who are trying to reach an agreement in relation to an input pattern.
Specifically, the confidence scores of each agent/classifier Di given an input pattern v is
computed in the first step, denoted as Di(v) = [di,1(v), di,2(v), . . . , di,c(v)], and the class
with maximum confidence of each agent is selected as the chosen class for that agent,
the maximum confidence value of each agent is denoted as [d1,m1 , d2,m2 , . . . , dL,mL]. Given
L agents, the cost for the agents is defined as a vector cj = {c j

1, c j
2, . . . , c j

L}. The cost for
the ith agent is computed by

c j
i =

{
dj,mj − dj,i, i �= j
dj,i − �c

k�=idi,k, i = j. (29)

The agent with the highest cost arg j maxL
j=1 c j

j is considered the loser. Then the
confidence of the chosen class of all agents is changed according to the difference
between the current confidence and their responding cost: di, j = di, j − c j

j . After the
confidence values of each agent have been updated, the agent can decide whether
or not to keep the chosen class, according to the current confidence values. When an
agent loses twice in succession, it is then discarded from the negotiation. The remaining
agents continue this process, until only one agent remains in the auction.

4. EXPERIMENTS

In this section, we conduct experiments on four challenging depth-based action
databases, using four different features and various fusion methods. First, we trans-
formed the depth data into gray level depth videos and projected all the skeleton
joint positions into image coordinates. After this preprocessing, feature extraction is
conducted on each database. Every action sequence is represented by four different fea-
ture vectors, that is, the STIP, STACOG, EigenJoints, and HON4D, respectively. For
feature quantization, the K-means clustering method is used to derive histograms for
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Fig. 2. Some examples (with skeleton joints shown) in the MSRAction-3D dataset.

each feature in each action video. Before investigating the comprehensive fusion-based
framework, we analyze the performance of the individual feature for action recogni-
tion. Note that the same training and test sets are used for both individual features
and various fusion methods. The SVM is used as the supervised classifier for each indi-
vidual feature vector. After evaluating the individual features, various fusion methods
are investigated. On feature-level fusion, different feature vectors are normalized first
before fusion. RFs can both select features and execute the classification task. For other
feature-level fusion methods, the SVM is used as the classifier. On decision-level fusion,
the SVM classifiers are trained for each feature independently, from which multiple
decisions are made for each test pattern. The confidence scores or the intermediate
decision class labels are transmitted into the fusion engine for fusion with different
methods.

In the following, we introduce the four databases first, followed by some experimen-
tal settings, and then the experimental results. We also provide some analysis and
discussions about the experimental results.

4.1. Databases

Four challenging 3D action databases are used in our experiments to evaluate the
performance of different fusion approaches. In brief, these four databases capture
various human actions/activities under different circumstances (viewpoints, locations,
backgrounds, etc.) with different considerations (# of actions, # of human subjects,
different scenarios, etc.) and complexity. In additon, the performed actions are quite
different in these databases. More details are given in the following.

The MSRAction3D dataset [Li et al. 2010] captures 20 human actions using a depth
camera similar to the Kinect sensor. In total, 10 subjects were asked to perform 20
action classes three times each. Each video clip is of resolution 640 × 480 at 15fps. We
used all of the 557 video clips, along with the skeleton joint locations provided by Li
et al. [2010]. In our experiment, we follow the same settings of “cross-subjects” as in Li
et al. [2010]. The whole dataset was divided into three subsets; half of the subjects are
used for training while the other half are used for testing. The final accuracy on this
dataset is the average of the accuracies over the three subsets. See Figure 2 for some
example images in this dataset.

The MSRDailyActivity3D dataset [Wang et al. 2012b] was collected with human
daily activities by the Kinect. In total, there are 16 activities in this dataset: drink,
eat, read book, call cellphone, write on a paper, use laptop, use vacuum cleaner, cheer
up, sit still, toss paper, play game, lay down on sofa, walk, play guitar, stand up, and
sit down. Each subject performed an activity in two scenarios, one “sitting on sofa” and
the other “standing.’ The number of activity videos is 320. Three types of data (i.e.,
the RGB, depth, and skeleton joint positions) are provided in this dataset. The specific
subject IDs which are used in training and testing are listed in Table I. See Figure 3
for examples of depth images in this dataset.
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Fig. 3. Some examples (with skeleton joints shown) from the MSRActivity3D dataset. The actions (from left
to right) are cheer up, drink, stand up, play guitar, and walk.

Fig. 4. Some example images (with skeleton joints shown) in the UTKinect-Action dataset. The actions
(from left to right) are carry, clap hands, pick up, push, and wave.

Fig. 5. Some example images (with skeleton joints shown) from the CAD-60 dataset. The actions (from left
to right) are brush teeth, talk on phone, cook, relax on couch, and wear contact lens.

The UTKinect-Action dataset [Xia et al. 2012] contains 10 different action classes
performed by 10 subjects, collected by a stationary Kinect sensor. The 10 action classes
are walk, sit down, stand up, pick up, carry, throw, push, pull, wave hands, clap hands.
Depth sequences are provided with resolution 320 × 240, and skeleton joint locations
are also provided in this dataset. In our experiments, we used the cross-subjects scheme
with half of the subjects for training while the remaining are for testing (see Table I),
which is different from the leave-one-out scheme used in Xia et al. [2012] where more
subjects were used for training. Some example images of this dataset are shown in
Figure 4.

The Cornell Activity Dataset-60 (CAD-60) [Sung et al. 2012] has 60 RGB-D sequences
collected by the Kinect; each video is of length about 45s. In this dataset, four different
subjects performed 12 different activities in five locations. The five locations are office,
kitchen, bedroom, bathroom, and living room. To reduce the computational complexity,
we first subsample each video to the length about 500 frames. Then we follow the same
procedure of “new person” as in Sung et al. [2012] for training and testing (see Table I).
See Figure 5 for some example images of this dataset.

4.2. Experimental Settings

We follow the same experimental settings as our conference paper [Zhu et al. 2013].
Specifically, for the STIP feature extraction, Harris3D detectors with HOG/HOF de-
scriptors are used for the MSRAction3D dataset. The Harris3D detector and HOG3D
descriptor are used for the UTKinect-Action dataset. On the CAD-60 dataset, the Hes-
sian detector and ESURF descriptor are adopted. On the MSRDailyActivity3D dataset,
the Hessian detector and HOG3D descriptor are used to extract local features. These
are the best STIP features in each dataset, based on a systematic evaluation. Because
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Table I. Subject IDs Used for Training and Testing, Respectively, in Each Database

Dataset Training Subject IDs Testing Subject IDs

MSRAction3D 2, 3, 5, 7, 9 1, 4, 6, 8, 10
MSRDailyActivity3D 1, 6, 8, 9, 10 2, 3, 4, 5, 7
UTKinect-Action3D 1, 2, 3, 4, 8 5, 6, 7, 9, 10
CAD-60 1, 3, 4 2

of the space limit, we do not present the detailed evaluations here. The K-means clus-
tering method is applied to quantize the STIP features into histograms. Empirically,
we set K = 100 to get the clusters or keywords. For the skeleton joints feature, the
bag-of-words scheme is used for quantization. In order to get the STACOG feature, we
follow the settings in Kobayashi and Otsu [2012], adopting a hemisphere for coding
the gradients. Four orientation bins along the longitude are arranged on each of five
layers along the latitude, and one bin is located at pole; totally there are B = 21 bins.
We restrict N ∈ {0, 1}, where zeroth-order F0 and the first-order feature F1 are consid-
ered. The dimensionality of STACOG features is d = B + 13B2 = 5,754. The Linear
Discriminant Analysis (LDA) is performed for dimension reduction. For the HON4D
feature, each video sequence is divided into 5×4×3 spatiotemporal cells (5×4×2 cells
for the UTKinect-Action dataset because this dataset has typically shorter video clips)
and a separate HON4D feature is obtained for each cell. The final descriptor is a con-
catenation of the HON4Ds obtained from all the cells. We used the code provided by
the authors [Oreifej and Liu 2013] for the HON4D feature extraction on all databases,
except the MSRDailyActivity3D dataset. Some kinds of local HON4D features were
provided by the authors in Oreifej and Liu [2013], which may be useful to deal with the
changes of subjects’ locations and temporal motions for the actions in the MSRDaily-
Activity3D dataset. Because the dimensionality of the HON4D feature is much higher
than the other three features, we use PCA to reduce the HON4D feature dimension to
100 in our experiments. For feature normalization, we employ the Gaussian normal-
ization scheme. For the classifiers used in the experiment, the SVMs with χ2 kernel are
used. For the RFs the number of trees can be selected from [1, 500], and the number of
features used in each split can be selected from [3, 60]. The related parameters were
adjusted in a tuning set, which is about 20% of the training examples in each training
dataset.

4.3. Gaussian Normalization

After the feature representation, the data range of different features might be very
different; a direct fusion of such features might not perform well. The Gaussian nor-
malization is used to map different features into a comparable range. Suppose there
are M video sequences in the database; the four types of features can form an M × N
feature matrix F = fij , where fij is the jth feature component in feature vector fi,·;
each feature vector is of N dimensions. Our goal is to normalize the entries in each
column f·, j to the same range so as to ensure that each individual feature component
receives equal weight in determining the similarity between two vectors. We compute
the mean μ j and standard deviation σ j of the sequence and then normalize the original
sequence into a normal distribution N ∼ (0, 1) as follows:

f ′
i j = fij − μ j

σ j
, (30)

then the probability of a feature component value in the range of [−1, 1] is approxi-
mately 99%. An additional shift will guarantee that 99% of feature values are within
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Fig. 6. An evaluation of the individual features on four databases: MSRAction3D, MSRDailyAcitivity3D,
Kinect-Action, and CAD-60. The same training and test data are used for each feature to have a fair
comparison.

[0,1]:

f̃i j = f ′
i j + 1

2
. (31)

After this shift, we can consider that all of the feature component values are within
the range of [0,1]. Therefore, this normalization process ensures the same range of the
feature components when different types of feature are used.

4.4. Experimental Results

We present the experimental results of individual features first, and then the fusion
results based on different fusion methods.

4.4.1. Results of Individual Features. We first investigate the individual features on the
depth action datasets. The bag-of-words approach is used for histogram construction
and the SVM is used as the classifier. In order to explore the capability of different
features, we use the bag-of-feature approach for the STACOG feature, other than the
bag-of-frame as in Kobayashi and Otsu [2012]; for the HON4D feature, we adopted
the uniform settings, without using the skeleton information for local nonuniform
quantization as in Oreifej and Liu [2013]. Different from Yang and Tian [2012] where
the naive-Bayes nearest-neighbor classifier was used, we extract the skeletons and
then construct the histogram features for the SVM classifier.

The experimental results on four databases using four different features are shown
in Figure 6. The HON4D feature performs the best on the MSRAction3D (accuracy:
92.0%) and MSRDailyActivity3D (accuracy: 75.6%) databases, while on the other two
databases, its accuracies are lower than some other features. On the other hand, the
EigenJoints feature achieves the best results on the UTKinect-Action (accuracy: 87.9%)
and CAD-60 (accuracy: 81.3%) databases. This feature performs the second best in the
other two databases. It can also be observed that the STIP feature and the STACOG
feature exhibit comparable performance, although they are not the best on these four
databases. This fair comparison of different features has not been carried out in pre-
vious research. Our evaluation tells that no single feature can perform the best in
all databases. This is also one of the reasons why we are interested in studying the
fusion-based approach for depth-based action recognition.

After evaluating the individual features on the depth action databases, we conduct
experiments applying various fusion methods, and show the performance using the
same data (training and test sets) on the four databases.

4.4.2. Fusion Results on MSRAction-3D Dataset. The experimental results on MSRAction-
3D dataset using various fusion methods are shown in Table II. The highest accuracy
of 98.2% is achieved by the sum rule based fusion method, which is significantly better
than any single features. For example, the accuracy of the best single feature HON4D
is 92.0%. We can also observe that in the feature-level fusion scheme, the RFs fusion
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Table II. The Recognition Accuracies of Individual Features and Various Fusion Methods on Four Datasets
The Decision-Level Fusion Methods Include the MAS, MAJ, SVM, SUM, MIN, MAX, MED, and PRODUCT, and the
feature-level fusion methods include the RFs, JMI, and CMIM (see text for the meaning of each fusion method).

Method Accuracy
MSRAction3D UTKinect CAD-60 MSRActivity

Single Feature

STIPs 77.5% 80.8% 75.0% 70.6%
EigenJoints 90.9% 87.9% 81.3% 73.8%

STACOG 80.6% 62.6% 68.8% 63.1%
HON4D 92.0% 77.8% 56.3% 75.6%

Decision-Level Fusion

MAS 93.3% 83.8% 68.8% 59.4%
MAJ 96.3% 92.9% 87.5% 88.1%
SVM 97.3% 86.9% 81.3% 79.4%
SUM 98.2% 91.9% 68.8% 85.6%
MIN 90.6% 61.6% 50.0% 58.8%
MAX 95.2% 88.9% 68.8% 72.5%
MED 96.3% 90.9% 62.5% 70.0%

PRODUCT 96.4% 86.9% 68.8% 72.5%

Feature-Level Fusion
RFs 97.3% 92.9% 87.5% 88.8%
JMI 94.2% 85.9% 81.3% 69.4%

CMIM 94.6% 85.9% 81.3% 70.0%

Fig. 7. The confusion matrix of the SUM rule-based fusion on the MSRAction3D dataset.

approach achieves the accuracy of 97.3%, close to the best result obtained by the sum
rule based decision-level fusion method. The confusion matrix is shown in Figure 7,
where most of the actions can be separated well.

4.4.3. Fusion Results on UTKinect-Action Dataset. The results of different fusion methods
with the four individual features on the UTKinect-Action dataset are shown in the
second column of Table II. From the results, we can see that the decision-level fusion
gets an accuracy 92.9% by applying the majority voting method. Comparable accuracies
are achieved by the sum rule and median rule based fusion methods, which are 91.9%
and 90.9%, respectively. On the other hand, RFs exhibit a better accuracy (92.9%) than
the other feature-level fusion methods. The confusion matrix of the majority voting
method is shown in Figure 8, which shows that the actions “carry” and “throw” impact
the overall accuracy because several samples are incorrectly classified as other (similar)
actions, for example, the action “carry” is actually a walking subject carrying an object,
which confuses the system to classify it as walking. The ambiguity may also happen
between actions “throw” and “push” in this dataset, thus classifying such actions is
still challenging.
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Fig. 8. The confusion matrix of the majority voting fusion method on the UTKinect-Action (left) and CAD-60
dataset (right).

4.4.4. Fusion Results on CAD-60 Dataset. On the CAD-60 dataset, the decision-level and
feature-level fusions achieve the same best accuracy of 87.5% based on the MAJ rule
and RFs, respectively. This accuracy is much higher than each of the individual fea-
tures. From Table II, one can observe that most of the decision-level fusion methods
perform poorly, some even lower than the individual features. The feature-level fu-
sion methods (except the RFs) have the same accuracy of 81.3% as the best individual
feature, that is, the EigenJoints feature. These results clearly show that some fusion
methods cannot work well, depending on the input data and the specific fusion methods.
That is why we need to investigate the different fusion methods carefully, in order to
find the workable methods for the specific problem and special data.

4.4.5. Fusion Results on MSRDailyActivity3D Dataset. Results of different fusion methods
on the MSRDailyActivity3D dataset are shown in the last column of Table II. The
RF method as a feature-level fusion scheme achieves the highest accuracy of 88.8%,
higher than any other fusion methods in this dataset. Among the decision-level fusion
methods, the majority voting has an accuracy of 88.1%, very close to the RF method.
The recognition accuracies of these two fusion methods are higher than each of the
individual features, as shown in the top rows in Table II.

4.5. Comparison with the State-of-the-Art Methods

We further compare our fusion-based approach with the state-of-the-art methods for
depth-based action recognition on the four challenging datasets. In all our experiments,
the cross-subjects action recognition is conducted because it is more appropriate in
practical applications. We list all the published results on the four databases, to the
best of our knowledge. In particular, on the MSRAction3D dataset, half of the subjects
are used for training and the remaining half for testing. Table III shows the reported
results in the literature on the MSRAction3D dataset. We can see that the sum rule-
based fusion can achieve an accuracy of 98.2% and the RFs feature-level fusion can
get an accuracy of 97.3%; both are much higher than all of the previous reported
results. On the UTKinect-Action dataset, the results are shown in Table IV, where
the majority voting and RF methods have the same accuracy of 92.9%, which is also
higher than all the state-of-the-art methods on this dataset. For the CAD-60 dataset,
the same “new person” setting is used as in previous approaches in our experiment. The
precision/recall were computed as the performance measure to have a direct comparison
with the previous methods. The results are shown in Table V. One can see that both the
majority voting and RF methods can get the same recall value; however, the majority
voting has a higher precision value than the RFs. Finally, we compare our results with
the state-of-the-art on the MSRDailyActivity3D dataset. From Table VI, one can see
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Table III. Comparison of the Recognition Accuracies between Our Fusion-Based
Approaches and All State-of-the-Art Methods on MSRAction3D Dataset

Method Accuracy

High Dimensional Convolutional Network [Wang et al. 2012a] 72.5%
Action Graph [Li et al. 2010] 74.7%
HOJ3D [Xia et al. 2012] 79.0%
Key Pose Learning [Miranda et al. 2012] 80.3%
EigenJoints [Yang and Tian 2013] 82.3%
STOP [Vieira et al. 2012] 84.8%
ROP [Wang et al. 2012a] 86.2%
Actionlet [Wang et al. 2012b] 88.2%
HON4D [Oreifej and Liu 2013] 88.9%
DSTIP+DCSF [Xia and Aggarwal 2013] 89.3%
Part-set [Wang et al. 2013] 90.2%
Depth Motion Maps [Yang et al. 2012] 91.6%
DS-SRC [Theodorakopoulos et al. 2013] 93.6%
JAS (Cosine)+MaxMin+HOG2 [Ohn-Bar and Trivedi 2013] 94.8%
STIP+Joint+RFs [Zhu et al. 2013] (Our Preliminary) 94.3%

Decision-Level Fusion (SUM Rule) 98.2%
Feature-Level Fusion (Random Forests) 97.3%

Table IV. Comparison of the Recognition Accuracies between Our Fusion-Based
Approaches and All State-of-the-Art Methods on the UTKinect-Action Dataset

Method Accuracy

Posture Word [Xia and Aggarwal 2013] 79.57%
DSTIP+DCSF [Xia and Aggarwal 2013] 85.8%
HOJ3D [Xia et al. 2012] 90.9%
DS-SRC [Theodorakopoulos et al. 2013] 91.0%
STIP+Joint+RFs [Zhu et al. 2013] (Our Preliminary) 91.9%

Decision-Level Fusion (Majority Voting) 92.9%
Feature-Level Fusion (Random Forests) 92.9%

Note: We used a lesser number of training examples, while the leave-one-out
setting was used in Xia and Aggarwal [2013].

Table V. Performance Comparison of Our Fusion-Based Approaches
with the State-of-the-Art Methods on the CAD-60 Dataset

Method Precision/Recall

Sung et al. [2012] 67.9%/55.5%
Yang and Tian [2012] 71.9%/66.6%
Koppula et al. [2013] 80.8%/71.4%
Zhu et al. [2013] (Our Preliminary) 93.2%/84.6%

Decision Level Fusion (Majority Voting) 96.4%/84.6%
Feature Level Fusion (Random Forests) 90.9%/84.6%

that the RFs has the highest accuracy of 88.8%, which outperforms the DCSF+Joint
approach in Xia and Aggarwal [2013]. The majority voting can get an accuracy of
88.1%, which is lower than the 88.2% reported in Xia and Aggarwal [2013]; however,
four actions were eliminated in their experiments, while we used all 16 actions.

Through the comparisons with the state-of-the-art methods, our fusion-based ap-
proaches perform the best on all four challenging datasets. The appropriate fusion
methods have been found based on our exploration, at both the decision and feature
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Table VI. Performance Comparison between Our Fusion-Based Approaches
and the State-of-the-Art Methods on MSRDailyActivity3D Dataset

Method Accuracy

NBNN+parts+time [Seidenari et al. 2013] 70.0%
Local HON4D [Oreifej and Liu 2013] 80.0%
DCSF [Xia and Aggarwal 2013] 83.6%
RGGP+Fusion [Liu and Shao 2013] 85.6%
Actionlet [Wang et al. 2012b] 85.8%
DCSF+Joint [Xia and Aggarwal 2013] 88.2%

Decision-Level Fusion (Majority Voting) 88.1%
Feature-Level Fusion (Random Forests) 88.8%

Note: All the actions are used in our experiment, while in [Xia and Aggarwal
2013] four actions (with less motion) were removed from the dataset in their
experiment.

levels, while some other fusion methods cannot work well for our problem. The com-
prehensive results demonstrate that proper fusions of different features are important
that can significantly improve the action recognition performance in depth videos.

5. CONCLUSIONS

We have presented a comprehensive study of fusing diverse features for depth-based
action recognition. Both the decision-level and feature-level fusion schemes have been
explored with different methods at each fusion level. A number of experiments have
been conduced on four depth databases. Experimentally, we have shown that the four
different features that we investigated can be complementary to each other, charac-
terizing the depth actions from different aspects. Given the diverse features, different
fusion methods perform quite differently in action recognition. Based on a systematic
evaluation, the appropriate fusion methods have been found to significantly improve
the recognition accuracies over each individual feature. We have also shown that our
fusion-based action recognition in depth videos can outperform the state-of-the-art
methods on all four challenging databases.
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