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Urbanization, Sea Level Rise, and Hurricane Impacts

on Long-Term Wetland Change Dynamics
David F. Muñoz , Paul Muñoz , Atieh Alipour , Hamed Moftakhari , Hamid Moradkhani ,

and Behzad Mortazavi

Abstract—Wetlands are endangered ecosystems that provide
vital habitats for flora and fauna worldwide. They serve as water
and carbon storage units regulating the global climate and wa-
ter cycle, and act as natural barriers against storm-surge among
other benefits. Long-term analyses are crucial to identify wet-
land cover change and support wetland protection/restoration pro-
grams. However, such analyses deal with insufficient validation
data that limit land cover classification and pattern recognition
tasks. Here, we analyze wetland dynamics associated with ur-
banization, sea level rise, and hurricane impacts in the Mobile
Bay watershed, AL since 1984. For this, we develop a land cover
classification model with convolutional neural networks (CNNs)
and data fusion (DF) framework. The classification model achieves
the highest overall accuracy (0.93), and f1-scores in woody (0.90)
and emergent wetland class (0.99) when those datasets are fused
in the framework. Long-term trends indicate that the wetland
area is decreasing at a rate of –1106 m2/yr with sharp fluctuations
exacerbated by hurricane impacts. We further discuss the effects
of DF alternatives on classification accuracy, and show that the
CNN & DF framework outperforms machine/deep learning models
trained only with single input datasets.

Index Terms—Data fusion, deep learning, hurricane impacts,
mobile bay, sea level rise, urban development, wetland loss.

I. INTRODUCTION

W
ETLANDS are defined as lands transitional between ter-
restrial and aquatic ecosystems [1] that provide valuable

services to society [2]. Among those services, wetlands improve
water quality due to their capacity for nutrient and pollutant
removal [3], [4]. Wetlands regulate the global climate through
carbon sequestration and methane emissions [5]–[7], and also
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contribute to maintaining biodiversity [8]. In coastal systems,
wetlands act as water-storage units regulating the global water
cycle and providing flood mitigation services such as storm-
surge, wave attenuation, and hurricane protection [9]–[11].

Despite the ecosystem services they provide, wetlands are fre-
quently threatened by anthropogenic activities including water
abstraction and pollution, deforestation, intensive agriculture,
aquaculture, and urban development [12], [13]. Wetlands are
also vulnerable to natural disasters such as erosion, droughts, sea
level rise (SLR), and hurricane impacts among other complex
stressors, many of which are exacerbated by climate change
[14], [15]. Previous estimates indicate that since 1900 nearly
70% of global natural wetlands have disappeared with a rate of
almost four times faster in the 20th and early 21st centuries than
previously [16]. Estimation of wetland loss attributed to SLR
is challenging in absence of high-resolution digital elevation
models (DEMs), flood-protection infrastructure delineation, and
accurate land cover maps that help understand wetland dynamics
in response to rising sea levels [17], [18]. Besides SLR, hurri-
canes are responsible for coastal wetland erosion that directly
depends on impact duration, wind strength, speed of the storm,
and the relative distance of wetland regions to the hurricane track
[19], [20].

In the Conterminous United States (CONUS), the “Status and
Trends of Wetlands: 2004–2009” report indicates that freshwa-
ter wetland loss was mainly attributed to silviculture practices
(56%) and urban development (23%), whereas coastal (marine
and estuarine) wetland loss was associated with wetland conver-
sion into deepwater bay bottoms or open ocean (83%) [14]. Like-
wise, nearly all of the estuarine emergent wetland loss (99%) was
attributed to coastal processes including saltwater inundation
and storm-surge. At the regional scale, Ellis et al., [21] conducted
a land cover land use change (LCLUC) assessment in the vicinity
of Mobile Bay, AL for the period 1974–2008. They indicated
that nonwoody wetlands decreased by 6.4% (∼10 km2) whereas
woody wetlands increased by 3.4% (∼26 km2) with respect to
1974. The authors used Landsat imagery of Mobile and Baldwin
counties and produced LCLUC maps based on a three-stage clas-
sification approach and machine learning (ML) techniques (e.g.,
decision tree and unsupervised/supervised classification). A de-
tailed description of this approach was later presented by Spruce
et al. [22]. Both studies reported moderate to high overall accura-
cies (OAs) in the land cover classification process (83% to 91%).
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Significant improvements in LCLUC assessment have been
reported when integrating ML with hierarchical classification
strategies and object-based image analysis [23], [24]. However,
deep convolutional neural networks (CNNs) outperform tradi-
tional (shallow) ML approaches (e.g., random forest, support
vector machine, and decision tree) in a variety of applications
including object detection, segmentation and spatial structure
pattern analyses [25], [26]. CNNs are state-of-the-art machine
learning techniques that use a deep architecture characterized
by multiple layers, nonlinear functions, and parameter-sharing
that allow for optimal feature learning at low-, mid-, and high-
levels of abstraction (i.e., edges, object parts, and patterns). Thus,
CNNs achieve high performances in image recognition and
classification tasks [27], [28]. Furthermore, integrating CNNs
and geo-spatial data fusion (DF) of multisource and multisensor
data can improve complex land cover classification in urban and
natural (wetland) landscapes.

Chen et al. [29] proposed deep CNNs and DF of multi-
hyperspectral imagery (HSI) and light detection and ranging
(LiDAR) data for accurate classification of urban landscapes.
The authors developed a feature fusion framework consisting
of a bi-branch CNN architecture that extracts spatial–spectral
features from HSI and spatial-elevation features from LiDAR
data. More advanced CNN & DF frameworks that integrate HSI
and LiDAR data with very high-resolution imagery (VHI) were
evaluated in the 2018 IEEE GRSS Data Fusion Contest [30].
The contest winner team proposed a fully connected convolu-
tional network (Fusion-FCN) that reduces the risk of spatial
information loss and improves the classification accuracy via
post-classification processing. The Fusion-FCN approach con-
sists of three branches that extract features from VHI+LiDAR
intensity, LiDAR-derived digital surface maps and HSI, sepa-
rately. Recently, Feng et al. [31] proposed a novel alternative
for DF of multisource HSI and LiDAR data based on “Squeeze-
and-Excitation Networks” [32]. The alternative consists in an
adaptive feature-fusion approach that evaluates the importance
or contribution of each feature to the final classification task
(i.e., feature weights), and thereby fusing multisource features
in a more intelligent fashion than the two CNN architectures
aforementioned. Regarding natural landscapes, Pouliot et al.
[33] performed an assessment of CNNs for wetland mapping us-
ing Landsat imagery. The authors developed a Multi-Size/Scale
ResNet Ensemble approach and evaluated wetland detection
accuracy at different sampling spatial extents (e.g., local and
regional level), since spectral characteristics might vary over
large study areas. The CNN & DF frameworks described above
were used for short-term land cover classification (e.g., up to
three years) and proved the benefits of DF in complex urban and
wetland classification.

Despite those efforts, research to date has not yet determined
a suitable framework for long-term studies. This study therefore
aims at contributing to this growing area of research by devel-
oping a land cover classification (LCC) model with a tri-branch
CNN architecture and the adaptive feature-fusion approach for
optimal DF. Moreover, in this study, we attempt for the first time
a long-term (35-year) analysis that includes the effects of three
major drivers, namely urbanization, sea level rise, and hurricane

impacts. We combine multiannual imagery and generic DEMs
for wetland cover change analysis in the Mobile Bay watershed,
AL. Specifically, we use readily available datasets consisting of
the following:

1) satellite-based Landsat imagery;
2) airborne imagery of the National Agriculture Imagery

Program (NAIP); and
3) LiDAR-derived DEMs corrected for wetland elevation

error [24].
The LCC model is trained with land cover maps of the

National Land Cover Database (NLCD) [34] and validated
with maps of both the NLCD and the Coastal-Change Analysis
Program (C-CAP) [35].

II. STUDY AREA AND MATERIAL

A. Study Area

Mobile Bay is located in southwestern Alabama, U.S. [see
Fig. 1(a)]. In terms of freshwater influx, Mobile Bay is the fourth
largest estuary in the CONUS with a mean daily freshwater
discharge of 1715 m3/s [36]. This relatively shallow estuary has
a mean depth of 3 m and connects the Mobile Bay watershed
and the Gulf of Mexico through a narrow inlet between Dauphin
Island and Fort Morgan Peninsula. Freshwater discharge at the
head of the estuary comes from the Tensaw River and Mobile
River, which conveys ∼95% of the freshwater inflow to the bay
[37]. The Mobile Bay watershed has a surface area of∼2261 km2

and comprises Bon Secour Bay (southeast) and the Gaillard
Island (northwest) created with dredged material in 1979. In
addition, Weeks Bay located upstream of Bon Secour Bay is
a tributary estuary of Mobile Bay that has been designated as
National Estuarine Research Reserve.

B. Data Availability

The LCC model processes two imagery datasets of moderate
(30 m) to very high (0.5–1 m) spatial resolution and LiDAR-
derived DEMs of high spatial resolution (3 m) (see Table I). The
first dataset consists of Landsat Analysis Ready Data (ARD)
available at the Earth Explorer website.1 This dataset contains
scenes (path 21, row 38) collected around the growing (leaf-on)
and hurricane seasons (June to November). We selected (single)
annual Landsat ARD scenes with cloud cover and shadow less
than 20% and close to hurricane landfall dates. Although time
series analysis with several scenes of the same year may improve
the accuracy of the LCC model, such an analysis is not always
possible due to cloud formation during the hurricane season.

Landsat ARD scenes are already corrected for atmospheric
attenuation including scattering and absorption effects [38],
which can substantially lower the accuracy of classification tasks
[39]. Consequently, we will not conduct analyses with Landsat
scenes in the period 1974–1983 as they are not corrected for
atmospheric attenuation. The second dataset consists of airborne
NAIP imagery from the United States Department of Agriculture
archive2 and collected from 2006 to 2019 over Mobile and

1[Online]. Available: https://earthexplorer.usgs.gov
2[Online]. Available: https://nrcs.app.box.com/v/gateway

https://earthexplorer.usgs.gov
https://nrcs.app.box.com/v/gateway
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Fig. 1. Map of Mobile Bay, AL. (a) Mobile Bay watershed and county borders between Mobile (west) and Baldwin (east) counties. (b) Hurricane best tracks
denote 6-hour intervals and landfall close to Alabama State in the past four decades.

TABLE I
SELECTED DATASETS TO TRAIN AND VALIDATE THE LAND COVER CLASSIFICATION (LCC) MODEL

Baldwin counties during leaf-on conditions (or growing season).
Both imagery datasets are selected for this study as they com-
plement each other in terms of temporal and spatial resolution.
Landsat has a revisit time of 15 days, whereas NAIP provides
imagery with a frequency of 2 to 5 years. Moreover, NAIP
imagery is not often explored in deep learning (DL) applications
despite its potential for very high spatial resolution mapping and
land cover classification [40].

The third dataset consists of generic DEMs created with the
most updated LiDAR-derived DEM of the Northern Gulf of
Mexico (NGOM), which can be obtained from the NOAA’s
Data Access Viewer website.3 The NGOM DEM consists of
multisource topographic and bathymetric elevation data (topo-
bathy) including LiDAR point clouds, hydrographic, multibeam

3[Online]. Available: https://coast.noaa.gov/dataviewer/#

and side-scan sonar surveys collected from 1888 to 2013. The
generic DEMs are referenced with respect to the North Ameri-
can Vertical Datum 1988 (NAVD88) and corrected for wetland
elevation error as further described in Section III-A. In addition
to those datasets, the LCC model is trained with land cover maps
of the NLCD4 and validated with maps of both the NLCD and
C-CAP archives.5 The NLCD is a multitemporal database of the
conterminous United States that consists in a comprehensive
data analysis of Landsat imagery and ancillary datasets with im-
age segmentation, decision tree classification techniques, and a
postclassification refinement process [34]. The C-CAP monitors
changes of coastal intertidal areas, wetlands, and adjacent up-
lands based on automated classification of high-resolution NAIP

4[Online]. Available: https://www.mrlc.gov/data
5[Online]. Available: https://coast.noaa.gov/digitalcoast/tools/lca.html

https://coast.noaa.gov/dataviewer/&num;
https://www.mrlc.gov/data
https://coast.noaa.gov/digitalcoast/tools/lca.html
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imagery, available LiDAR digital elevation data, and assorted
ancillary information. C-CAP produces LCLUC products for
coastal regions of the United States every five years.

III. METHODOLOGY

A. Wetland Elevation Correction and Generic DEMs

Several studies have reported that LiDAR-derived DEMs
contain surface elevation errors (i.e., vertical bias) in coastal
wetlands [41]–[43], especially in salt marsh species where
overestimation of true elevation can be as high as 0.65 m
[44]. Similarly, Muñoz and Moftakhari [24] reported an over-
estimation of salt marsh elevation (e.g., emergent herbaceous
wetlands) up to 0.50 m in Weeks Bay of the NGOM DEM.
The authors estimated vertical bias with a “DEM-correction”
tool that automates the elevation correction process based on
the spatial distribution of emergent herbaceous wetlands from
C-CAP, NLCD, and updated wetland maps. Specifically, the tool
modifies an existing DEM through linear elevation adjustment
and site-specific parameters [17] and was validated with publicly
available real-time kinematic elevation data. Furthermore, the
DEM-correction tool was used in other studies for an accurate
representation of wetland elevation, which in turn improved
the accuracy of compound flooding and velocity maps from
hydrodynamic simulations [10]. The DEM-correction tool is
used to create generic DEMs for Mobile Bay watershed based
on the existing NGOM DEM along with eight available NLCD
and C-CAP maps (see Table I). Since C-CAP maps offer a
detailed land cover classification with multiple categories [35],
we reclassify and match these categories to the land cover
classes established in the NLCD [1], [34]. Specifically, we group
“palustrine” and “estuarine” wetland categories (C-CAP) into
“woody” or “emergent herbaceous” wetlands (NLCD) based on
the classification criteria of both maps [45]. Subsequently, we
use the DEM-correction tool to address vertical bias in emergent
herbaceous wetlands and produce eight generic DEMs with
corrected elevation features within these wetlands. Although the
remaining land cover classes might have considerably changed
through time; and thereby requiring similar alternatives for
elevation correction, we show that spatial–spectral features of
multiannual Landsat/NAIP imagery help overcome misclassi-
fication errors associated with misleading elevation features of
the generic DEMs (see Section III-B2 for details). Since we are
particularly interested in changes of wetland distribution, the
resulting generic DEMs can be seen as a proxy of historical
wetland elevation maps that are often scarce. Table II summa-
rizes the generic DEMs and presents DF alternatives based on
available datasets.

B. Land Cover Classification (LCC) Model

1) Data Preprocessing: We conducted a correlation analysis
between the multispectral bands from Landsat ARD imagery
to select optical bands with the least redundant information
for model training and finetuning of the CNN architecture.
The band selection technique was used in similar studies for
complex land cover and wetland classification with satisfactory

TABLE II
GENERIC DEMS CREATED WITH THE DEM-CORRECTION TOOL ALONG WITH

C-CAP AND NLCD MAPS. DATASET COMBINATIONS WITH/OUT GENERIC

DEMS INDICATE DATA FUSION ALTERNATIVES

results in model learning optimization, computation burden
and/or graphics-processing-unit memory usage reduction [26],
[46]. Particularly, we used the “band collection statistics” tool in
ArcGIS and found the highest average band correlation between
the blue and red bands (0.91). Therefore, we considered the nir,
red, and green bands of Landsat ARD imagery and the red, green,
and blue bands of NAIP imagery in the CNN & DF framework
(see Fig. 2).

Since the coarser resolution of C-CAP and NLCD maps is
30 m, the LCC model may be trained with “patch” images of
30 × 30 m for pixel-based validation. However, DL models that
are trained with a pixel-based approach cannot learn contextual
information from local spatial features of neighboring pixels
[27], [29]. Moreover, data segmentation and the whole learning
process could be computationally expensive. Therefore, we first
resampled all datasets to a pixel resolution of 5 m with the
“nearest neighbor” method and then rescaled data values to
a range of 0 and 1. Although a higher pixel resolution (e.g.,
1 m) would contain detailed spatial–spectral information of
NAIP imagery, there is always a tradeoff between accuracy and
computation burden in land cover classification at large scale.
Likewise, we opted for a patch-based (instead of a pixel-based)
approach centered on a single pixel to train and validate the
model. This approach relies on the first law of geography where
neighboring pixels are likely to belong to the land cover class
of the central pixel [47]. As a result, the LCC model assigns a
unique class label for all pixels inside a given patch image.

Furthermore, the size of patch images (i.e., “h × w” shown in
Fig. 2) plays a key role in classification accuracy and depends on
the resolution and size of the input datasets [29], [48], as well as
the size of target objects (e.g., salt marsh platforms, mangrove
ponds, crop parcels, etc.). In general, oversized patches add
more noise than local information, lead to undersegmentation
problems and reduce OAs regardless of the CNN architecture
[27], [31], [33]. We conducted trial-and-error tests with ran-
domly generated patch sizes ranging from 10 and 50 pixels,
and found that the optimal patch size and shape that prevents
overfitting and undersegmentation is a square patch of 30 × 30
pixels. Similarly, other studies reported an identical patch size
and shape for complex land cover and wetland mapping [26],
[46].

2) Convolutional Neural Network and Multisource Data Fu-

sion: The LCC model uses a CNN & DF framework resem-
bling the Fusion-FCN architecture presented in the 2018 IEEE
GRSS Data Fusion Contest [30] and the adaptive feature-fusion
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Fig. 2. Land cover classification (LCC) model based on convolutional neural networks (CNN) and multi-source data fusion (DF). The model consists of a
tri-branch CNN with 2D convolution (Conv), rectified linear unit (ReLU) and average (Avg) pooling operations. Avg2D pooling layers are merged into a single
layer through point-wise addition (+), whereas the adaptive feature-fusion module is implemented for optimal DF. Feature weights are assigned to the Avg2D
pooling layers through the point-wise product (X), and subsequently concatenated (C) and flatten. Land cover classification is ultimately conducted with a fully
connected layer, dropout and ‘Softmax’ function.

approach [31]. The framework is developed in TensorFlow
(www.tensorflow.org) and consists of a tri-branch CNN archi-
tecture that processes Landsat, LiDAR-derived DEM and NAIP
datasets simultaneously (see Fig. 2). The left and right branches
process patch images of three spectral bands from Landsat
(nir, red, and green) and NAIP (red, green, and blue) datasets,

respectively, while the middle branch extracts spatial-elevation
features from LiDAR-derived DEM data of single bands. Along
each branch, three sets of 2-D convolution (Conv), rectified
linear unit (ReLU), and average (Avg) pooling operators extract
feature information from patch images of 30× 30 pixels at low-,
mid-, and high- levels of abstraction. We set two kernel sizes of

www.tensorflow.org
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3 × 3 and 2 × 2 for Conv2D and Avg2D pooling operations,
respectively, and use “same” (zero) padding at the boundaries to
preserve the input shape (h × w) of patch images. In addition,
we add batch normalization layers at the beginning of each
branch and after each Conv2D layer to accelerate the learning
process [49], lower the “dropout” rate and control overfitting
[27]. Moreover, model weights of all set of layers (e.g., kernel
and bias) are randomly initialized using a “glorot uniform”
scheme and zero-values, respectively, to achieve a higher model
convergence [50]. We then merge the resulting Avg2D pooling
layers into a single layer through point-wise addition, and hence
benefit from multiscale properties along each branch. Since
CNN architectures are flexible in terms of the amount of layers
and kernel sizes, we previously evaluated the layer sets in the
CNN & DF framework (see Section IV-A for details).

Next to that, we integrate the adaptive feature-fusion approach
[31] in the CNN architecture. The approach requires a 2-D global
average pooling layer (Gap2D), two fully connected (FC) layers
and a “Sigmoid” function. A detailed description of those layers
are presented in the Appendix (see Table VI). The resulting
output tensor contains the global contribution of each input layer
to the land cover classification task (i.e., feature weights). These
weights are subsequently assigned to the input layers of each
branch through the point-wise product (or scalar multiplication),
and the three weighted layers are concatenated and flatten for
optimal DF as shown in Fig. 2. As the final step, we add a FC
layer with dropout rate set to 0.2 and a “Softmax” function for
final land cover classification. The dropout method inactivates a
given percentage of neurons to prevent complex co-adaptations
in CNNs and helps prevent overfitting [29], [51]. We transform
the 15 land cover classes originally established in the Mobile
Bay watershed [52] into 7 generalized categories to avoid un-
necessary specificity given the ultimate goal of our study. In that
regard, similar wetland cover change studies used a more general
classification scheme to improve LCLUC interpretability [21],
[22], [33].

3) Model Training and Validation: The CNN & DF frame-
work is trained and validated in two steps: 1) pretraining the
tri-branch CNN architecture before the adaptive feature-fusion
approach and 2) finetuning the entire CNN architecture with
single, double, and triple datasets depending on data availability.
The first step consists in training each branch independently by
leveraging all available validation maps per dataset and then
saving model weights of each set of layers (e.g., kernel and bias)
for further use in the CNN & DF network. For instance, the left
branch (Landsat imagery) counts with eight NLCD and three
C-CAP maps that can effectively be used to train and validate
the LCC model (see Table II). Similarly, the middle branch can
leverage those 11 maps for DEM generation accordingly (see
Section III-A). Note that the left branch can process nine NAIP
imagery datasets (see Table I), but there are only three existing
land cover maps readily available for training and validation
purposes.

Before training the model, we compute the class weights of
each land cover class to deal with unbalanced data and use a
sample size of 25% of the input datasets. We then randomly
separate training (80%) and validation (20%) datasets and

ensure reproducibility with a fixed seed value. The LCC model
uses the stochastic gradient descent algorithm with exponential
decay and the sparse categorical cross-entropy loss as the model
optimizer and loss function, respectively. The model is trained
with 100 epochs and “early stopping” set to 10 epochs to avoid
overfitting. In addition, we set an initial learning rate of 0.01
and 0.001 for imagery and DEM datasets, respectively. The
learning rate and number of training epochs are selected from
trial-and-error tests with randomly selected values ranging
from 0.0001 to 0.1 and 50 to 200, respectively, whereas the
remaining parameter-values are based on similar CNN model
settings reported in recent literature [26], [27], [29], [46].

In the second step, we integrate the pretrained branches with
the adaptive feature-fusion approach according to the DF al-
ternatives presented in Table II. In that sense, the model can
adaptively identify land cover classes in absence of Landsat
ARD, NAIP or DEM data, or alternatively, incorporate other
datasets (if available) under additional branches. We conduct
finetuning of the entire CNN architecture with an initial learning
rate of 0.001 and identical model setting and parameter-values
as previously described. The model weights obtained from fine-
tuning are then saved along with those of the set of layers.
Specifically, we use the model weights in the CNN & DF
framework to generate land cover maps with input datasets
that lack NLCD and C-CAP maps or validation data. In other
words, the framework leverages pretrained model weights of
multiannual data to accurately identify land cover classes with
unused Landsat ARD, NAIP, or generic DEM datasets.

The LCC model is validated with selected patch images of
30 × 30 pixels (see Section III-B1 for details) obtained from
NLCD and C-CAP maps around the Mobile Bay watershed. Par-
ticularly, we ensure that patch images representing woody and
emergent herbaceous wetlands match the NAIP imagery of very
high spatial resolution. Moreover, we allow the patch images to
contain less than 90 pixels (or<10%) of other land cover classes
(e.g., open water, forest, developed areas, etc.) in an attempt to
control misclassification errors arising from patches centered at
the edge of two or more classes. The latter also augment the num-
ber of patches per land cover class and indirectly helps mitigate
unbalanced class problems. The resulting land cover maps have
a spatial resolution of 30× 30 m by setting an overlap of 6 pixels
in x- and y-direction (i.e., strides) for all patches of ARD, NAIP,
and DEM datasets. We ultimately implement post-classification
processing to ensure correct mapping of small streams and river
branches often misclassified as wetlands. Also, we ensure that
transport infrastructure (e.g., highways and second-order roads)
are correctly delineated in the land cover maps.

4) Wetland Cover Change Analysis: For this analysis, we
define urbanization, SLR and hurricane impacts to any gain or
loss of developed, open water and remaining land cover class
areas, respectively, with respect to existing wetland cover areas.
We analyze their effects on wetland cover change using a total
wetland distribution expression:

Tw = U + S + C (1)

where Tw is the total wetland balance (i.e., gain or loss) in km2, U,

S, and C are wetland net gains or losses attributed to urbanization
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TABLE III
ACCURACY ASSESSMENT OF DATA FUSION ALTERNATIVES FOR MULTI-ANNUAL (2006, 2011, AND 2013) LAND COVER CLASSIFICATION

(developed class), SLR (open water class) and the remaining
land cover classes, respectively.

The overall effect of hurricane impact on coastal wetlands is
implicit in the variables S and C as strong winds, high storm-
surges, or torrential rainfalls cause severe wetland and shoreline
erosion, denude marshes, create ponds, and deposit sediments
in the interior of marshes [19]. A detailed analysis of hurricane
effects on wetland coverage within those two variables is beyond
the scope of this study. We use land cover maps generated
with the CNN & DF framework and geo-spatial analysis to
compute (1). The effect of urbanization on wetland cover change
(loss/gain) can be estimated by identifying wetland areas altered
to/from developed areas in the given 5-year interval. The differ-
ence between wetland gain and loss is the net residual attributed
to urbanization (U). Since the developed class consists of various
categories (e.g., open space, low, medium, and high intensity ar-
eas), we may obtain a wetland gain in developed areas; especially
in open space areas that are suitable for upland wetland migration
[53], [54]. For a detailed description of land cover classes, the
reader is referred to the 2016 NLCD classification system and
legend [52]. Similarly, the effects of SLR on wetland coverage
can be estimated with an identical analysis with the open water
class of NLCD and C-CAP maps. For simplicity, we assume that
net residuals obtained from open water class (S) involve complex
processes such as salinization, sediment deposition, and nutrient
availability that directly affect wetland biomass productivity, and
thus wetland dynamics [55]–[57]. The last variable (C) can be
computed following the geo-spatial analysis described above for
the remaining land cover classes.

IV. RESULTS

A. Model Performance and Accuracy Assessment

We evaluate model performance and compare the benefits of
DF alternatives in terms of OA, f1-score (macro-average and
per-class) Cohen’s kappa coefficient and confusion matrix. We
did not find any significant improvement of OAs and f1-scores
when including additional Conv2D and Avg2D pooling layers
in the CNN & DF framework, but rather observed an increase
of computational burden and time. Likewise, we evaluated
both kernel sizes as well as the number of kernel filters after
each Conv2D+ReLU operation. There was no improvement
of OAs and f1-scores with kernel filters beyond 64 and kernel
sizes larger than 3 × 3. We select three years that contain all
input datasets and validation maps readily available (e.g., 2006,
2011, and 2013) and compute evaluation metrics with a sample

size of 25% per dataset as described in Section III-B3. The
highest accuracies are achieved when the three datasets are
fused together as indicated in Table III.

Fusing either Landsat ARD or NAIP imagery with generic
DEM data leads to similar accuracies with a slightly better
model performance of ARD + DEM. Although ARD has a
coarser spatial resolution than NAIP (i.e., five times factor),
spatial-elevation features from the generic DEMs help overcome
the spatial resolution difference between these imagery datasets.
This is also noticeable when comparing the former DF alterna-
tives against ARD + NAIP, which shows a reduction of ∼2% of
OA and Cohen’s kappa. The generic DEMs provide a correct rep-
resentation of historic emergent herbaceous wetland distribution
and elevation using the NGOM DEM regardless of the other land
cover classes. Nevertheless, fusing both spatial-elevation with
spatial–spectral features helps improve OAs of ARD and NAIP
imagery in ∼5% and ∼15%, respectively. When comparing the
evaluation metrics of each dataset in isolation, ARD outperforms
NAIP despite the coarser spatial resolution. This in turn reveals
that the band selection technique (see Section III-B1) among
optical bands of Landsat ARD improves model performance
in more than 10% when compared to NAIP datasets. Besides,
ARD dataset in isolation achieves similar accuracies compared
to previously proposed geospatial LCLUC methods for Mobile
Bay [22]. DEM data in isolation reaches similar accuracies than
NAIP, but f1-score (macro-average) metric shows a reduction of
∼15%.

In addition, we compute model performance with respect to
each land cover class based on the f1-score (per class) metric
(see Fig. 3). Overall, the highest f1-score per land cover class
is achieved when the three datasets are fused in the CNN &
DF framework, whereas the lowest score is observed with DEM
datasets in isolation. Moreover, other DF alternatives lead to
high accuracies especially between wetland classes. The highest
f1-scores among the land cover classes are observed in woody
(90.43%) and emergent herbaceous wetlands (99.37%) with
ARD + NAIP + DEM. These scores are closely followed by
ARD+DEM with a difference of∼1%. Note that ARD achieves
moderate to high accuracies for woody (74.28%) and emergent
herbaceous wetlands (93.42%) as compared to NAIP and DEM
in isolation. The latter suggests that the LCC model can still
achieve reasonable accuracies between wetlands classes in the
absence of NAIP and generic DEM datasets (see Table II).

Regarding the other land cover classes, the model achieves
moderate to very high f1-scores for open water (89.69%
and 99.75%) and moderate to high scores for pasture/crops
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Fig. 3. Comparison of land cover classification accuracies (f1-score per class) between datasets with/out data fusion (DF) alternatives (years 2006, 2011 and
2013). Fusing Landsat ARD, NAIP, and generic DEM data (black bars) lead to the highest f1-score for all land cover classes and among the DF alternatives.
ARD dataset (yellow bar) achieves the highest f1-scores with respect to the other datasets in isolation (red and blue bars). Note that DEM dataset (red bar) cannot
identify developed and grass/barren land classes which in turn highlights the importance of accounting for spatial-spectral properties derived from either satellite
or airborne imagery.

(74.20% and 94.26%) with/out DF alternatives, respectively.
Shrub/forests exhibit a lower f1-score (65.14%) than the previ-
ous land cover classes, but this score improves by more than 13%
when using DF alternatives. Similarly, the model achieves mod-
erate f1-scores for developed (86.56%) and grass/barren land
(86.76%) when the three datasets are fused in the CNN & DF
framework. However, note that DEM dataset in isolation cannot
identify those two land cover classes which is likely attributed
to a broad range of elevation features (i.e., heights) especially
in developed areas as reported in urban land cover classification
studies [30], [31]. Specifically, we noticed that more than 80%
of developed and grass/barren samples are incorrectly classified
as shrub/forest and woody wetlands. Nevertheless, ARD and
NAIP either in isolation or fused with DEM data help improve
f1-scores in more than 60%.

Next to OAs and f1-scores, we compute confusion matrices
of the datasets with/out DF alternatives and analyze misclassi-
fication errors of the CNN & DF framework. Particularly, we
show the confusion matrix of ARD+NAIP+DEM with both
producer’s and user’s accuracies at the bottom and right panels
(see Table VII in the Appendix). Overall, both producer’s and
user’s accuracies are above 80% suggesting that the number
of patch images (samples) omitted and erroneously included in
a given land cover class are relatively small compared to the
multiannual sample size (e.g., 2006, 2001, and 2013). Analyses
per wetland class reveal that both accuracies are even higher than
most of the other land cover classes with almost a perfect score
for emergent herbaceous wetlands (e.g., producer’s acc.: 99.64%
and user’s acc. 99.10%). Woody wetlands are classified with
moderate (87.72%) and high accuracies (93.32%), but misclas-
sification errors are particularly observed in shrub/forest classes

due to similar spectral and elevation features. Specifically, 85
shrub/forest patch images are omitted from woody wetland
class (omission error), whereas 40 shrub/forest patch images are
erroneously classified as woody wetlands (commission error).

B. Model Performance and Accuracy Assessment

We generate 29 land cover maps of the Mobile Bay watershed
[see Fig. 4(a)] and conduct geo-spatial analyses with annual,
five-year interval and long-term data (1984–2019). As an il-
lustration, wetland cover change between 1984 and 2019 [see
Fig. 4(b)] is presented with three nomenclature levels to map
gain, loss, and “no change” areas. Note that woody wetland
coverage has expanded more in Baldwin than Mobile County
and remained without change in the surrounding areas of Bon
Secour Bay and Weeks Bay. Likewise, emergent wetland loss is
evident along the shoreline of Baldwin County, whereas no ma-
jor change of wetland coverage is observed near to Fort Morgan.
Estimates of wetland area including percentage changes in Mo-
bile Bay watershed (see Table IV) reveal an increase of woody
wetlands (37.73%) and a reduction of emergent herbaceous wet-
lands (29.22%) between 1984 and 2019. Woody and emergent
herbaceous wetlands have a net gain of 66.58 km2 and loss
of 13.01 km2, respectively. Nevertheless, annual wetland areas
exhibit sharp fluctuations regardless of the wetland class as these
estimates depend on dataset time acquisition along with physical
factors driven those fluctuations. Estimates of wetland cover
change in a five-year interval (see Fig. 5) point out three major
wetland losses in the period 1994–1998 (47.68 km2), 2005–
2009 (56.01 km2), and 2010–2014 (45.75 km2) and two major
gains in the period 1989–1993 (89.89 km2) and 2015–2019



1776 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

Fig. 4. Land cover map and wetland cover change analysis in Mobile Bay watershed, AL. (a) Land cover map of 2019 derived from the CNN & DF framework,
and (b) long-term wetland cover change with respect to 1984 classified into wetland gain (green color scale), loss (red color scale), and no change (blue color
scale). Total wetland gain for the period 1984–2019 exceeds wetland losses and accounts for 53.57 km2.

TABLE IV
WETLAND COVER ESTIMATES IN MOBILE BAY WATERSHED FOR SELECTED YEARS IN km2. PERCENTAGE CHANGES RELATIVE TO 1984 ARE

SHOWN IN PARENTHESES

(115.91 km2). The latter is mainly attributed to urban devel-
opment, SLR, and hurricane impacts on wetland coverage as
discussed in the next section.

C. Effects of Urbanization, SLR, and Hurricane Impacts on

Wetland Cover Change

Results of total wetland balance in Mobile Bay watershed
are shown for five-year intervals and long-term (see Fig. 5 and
Table V). Likewise, Fig. 6(a) shows hurricane landfall dates
and linear trends of developed class (urbanization) and open
water class (SLR) to better visualize the effects of these drivers
on wetland dynamics. In the first interval (1984–1988), Hurri-
cane Elena (Sep/1985) affected Mobile Bay causing structural
damage in houses with strong winds (∼201 km/h) and a peak
storm-surge (∼1 m relative to NAVD88) recorded in Dauphin
Island (NOAA station ID: 8735180). Urbanization and SLR

did not lead to wetland loss in contrast to the remaining land
cover classes (see Table V). We estimate a net gain of 4.08 km2

in emergent herbaceous wetlands despite the strong winds of
Hurricane Elena. In the second interval, the state of Alabama did
not report major hurricanes and urban development did not alter
natural wetland expansion. However, note that open water areas
(as a proxy of rising sea levels) reduced wetland gain compared
to the previous interval. In fact, Fig. 6(a) shows that the mean sea
level (MSL) within the second interval (1989–1983) is ∼4 cm
higher than the previous years [58]. Nonetheless, we estimate
a net gain of 89.89 km2 attributed to woody wetland expansion
(see Fig. 5).

The third interval comprises Hurricane Opal (Oct/1995),
Danny (Jul/1997), and Georges (Sep/1998) which generated
a peak storm-surge at Dauphin Island (∼1.10 m), torrential
rainfalls in Mobile and Baldwin counties (∼930 mm), and a
peak storm-surge at Fort Morgan (∼3.60 m), respectively [59].
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Fig. 5. Wetland cover change [km2] in Mobile Bay watershed, AL for five-year intervals and long term (1984–2019). Wetland gain (green color scale) and loss
(red color scale) estimates are computed for woody and emergent herbaceous wetlands separately. Total wetland (net) gain or loss is shown with ligth-gray bars.

TABLE V
WETLAND LOSS/GAIN ESTIMATES ATTRIBUTED TO URBAN DEVELOPMENT (U),

SEA LEVEL RISE (S) AND HURRICANE IMPACTS (IMPLICIT IN S AND C) IN

FIVE-YEAR INTERVALS AND LONG-TERM (1984–2019). NET RESIDUALS ARE

SHOWN IN PARENTHESES

Wetland loss as a result of urbanization, SLR, and “other land
cover classes” [i.e., variable C in (1)] is apparent in this inter-
val. We estimate that the compound effect of these drivers on
wetland coverage led to a net loss of 47.68 km2; particularly in
woody wetlands that mostly became other land cover classes (see
Table V). The next interval (1999–2004) comprises Hurricane
Ivan (Sep/2004) that made landfall in Alabama and caused a
peak storm-surge at Dauphin Island (∼1.98 m). Wetland loss in
this interval is attributed to SLR and other land cover classes
despite a wetland gain in developed areas (e.g., upland wetland
migration over “open space” areas). We estimate a net loss of
4.05 km2 attributed to woody wetland expansion.

The fifth interval comprises Hurricane Katrina (Aug/2005)
which considered one of the most damaging and costliest hur-
ricanes that hit the Gulf of Mexico. Although Katrina made

landfall at ∼100 km from Mobile Bay, the bay was exposed
to a peak storm-surge (∼1.79 m) and strong winds (∼100 km/h)
measured in Dauphin Island. In this interval, wetland loss as
a result of urbanization and other land cover classes exceeds
wetland gain in open water areas. We estimate a net loss of
56.01 km2 in both woody and emergent herbaceous wetlands.
Note that this is the largest net loss in the Mobile Bay watershed
since 1984 (see Fig. 5). Urbanization, SLR, and other land cover
classes caused wetland losses simultaneously in the next interval
(2010–2014). Although this interval lacks hurricane threats, we
estimate a net loss of 45.75 km2 in woody wetlands with urban-
ization being the primary driver of wetland loss (see Table V).
This net loss is comparable to the wetland losses estimated
for Hurricane Opal, Danny, and Georges (second interval) and
Hurricane Katrina (fifth interval). The last interval (2015–2019)
comprises Hurricane Nate (Oct/2017) which caused a peak
storm-surges measured at Dauphin Island (∼1.21 m) and urban
flooding in downtown Mobile. Urbanization and SLR did not
alter wetland expansion over developed and open water areas,
respectively. We estimate a net gain of 115.91 km2 in both
woody and emergent wetlands; primarily attributed to wetland
migration toward upland areas (see Table V).

V. DISCUSSION

The effects of urbanization, SLR, and hurricane impacts on
wetland dynamics led to a net gain of 53.57 km2 (3.11%) of total
wetlands between 1984 and 2019 (see Fig. 5 and Table V). This
net gain is attributed to woody wetland expansion of 66.58 km2

(37.73%) that exceeds emergent herbaceous wetland loss of
13.01 km2 (29.22%) relative to 1984 (see Table IV). However,
Fig. 6(b) shows that the long-term trend of emergent herbaceous
wetlands (∼ –2488 m2/yr) is almost twice the magnitude of that
of woody wetlands (∼1383 m2/yr). This in turn explains the
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Fig. 6. Drivers of wetland dynamics in the Mobile Bay watershed, AL including long-term linear trends with 95% confidence intervals. (a) Monthly mean sea
level (MSL) without seasonal fluctuations measured at Dauphin Island (blue solid line) and positive trend reflect a rise of sea level (∼0.14 m) between 1984 and
2019. Developed area (red crosses) shows a positive trend suggesting urban expansion in the Mobile Bay watershed, whereas the total wetland area (green dots)
shows a negative trend indicating wetland loss in the past 35 years. (b) Woody (yellow triangles) and emergent herbaceous (purple crosses) wetlands show a positive
and negative trend, respectively. Note that the long-term trend of emergent wetlands is almost twice as large as that of woody wetlands, and thereby resulting in a
negative trend of total wetland area. The main hurricanes that hit Alabama (gray dashed line) are included to visualize their effects on wetland cover change.
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negative trend of total wetland area observed in the 35-year
period [see Fig. 6(a)]. These results are in line with the find-
ings of Ellis et al. [21] as they found a net gain of 16.6 km2

(0.20%) attributed to woody wetlands. Note that they conducted
geo-spatial analyses in a broader study area comprising Mobile
and Baldwin counties and with Landsat imagery in the period
1974–2008. The decline in emergent herbaceous wetlands in the
Mobile Bay watershed is also consistent with losses observed in
nearby regions [60], [61], and is occurring at a similar rate than
that of the world’s wetlands [62].

These losses have important implications for the highly valu-
able ecosystem services that wetlands provide, namely carbon
sequestration and nutrient removal [63]. In particular, emergent
herbaceous wetlands sustain some of the highest rates of car-
bon sequestration due to their high productivity and ability to
store organic carbon in the anoxic sediments. Losses of these
ecosystems will therefore reduce their ability to sequester carbon
and result in the release of millennial carbon stocks stored in
the sediments to the open waters where it can be mineralized.
Ellis et al. [21] indicated that urbanization reduced the total
wetland extent in the vicinity of Mobile Bay by 13.90 km2.
Similarly, we estimate that urban development led to a net loss
of 6.96 km2 relative to 1984 (see Table V). Urban development
has been expanding in the Mobile Bay watershed [see Fig. 6(a)]
especially in Baldwin county where population growth, as an
indirect measure of urbanization rate, has increased by 22.5%
from 2010 to 2019 [64]. The increasing pace of urbanization in
the Mobile Bay watershed will limit the ability of wetlands to
migrate toward upland due to SLR, and will reduce their capacity
to provide the highly valued ecosystems services.

SLR is likely to accelerate by the end of the 21st century
at local and global scales under future climate scenarios [65],
[66]. Mean sea level in Mobile Bay has been rising at a rate
of 3.94 ± 0.58 mm/yr (95% confidence interval) according to
monthly MSL records (1966–2020) at Dauphin Island gauge
station [58]. Fig. 6(a) shows an increase of ∼0.14 m in MSL
between 1984 and 2019 which might explain a wetland net
loss of 0.95 km2 into open water (see Table V). The open
water class is used as a proxy of SLR and involves complex
processes such as salinization, sediment deposition, and nutrient
availability. Table V shows that SLR fluctuates over time leading
to a wetland loss in most of the intervals. Nevertheless, wetland
gain over existing open water areas points out to the ability of
emergent herbaceous wetlands to cope with SLR by controlling
the overall sediment balance of marsh platforms. The conversion
of these wetlands to subtidal unvegetated sediments will also
significantly reduce their nutrient removal capacity [67]. Nutri-
ents that would have otherwise been trapped and removed are
instead exported to the nearshore waters where they contribute to
eutrophication resulting in hypoxia [68] and blooms of harmful
algae [69].

We argue that hydrodynamic modeling in addition to DL
techniques are required to fully understand wetland dynamics
especially in terms of marsh equilibrium with SLR. Alizad
et al. [17] investigated coastal wetland response (i.e., salt marsh
and/or emergent herbaceous) to SLR with Hydro-MEM model
in Weeks Bay, AL. The authors reported a seven-fold increase

of salt marsh coverage by the end of the 21st century based on
an intermediate-low SLR scenario (0.50 m). Such an increase
was attributed to fluvial sediment inputs and suitable topography
in Weeks Bay that help the marsh platform to accrete and
keep pace with rising sea levels. Although our results show
a decreasing trend of total wetland area [see Fig. 6(a)] and a
more frequent emergent wetland loss than gain in annual basis
and five-year intervals (see Table IV and Fig. 5), we infer that
discrepancies with the results of Alizad et al., [17] are associated
with study area extent differences (e.g., Mobile Bay watershed
versus Weeks Bay) and the fact that both urban development
and hurricane impacts were not included in their analysis. In
addition, note that the long-term trends of total wetland and
developed area are based on 29 effective land cover maps leading
to wide 95% confidence intervals. Nonetheless, our results are
in line with those of Ellis et al., [21] as they reported emergent
wetland loss in Mobile Bay relative to 1974.

VI. CONCLUSION

We investigated wetland dynamics in Mobile Bay watershed,
AL associated with urban development, SLR, and hurricane
impacts between 1984 and 2019. For this purpose, we developed
a LCC model that leverages state-of-the-art CNNs and DF tech-
niques. The CNN & DF framework is aimed at processing read-
ily available satellite-based (Landsat ARD) and airborne (NAIP)
imagery including generic LiDAR-derived DEMs corrected for
wetland elevation correction. The model achieved the highest
accuracies when ARD, NAIP, and DEMs are fused in the CNN &
DF framework, and also proved suitability for long-term wetland
cover change analysis as compared to traditional ML and DL
models that rely on single input data sources. Furthermore, the
CNN & DF framework can be adapted to incorporate additional
datasets such as radar and hyperspectral imagery, and thus
reduce misclassification errors among other land cover classes.

Between 1984 and 2019, wetland cover change analyses re-
veal an increase of woody wetlands and a reduction of emergent
herbaceous wetlands resulting in an overall net gain of 53.57 km2

(3.11%). However, the long-term trend of emergent herbaceous
wetlands (∼ –2488 m2/yr) is almost twice as large as that of
woody wetlands (∼1383 m2/yr), and thereby resulting in a nega-
tive trend of total wetland coverage (∼1106 m2/yr). Estimates of
annual wetland coverage during leaf-on conditions (i.e., growing
season) show sharp fluctuations partly explained by imagery
acquisition time and the effects of hurricane impact on wetland
coverage. The interval encompassing Hurricane Katrina (2005–
2009) led to the largest wetland loss of 56.01 km2 in the Mobile
Bay watershed since 1984. Conversely, the most recent interval
(2014–2019) led to the largest wetland gain of 115.91 km2;
primarily attributed to wetland migration toward upland areas.
The effects of SLR on wetland coverage are investigated in
terms of open water class change (i.e., gain or loss from/to
wetland classes), which led to a wetland loss in most of the
5-year intervals and the long-term period (35-year). Integration
of DL, hydrodynamic, and statistical models is recommended for
future research in order to fully understand wetland dynamics,
especially the compound effects of SLR and hurricane impacts.
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APPENDIX

TABLE VI
LAYERS OF THE CONVOLUTIONAL NEURAL NETWORK AND DATA FUSION FRAMEWORK

TABLE VII
CONFUSION MATRIX OF THE LAND COVER MODEL WITH FUSED LANDSAT ARD, NAIP, AND GENERIC DEM DATA (2006, 2011, AND 2013)

IN THE CNN & DF FRAMEWORK
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