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Abstract

We propose an approach to accurately estimate 3D human pose by fusing multi-viewpoint video (MVV) with inertial mea-

surement unit (IMU) sensor data, without optical markers, a complex hardware setup or a full body model. Uniquely we

use a multi-channel 3D convolutional neural network to learn a pose embedding from visual occupancy and semantic 2D

pose estimates from the MVV in a discretised volumetric probabilistic visual hull. The learnt pose stream is concurrently

processed with a forward kinematic solve of the IMU data and a temporal model (LSTM) exploits the rich spatial and temporal

long range dependencies among the solved joints, the two streams are then fused in a final fully connected layer. The two

complementary data sources allow for ambiguities to be resolved within each sensor modality, yielding improved accuracy

over prior methods. Extensive evaluation is performed with state of the art performance reported on the popular Human 3.6M

dataset (Ionescu et al. in Intell IEEE Trans Pattern Anal Mach 36(7):1325–1339, 2014), the newly released TotalCapture

dataset and a challenging set of outdoor videos TotalCaptureOutdoor. We release the new hybrid MVV dataset (TotalCapture)

comprising of multi-viewpoint video, IMU and accurate 3D skeletal joint ground truth derived from a commercial motion

capture system. The dataset is available online at http://cvssp.org/data/totalcapture/.

Keywords 3D pose estimation · Sensor fusion · Deep neural networks · Multi viewpoint video · Inertial measurement units

1 Introduction

Although challenging, marker-less real time 3D human pose

estimation is attracting increasing research interest as it will

deliver step changes to a wide range of fields, from biome-

chanics, psychology, animation, human computer interaction

and computer vision. The desire is to regress and estimate a

3D location based limb skeleton of a human in a range of

environments as shown in Fig. 1. However, 3D pose estima-

tion suffers from a large number of challenges including large

variation in appearance, arbitrary viewpoints and obstructed

visibilities due to external entities and self-occlusions. To

resolve these challenges effectively, marker based systems

such as Vicon (http://www.vicon.com) or OptiTrack (http://

www.optitrack.com) are commonly used to provide suffi-

cient joint accuracy.
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However, the requirement to wear a special suit or a large

number of physical markers is intrusive and restricts both the

performance environment and the range of motions the sub-

ject can perform. Also, heavy occlusion from other actors

or props in the scene, or adverse illumination can cause

these approaches to fail in practical deployments. Therefore

approaches have tried to remove these constraints through

the use of elaborate prior terms and body modelling (von

Marcard et al. 2017), or with the use of depth cameras (Yub

et al. 2016), or extending 2D estimation to 3D (Tome et al.

2017; Tan et al. 2017).

Nevertheless, such systems based purely upon computer

vision, suffer from inaccuracies or are restricted by using

complex priors. We propose a compromise, via the fusion

of vision based 3D pose estimation and Inertial Measure-

ment Units (IMUs) (Roetenberg et al. 2009, http://www.

neuronmocap.com) to estimate pose accurately. IMUs are

small boxes placed on key body parts that don’t suffer from

illumination or occlusion failures, IMUs, however, do suffer

from drift and therefore cannot provide the full solution with-

out the visual component. Given the complementary nature

of the two modalities, we fuse vision and IMU to estimate
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Fig. 1 Our approach regresses 3D estimates for varied pose, subjects

and environment

the 3D joint skeleton of human subjects. We show that by

incorporating both cues, we can migiate the limitations of

the drift and lack of spatial positional information in IMU

data and the requirement of learnt complex human models for

the vision. The complementary modalities mutually reinforce

one another during inference; as rotational and occlusion

ambiguities are mitigated by the IMUs while global posi-

tional drift and context are reduced by the vision.

Our proposed solution combines foreground occupancy

mattes and semantic 2D pose estimates from a number of

wide baseline video cameras to form a multi channel prob-

abilistic visual hull (PVH) (Grauman et al. 2003). A coarse

discretisation of the 3D space around the performer is then

used to train a 3D convolutional network to predict 3D joint

estimates from the volumetric PVH data. The contextual

frame-wise temporal consistency of the 3D pose estimates is

learnt with a variant of a Recurrent Neural Network (RNN)

using LSTM layers. The LSTM learns a predictive model

given a small number of previous frames. Concurrently IMUs

are used to solve a simple kinematic model to provide a

further 3D joint estimation, and both are then fused in an

additional dense neural layer. The two data modes are illus-

trated in Fig. 2.

It is well known that training deep networks from scratch

requires a large amount of data, and this requirement is

heightened given the use of 3D convolutional layers in our

work. Also, there is no single dataset available contain-

ing IMU and MVV video with a high-quality ground truth.

Therefore we release a multi-subject, multi-action dataset

as a further contribution to this work. The initial solution

of this work was presented at BMVC 2017 (Gilbert et al.

2017). In this paper, we make several additional contribu-

tions. First, we enhance our initial 3D convolutional network

for pose estimation through the incorporation of seman-

tic pose information encoded in additional channels within

volumetric data. We show that this information delivers a

significant step-up in performance, resulting in an improved

state of the art performance in both the public TotalCap-

ture and Human36M datasets. In addition to deep analysis of

these networks, we also introduce a novel dataset TotalCap-

tureOutdoor (Malleson et al. 2017) upon which we evaluate

our system. The additional analysis within the experimental

section (Sect. 4.5) allows greater insight into the contribu-

tion of the individual components while the methodology is

expanded, allowing the reader further insight into our imple-

mentation.

2 RelatedWork

Human pose estimation can be split into two broad categories;

a top-down approach to fit an articulated limb kinematic

model to the source data and those that use a data driven

bottom-up approach.

Top-down approaches to 2D pose estimation fit an artic-

ulated limb model to data incorporating kinematics into

the optimisation to bias toward possible configurations. Lan

and Huttenlocher (2005) provide a top down model based

approach, considering the conditional independence of parts;

however inter-limb dependencies (e.g. symmetry) are not

considered. A more global treatment is proposed in Jiang

(2009) using linear relaxation but performs well only on

uncluttered scenes. The fusion of pictorial structures with

Ada-Boost shape classification was explored in Andriluka

et al. (2009). Agarwal and Triggs used non-linear regres-

sion to estimate pose in 2D silhouette images (Agarwal et al.

2004). The SMPL model (Loper et al. 2015) provides a rich

statistical body model that can be fitted to incomplete data

and von Marcard et al. (2017) incorporated IMU measure-

ments with it to provide pose estimation without visual data.

While (Tan et al. 2017) employs the SMPL model to estimate

the 3D pose from 2D images in a decoder/encoder frame-

work. Then, Huang et al. (2017) combines the SMPL body

model with 2D joint estimates to reinforce and improve the

3D pose.

Bottom-up pose estimation is driven by image parsing to

isolate components, Srinivasan and Shi (2007) used graph-

cuts to parse a subset of salient shapes from an image and

group these into a model of a person. Ren et al. (2005) recur-

sively splits Canny edge contours into segments, classifying

each as a putative body part using cues such as parallelism.

Ren and Collomosse (2012) also used Bag of Visual Words

for implicit pose estimation as part of a pose similarity system

for dance video retrieval. More recently studies have begun to

leverage the power of convolutional neural networks, follow-

ing in the wake of the eye-opening results of Krizhevsky et al.

(2012) on image recognition. Toshev and Szegedy (2014),

in the DeepPose system, used a cascade of convolutional

neural networks to estimate 2D pose in images. Descriptors

learned by a CNN have also been used in 2D pose estimation

from very low resolution images (Park and Ramanan 2015).

Elhayek et al. (2015) used MVV with a Convnet to produce

2D pose estimations while Rhodin et al. (2016) minimised

the edge energy inspired by volume ray casting to deduce the
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Image MVV Multi-channel PVH IMU Sensor 3D Human Pose Result

Fig. 2 Our two-stream network fuses IMU data with volumetric (PVH) data derived from multiple viewpoint video (MVV) to learn an embedding

for 3D joint locations (human pose)

3D pose. More recently given the success and accuracy of 2D

joint estimation (Cao et al. 2016), an increasing number of

works have been introduced to transfer those predictions into

3D, using a post processing optimisation step. Sanzari et al.

(2016) estimates the location of 2D joints, before predict-

ing 3D pose using appearance and probable 3D pose of the

discovered parts with a hierarchical Bayesian model. While

Zhou et al. (2016) integrates 2D, 3D and temporal informa-

tion to account for uncertainties in the data. The challenge

of estimating 3D human pose from MVV is currently less

explored, although 3D pose estimation is generally cast as a

coordinate regression task, with the target output being the

spatial x, y, z coordinates of a joint with respect to a known

root node such as the pelvis. Trumble et al. (2016) used a

flattened MVV based spherical histogram with a 2D con-

vnet to estimate pose. While Pavlakos et al. (2017a) used a

simple volumetric representation in a 3D convnet for pose

estimation and Wei et al. (2016) performed related work in

aligning pairs of joints to estimate 3D human pose. Differ-

ently, Huang et al. (2015) constructed a 4-D mesh of the

subject from video reconstruction to estimate the 3D pose.

While Tekin et al. (2016a) included a pretrained autoencoder

within the network to enforce structural constraints.

Another challenge of MVV is the labelling of the train-

ing data, therefore Rogez and Schmid (2016) artificially

augments a dataset of real images with 2D human pose anno-

tations using 3D Motion Capture data. Given a candidate 3D

pose, the algorithm selects for each joint an image whose 2D

pose locally matches the projected 3D pose. Similarly Lass-

ner et al. (2017) uses the SMPL (Loper et al. 2015) body

model to generate training data without motion capture.

To predict temporal sequences, RNNs and their variants

including LSTMs (Hochreiter and Schmidhuber 1997) and

Gated Recurrent Units (Chung et al. 2014) have recently

shown to learn and generalise the properties of temporal

sequences successfully. Graves (2013) was able to predict

isolated handwriting sequences, while in Natural language

processing (NLP) Graves and Jaitly (2014) combines an

LSTM model with Connectionist Temporal Classification

objective function, directly transcribing audio data with text.

Alahi et al. (2016) was also able to predict human trajecto-

ries of crowds by modelling each human with an LSTM and

jointly predicting the paths.

In the field of IMUs, there has been a number of works

that have used IMUs to estimate pose, Roetenberg Roeten-

berg et al. (2009), used 17 IMUs with 3D accelerometers,

gyroscopes and magnetometers fused with a Kalman fil-

ter to define the pose of a subject. Slyper and Hodgins

(2008) reconstructs pose using 5 accelerometers to retrieve

pre-recorded poses with similar accelerations via a lookup

process from a database. Acceleration data is however very

noisy and the search space of possible accelerations is

under constrained making the learning a very difficult task.

While (Schwarz et al. 2009) directly regresses full pose using

only 4 IMUs with a Gaussian Process regression, with good

results when the test motions are present in the database. Sim-

ilarly Pons-Moll et al. (2011) uses a particle filter framework

to optimise the orientation constrained by IMU samples taken

from a manifold of poses, to solve for outdoor sequences.

Also, Liu et al. (2011) regress to a full pose querying a

database of online local models based on the response of

6 IMUs.

The initial work to fuse IMU and video was by Pons-Moll

et al. (2010), combining limb orientations from the inertial

sensors, with stable and drift-free accurate position infor-

mation from video data. While Marcard et al. (2016) fused

video and IMU data to improve and stabilise full body motion

capture. Helten et al. (2013) used a single depth camera with

IMUs to track the entire body, with the IMUs identifying sim-

ilar candidate poses and the depth data being used to obtain

the full body estimate. Andrews et al. (2016) used a sparse set

of labelled optical markers, IMUs, and a motion prior in an

inverse dynamics formulation. While Malleson et al. (2017)

used IMUs with a full kinematic solve to effectively estimate

3D pose indoor and outdoor.
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Fig. 3 Network architecture comprising two streams: a 3D Convnet for MVV pose embedding, and kinematic solve from IMUs. Both streams

pass through LSTM before the Fusion of the concatenated estimates in a further FC layer

3 Methodology

An overview of the approach is shown in Fig. 3, a 3D vol-

umetric geometric proxy of the performer is formed from

2D foreground occupancy and 2D semantic heat maps, with

a multi-channel probabilistic visual hull. This coarse visual

hull is fed into a 3D convnet that directly regresses an embed-

ding that encodes 3D spatial joint locations of the performer’s

body. A temporal model from a recurrent neural network is

trained on the embedding to enforce temporal consistency to

the 3D pose detections. Uniquely for this work, IMU data on

key body parts is used to enable a forward kinematic solve of

the pose that is smoothed with a learnt temporal RNN model.

Given the complementary nature of the two data modes, a

dense layer fuses both to provide a joint based embedding of

the joint locations.

3.1 Volumetric Pose Embedding

Figure 3 shows a diagram of our architecture; it is based on

a deep, multilayer neural network that consists of successive

3D convolutional and pooling layers. The goal of CNN pose

regression is to obtain 3D Cartesian coordinates of J joints

given the multi-channel 3D probabilistic visual hull volume.

The target of the network is 3 ∗ J -dimensional vector com-

prised of the concatenation of the x, y, z coordinates of the

J joints of the human body, for our work J = 17, resulting

in 51 final layer embedding (3 ∗ 17).

The detailed filter parameters are listed in Table 1 for each

layer in Fig. 3. By using 3D convolution filters, we are able

to encode information from all cameras as a volume simul-

taneously. In training, the network is supervised with an L2

regression loss:

L =

J
∑

j=1

‖p
j
gt − p

j
pr‖

2
2. (1)

where p
j
gt is the groundtruth location for joint j and p

j
pr is

the predicted location for joint j. The location of each joint

is expressed globally, normalised to a root joint or node at

the pelvis. To further encourage pose invariance with respect

to the facing direction of the performer, the training data is

augmented by applying a random rotation about the central

vertical axis, θ = [0, 2π ].

3.2 Visual Channels

Two visual channels are employed, a 2D occupancy matte,

and semantic 2D joints. The occupancy is a soft probabil-

ity of foreground occupancy formed from the comparison

of the current frame I and a clean-plate P taken before the

recorded sequence. The thresholded L2 distance between the

two images in the HSV colour domain provides the soft occu-

pancy probability for the 1st channel. The second semantic

channel consists of a human joint belief labels estimated by

OpenPose (Wei et al. 2016; Cao et al. 2017), a multi-stage

process that iteratively refines 2D pose estimations of joint

positions using a mixture of knowledge of the image and the

estimates of joint locations of the previous stage. At each

stage s and for each joint label j the algorithm returns dense

per pixel belief maps m
j
s , which provides the confidence of

a joint centre for any given pixel (x, y), and given stage s.

Much of the algorithm’s power is that in stages s ∈ 2, ..., S
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Table 1 Parameters of the 3D

Convnet used to infer the MVV

pose embedding

Layer Conv1 Conv2 Conv3 MP1 Conv4 MP2 FC1 FC2 FC3

Filter dim. 5 3 3 2 3 2 1024 1024 1024

Num. filters 64 96 96 – 96 – 1024 1024 78

Stride 2 1 1 2 1 2 1 1 1

Image Occupancy Semantic labels

Fig. 4 An example of the foreground occupancy and 2D joint label

belief map (white indicates high probability of occupancy)

the belief maps are a function of not just the information con-

tained in the image but also the information computed by the

previous stage. For this work we transform these per joint

belief maps into a single label image M , by maximising over

the confidence of all possible joint labels on a per pixel basis.

M(x, y) = argmax
J

m
j

S(x, y) (2)

Figure 4 shows an example of the soft occupancy and joint

labels for an example image.

3.3 Volumetric Representation of Proxy

Many recent approaches use multiple 2D views (Pavlakos

et al. 2017b) or infer 3D from a learnt 2D lookup (Tome

et al. 2017; Chen and Ramanan 2017). However, we pro-

pose to simultaneously use multiple 2D views to produce

a crude but accurate 3D representation of the human body.

Integrating the multiple views into a 3D shape overcomes the

unavoidable ambiguities and occlusions present in individ-

ual 2D images. However, the cost is the exponential increase

in dimensionality over 2D, and also the lack of a pre-trained

imagenet based model (Krizhevsky et al. 2012). Therefore

to allow the training to be tractable and still provide the

increase in detail over 2D, we propose to use a multi-channel

based probabilistic visual hull (PVH) (Grauman et al. 2003)

to infer the 3D occupancy shape from multiple camera views.

A PVH quantises the volume occupancy in a soft proba-

bilistic computation that greatly reduces the dimensionality

while maintaining the detail. The volumetric representation

is agnostic to the source of the data, and for this work, we

propose to use both 2D foreground occupancy mattes and

semantic 2D joint labels. Both are noisy and contain failure

cases as a single view. However, the probabilistic nature of

the PVH ensures that noise is ignored and only a consistent

signal is propagated to the 3D volume.

Given a set of C wide baseline cameras, c = [1, . . . , C],

where C > 3 surrounding a performance volume, and cali-

brated with a known orientation, Rc, focal point C O Pc, focal

length fc and optical centre ox
c , o

y
c , the camera parameters

for a given camera c are

{Rc, C O Pc, fc, ox
c , o

y
c } (3)

The 3D Capture Volume is finely decimated into voxels

v = [1, . . . , V ] approximately 10 mm3 in size. Then given

an 2D image denoted as Ic, with � = [1, . . . , φ] channels

the voxel occupancy from a given camera view c is defined

as the probability:

p(V |c) = Ic(x[vi ], y[vi ], φ) (4)

where given a 2D image coordinate position (x, y) the voxel

vi projects to a real world 3D position of:

x[vi ] =
fcv

x
i

vz
i

+ ox
c and y[vi ] =

fcv
y

i

vz
i

+ o
y
c , (5)

where
[

x y z
]

= C O Pc + R−1
c vi . (6)

where
[

x y z
]

is the 3D real world global coordinate loca-

tion. Therefore the overall probability of occupancy for a

given voxel p(v, φ) is the product over all views:

p(vi , φ) =

C
∏

i∈C

p(v|c), (7)

this is then computed for all voxels in the volume

∑

i∈V

∑

j∈�

p(vi , φ j ) (8)

The fine grained voxel occupancy approximation is then

down sampled via a weighted Gaussian filter to the coarse

input shape and size of the first layer in the convnet, 30×30×

30, this roughly approximates with the same number of pixels

as a 150 × 150 2D image, where each voxel approximates a

67 × 67 × 67 mm volume in the real world.
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3.4 Inertial Pose Estimation

To estimate the pose from joint orientations, Xsens IMUs

(Roetenberg et al. 2009) are placed on key body parts to

estimate the pose. The end rigid joints provide the most

discriminative data and will constrain the pose parameters

effectively when fused later with the vision. The pose optimi-

sation of Malleson et al. (2017) is used, this aims to minimize

the energy of the following Equation:

E(θ) =

Data
︷ ︸︸ ︷

ER(θ) + E A(θ)+

Prior
︷ ︸︸ ︷

EP P (θ) + EP D(θ) (9)

where ER(θ), and E A(θ) are orientation and acceleration

constraints, respectively and EP P (θ) and EP D(θ) are the

pose projection and pose deviation priors, respectively.

For each IMU, k ∈ [1, 13], we assume rigid attachment to

a bone and calibrate the relative orientation, Rk
kb, between the

IMU k and the bone b. The reference frame of the IMUs, Rkw ,

is also calibrated approximately against the global world w

coordinates. Each local IMU orientation measurement, Rk
m ,

is transformed to a global bone orientation, Rk
b as follows:

Rk
b = (Rk

kb)
−1Rk

kwRk
m (10)

Then the local (hierarchical) joint rotation, Rk
h , for a given

bone b in the skeleton is inferred by the kinematic chain:

Rk
h = Rk

b(R
par(b)

b )−1 (11)

where par(b) is the parent of bone b. The forward kinematics

begins at the root and proceeds down the joint tree (with

unmeasured bones kept fixed).

In addition to orientation, the IMUs provide local acceler-

ation measurements and a window of three frames, t (current

frame), and previous two frames t1 and t2 is used. For each

IMU, a constraint is added which seeks to minimize the dif-

ference between the measured and solved acceleration of the

track target site. The solved acceleration is computed using

central finite differences using the solved pose from previous

two frames along with the current frame being solved. The

local accelerations from the previous frames of IMU data are

converted to global coordinates in a similar method to Eq. 10

but gravity is also removed.

We use two priors based on the PCA of the pose: PCA

projection (EP P ) and PCA deviation (EE D). The projec-

tion prior encourages the solved body pose to lie close to

the reduced dimensionality subspace of prior poses (a soft

reduction in the degrees of freedom of the joints), while the

deviation prior discourages deviation from the prior observed

pose variation (soft joint rotation limits). Together these

terms produce soft constraints that yield plausible motion

while not strictly enforcing a reduced dimensionality on the

solved pose, thus allowing novel motion to be more faithfully

reproduced at run time. For full details of the cost functions

used please see Malleson et al. (2017).

These joint orientations in conjunction with the calibrated

performer’s skeleton allow for joints locations to be inferred

to a concatenated joint vector Ji . For a more detailed descrip-

tion of relating inertial data to other sensor model coordinate

systems the work by Baak et al. (2010) can provide further

details. To temporally align the IMU and video data an initial

foot stamp was performed by the subject, which was visible

in the video and produces a strong peak in acceleration in the

IMU data. The inertial reference frame of each IMU, Rk
kw

is assumed to be consistent between IMUs and in alignment

with the world coordinates through the global up direction

and magnetic north. The IMU-bone positions tkb are specified

by manual visual alignment and the IMU-bone orientations

Rib are calibrated using the measured orientations with the

subject in a known pose (the T-pose, facing the direction of

a given axis).

3.5 Learnt Temporal Consistency

Given the temporal nature of human pose sequences, it is

desirable to learn and enforce temporal consistency on the

two streams of per frame pose estimation. Thus allowing

the rich temporal motion patterns between frames and joints

to be effectively incorporated into the 3D pose prediction.

Long Short Term Memory (LSTM) layers (Hochreiter and

Schmidhuber 1997) have provided excellent performance in

exploiting longer term temporal correlations compared to

standard recurrent neural networks on many tasks, e.g. speech

recognition (Sak et al. 2014) and video description (Donahue

et al. 2015). LSTM layers can store and access information

over long periods of time but mitigate the vanishing gradi-

ent problem common in RNNs through a specialised gating

mechanism.

Given an input vector Ji (t) at time t consisting of con-

catenated joint spatial coordinates and resulting output joint

vector Jo(t). The aim is to learn the function that min-

imises the loss between the input vector and the output vector

Jo = ot ◦ tanh(ct ) (◦ denotes the Hadamard product), ot is

the output gate, and ct is the memory cell, a combination of

the previous memory ct−1 multiplied by a forget gate, and

the input gate as shown in Fig. 5. Thus, intuitively it is a

combination of the previous memory and the new input. For

example, the old memory could be completely ignored (for-

get gate all 0s) or ignore the newly computed state completely

(input gate all 0s), but in practice it is of course between those

two extremes. The memory cell ct is shown in Eq. 12.

ct = ft ◦ ct−1 + it ◦ tanh(Ji (t)Ug + Ji (t − 1)Wg) (12)
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Fig. 5 The design and connections of an LSTM layer.

Within each gates in there are two weights that are learnt,

W and U . The input gate it defines the extent to which the

newly computed state for the current input Ji (t) is kept in

the memory,

it = Wi Ji (t) + Ui Ji (t − 1) (13)

A forget gate ft defines how much of the previous state

remains in memory,

ft = W f Ji (t) + U f Ji (t − 1) (14)

and an output gate ot defines how much of the internal state

is exposed to the external network (higher layers and the next

time step).

ot = WoJi (t) + UoJi (t − 1) (15)

To learn the weights, they are trained using back propagation

employing the loss function from Eq. 1 Each data modality

has a distinct layer, with the temporal consistency using the

previous f frames to predict the current frame joint vector

for both the visual and IMU pose based estimation. With two

layers both with 1024 memory cells, a look back of f = 5

and a learning rate of 10−3 trained with RMS-prop (Dauphin

et al. 2015).

3.6 Modality Fusion

The vision and IMU sensors both independently provide a 3D

coordinate per joint estimate to reconstruct the performer’s

pose. Therefore, it would make sense to incorporate both

modes into the final estimate, given their complementary

nature. Naively, an average pool of the two joint estimates

could be used; this would be fast and efficient assuming both

modalities have small errors. However, it is likely that often

significant errors will be present on one of the modes due to

their different measurement approaches. We, therefore, pro-

pose to fuse the two modes with a further fully connected

layer. We are able to utilise the idea of using a dense layer

to fuse our visual and IMU joint skeleton predictions, that

can combine both measurements in a more meaningful way

than simply taking the average. This allows errors in the pose

from the vision and IMU to be identified and corrected by

the combined fused model. This fully connected dense layer

consists of 64 units and was trained with an RMS-prop opti-

miser (Dauphin et al. 2015) with a learning rate of 10−4 to

provide the feedback to reinforce the prediction. All stages

of the model are implemented using Tensorflow.

4 Evaluation

To provide an evaluation of our approach we employ

three different datasets. First we present results on the

multichannel vision stream only of the approach on the

Human3.6M (Ionescu et al. 2014) dataset in Sect. 4.1 with-

out the IMU fusion. We then introduce our new dataset called

TotalCapture (Gilbert et al. 2017) in Sect. 4.2, which contains

both video and IMU with the associated GT joint skeleton.

We evaluate our full fused vision and IMU approach on the

TotalCapture dataset and we also perform an ablation study in

Sect. 4.4 to examine the individual contributions of our work.

Finally, we evaluate the ability of our approach to generalise

to new sequences by evaluating on the challenging TotalCap-

tureOutdoor (Malleson et al. 2017) in Sect. 5 a challenging

collection of sequences of MVV and IMU captured in a chal-

lenging outdoor environment.

4.1 Human 3.6M

We evaluate 3D pose estimation on the Human 3.6M

dataset (Ionescu et al. 2014) where 3D ground truth key

points are available from a marker-based motion capture sys-

tem. It consists of 3.6 million video frames captured on four

camera viewpoints in a 360-degree arrangement. There are

five female and six male subjects, performing typical activ-

ities such as posing, sitting and giving directions. There is

no IMU data within the dataset, and so we only evaluate the

visual component, the PVH + LSTM. This is the upper red

and green layers from Fig. 3 without the fusion of the IMU

kinematic solve. To allow comparison to other approaches we

follow the same data partition protocol as in previous works

(Ionescu et al. 2014; Li et al. 2015; Tekin et al. 2016, a; Tome

et al. 2017; Gilbert et al. 2017). The training data consists of

subjects S1, S5, S6, S7, S8 and it is tested on unseen subjects

S9, S11. The standard 3D Euclidean error metric is used to

evaluated accuracy, it calculates the Euclidean error averaged

over all frames and 17 joints (in human 3.6M) in millime-

tres (mm). The Results of our multi-channel 3D volumetric
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S9 Phone S9 Sit S9 W.Dog S9 W.Dog

s11 Pose S11 Sit D S11 Smoke S11 Wait

Fig. 6 Example pose estimates from the Human 3.6M dataset from two viewpoints

approach with the temporal consistency are evaluated quali-

tatively in Fig. 6 and quantitatively in Table 2, in particular

we compare to the approach of Mude Lin Liang Lin and

Cheng (2017) who use 2D joint estimates with a 3D recurrent

network, Tome et al. (2017), which infers 3D probabilis-

tic estimates from monocular 2D joint predictions. Also we

compare to a baseline approach Tri CPM LSTM, a 3D trian-

gulated version of the 2D pose estimation (Cao et al. 2016)

with error rejection. In this approach per camera 2D joint

estimates

Jcpm = argmax
x,y

m
j

S(x, y) (16)

are triangulated into a 3D point, using an error rejection

method that maximises the number of 2D estimates with the

lowest 3D re-projection error. This is a frame wise detection

based approach, and therefore temporal consistency is intro-

duced with two learnt LSTM layers as described in Sect. 3.5,

Tri CPM LSTM.

As one can see from Table 2, our proposed approach out-

performs all compared methods at time of publication [the

newer works of Martinez et al. (2017) and Trumble et al.

(2018)] indicate the speed of improvement in field of 3D pose

estimation) despite excluding the fusion with the kinematic

based IMU, with the mean error reduced by 15% compared

with (Tome et al. 2017), the Tri CPM LSTM approach and

our previous method (Gilbert et al. 2017). While compared

to the state of the art results by Mude Lin Liang Lin and

Cheng (2017), many activities have a similar error around 5

or 6cm. However, there is marked performance improvement

in our approach for the activities; dog walking and sitting

down, while Lin achieves better performance for greeting

and waiting. Qualitative comparison to the ground truth is

shown in Fig. 6, it shows the high degree of accuracy achiev-

able, representing complex human poses. Although as shown

in the bottom right pose, some unusual poses, probably not

sufficiently represented in the training data, are still poorly

estimated. To validate the superiority of the proposed multi-

channel and temporally consistent approach, we evaluate the

Human3.6M dataset with separate parts of the approach in

Table 3.

It can be seen that the single channels of Matte or CPM

based PVH perform worse than the multi-channel PVH,

with both channels combined. This is likely to be due to

the semantic information of the CPM labels complementing

the occupancy based soft mattes. Also the improvement for

enforcing the temporal consistency through the LSTM can

be seen to be around 25 mm on average.

4.2 Total Capture

In recent years, high quality labelled datasets have been a

catalyst for rapid development in a number of areas includ-

ing object recognition (Deng et al. 2009) and 2D human pose

datasets (Andriluka et al. 2014; Lin et al. 2014). These have

been hand labelled, providing excellent accuracy and detail,

however, this is far harder in 3D, where the labelling still in

general relies on expensive and less common optical motion

capture systems such as (http://www.vicon.com). This con-

straint greatly reduces the quantity and variability of existing

datasets; Table 4 shows the features of current 3D human pose

datasets. As can be seen Human3.6M has a large amount of

synchronised multi-view video and is popular, however no

IMU sensor data. HumanEva, is a smaller dataset also with

no IMU information. While TNT15, contains IMU data and

MVV it is small in size. Given these restrictions, we propose

a new dataset to address these short comings, TotalCapture.1

It contains a large amount of MVV, and synchronised IMU

1 The TotalCapture dataset is available on-line at http://cvssp.org/data/

totalcapture/.
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Table 2 A comparison of our approach to other works on the Human 3.6M dataset, multiview indicates whether the approach uses multiple camera

views [the works of Martinez et al. (2017) and Trumble et al. (2018) where published after the time of submission]

Approach Multiview Direct. Discus Eat Greet. Phone Photo Pose Purch.

Li et al. (2015) Y 132.7 183.6 132.4 164.4 162.1 205.9 150.6 171.3

Tekin et al. (2016) Y 85.0 108.8 84.4 98.9 119.4 95.7 98.5 93.8

Zhou et al. (2016) N 87.36 109.31 87.05 103.16 116.18 143.32 106.88 99.78

Sanzari et al. (2016) N 48.82 56.31 95.98 84.78 96.47 105.58 66.30 107.41

Tome et al. (2017) N 65.0 73.5 76.8 86.4 86.3 110.7 68.9 74.8

Tri CPM LSTM (Cao et al. 2016) Y 67.4 71.9 65.1 108.8 88.9 112.0 55.6 77.5

Gilbert et al. (2017) Y 92.7 85.9 72.3 93.2 86.2 101.2 75.1 78.0

Mude Lin Liang Lin and Cheng (2017) N 58.0 68.3 63.3 65.8 75.3 93.1 61.2 65.7

Martinez et al. (2017) Y 74.0 94.6 62.3 59.1 65.1 49.5 52.4 62.9

Trumble et al. (2018) Y 61.0 95.0 70.0 62.3 66.2 53.7 52.4 62.5

Proposed Y 61.2 63.0 58.6 91.2 76.3 91.1 59.7 68.3

Multiview Sit. Sit D Smoke Wait W.Dog Walk W. toget. Mean

Li et al. (2015) Y 151.6 243.0 162.1 170.7 177.1 96.6 127.9 162.1

Tekin et al. (2016) Y 73.8 170.4 85.1 116.9 113.7 62.1 94.8 100.1

Zhou et al. (2016) N 124.52 199.23 107.42 118.09 114.23 79.39 97.70 113.01

Sanzari et al. (2016) N 116.89 129.63 97.84 65.94 130.46 92.58 102.21 93.15

Tome et al. (2017) N 110.2 173.9 85.0 85.8 86.3 71.4 73.1 88.4

Tri CPM LSTM (Cao et al. 2016) Y 92.7 110.2 80.3 100.6 71.7 57.2 77.6 88.1

Gilbert et al. (2017) Y 83.5 94.8 85.8 82.0 114.6 94.9 79.7 87.3

Mude Lin Liang Lin and Cheng (2017) N 98.7 127.7 70.4 68.2 73.0 50.6 57.7 73.1

Martinez et al. (2017) Y 74.0 94.6 62.3 59.1 65.1 49.5 52.4 62.9

Trumble et al. (2018) Y 61.0 95.0 70.0 62.3 66.2 53.7 52.4 62.5

Proposed Y 76.2 93.4 71.2 85.0 64.5 53.1 67.1 71.9

Table 3 Empirical study on the performance of the different parts of the approach on the Human 3.6M dataset

Approach Direct. Discus Eat Greet. Phone Photo Pose Purch.

3D Matte PVH 152.8 171.4 152.6 189.2 179.7 210.2 147.1 167.0

3D CPM PVH 104.9 108.0 100.5 156.3 130.7 156.1 102.3 117.1

3D Matte CPM PVH 83.1 85.5 79.5 123.8 103.5 123.6 81.0 92.7

3D Matte CPM PVH LSTM (ours) 61.2 63.0 58.6 91.2 76.3 91.1 59.7 68.3

Sit. Sit D Smke Wait W.Dog Walk W. toget. Mean

3D Matte PVH 177.3 192.8 179.3 161.0 236.8 179.0 168.8 169.0

3D CPM PVH 130.6 160.1 122.0 145.6 110.5 91.0 115.1 123.4

3D Matte CPM PVH 103.4 126.7 96.6 115.2 87.5 72.0 91.1 97.7

3D Matte CPM PVH LSTM (ours) 76.2 93.4 71.2 85.0 64.5 53.1 67.1 71.9

and Vicon labelling for ground truth. It was captured indoors

in a volume measuring roughly 8 × 4 m with 8 calibrated

HD video cameras at 60 Hz. The variation in the dataset is

shown in Fig. 7. To provide accurate labelled ground truth,

the optical marker based (http://www.vicon.com) system was

utilised, calculating 17 3D joint positions and angles, by tri-

angulating small (0.5 cm3) dots visible to infrared cameras,

note these dots are not used explicitly by our algorithm, and

their size is negligible compared to the performance

volume. The IMU data is provided by 13 sensors on key

body parts, head, upper/lower back, upper/lower arms and

legs and feet, providing per unit orientation and accelera-

tion. The location of the IMU sensors is shown in Fig. 8. The

dataset consists of four male and one female subjects each

performing four diverse performances, repeated three times:

ROM, Walking, Acting and Freestyle, with each sequence
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Table 4 Characterising existing 3D human pose datasets and TotalCap-

ture

Dataset Frames Cams Vicon IMU

Human3.6M (Ionescu et al. 2014) 3,136, 356 4 Y N

HumanEva (Sigal et al. 2010) 40,000 7 Y N

TNT15 (Marcard et al. 2016) 13,000 8 N Y

Total capture 1,892,176 8 Y Y

lasting around 3000–5000 frames. An example of each per-

formance and subject variation is shown in Fig. 7. There is

a total of 1,892,176 frames of synchronised video, IMU and

Vicon data (although some are withheld as test footage for

unseen subjects). The variation and body motions contained

in particular within the acting and freestyle sequences are

very challenging with actions such as yoga, giving direc-

tions, bending over and crawling performed in both the train

and test data. The train and test partitions are performed wrt

to the subjects and sequences, the training consists of ROM1,

2, 3; Walking1, 3; Freestyle1, 2 and Acting1, 2 on subjects

1, 2 and 3. The test set is the performances Freestyle3 (FS3),

Acting (A3) and Walking 2 (W2) on subjects 1, 2, 3, 4 and

5. This split allows for a comparison of unseen and seen

subjects but always unseen sequences.

4.3 Total Capture Evaluation

To provide a reference of our approach to other methods we

compare to three state of the art approaches, the 3D trian-

gulated CPM, Tri-CPM, described in Sect. 4.1 a flattened

multi-view matte based 2D convolutional neural network

approach (Trumble et al. 2016), 2D Matte, and our previously

published results without the semantic 2D pose labels in the

probabilistic visual hull (Gilbert et al. 2017). The results

are shown with and without temporal consistency provided

Fig. 8 The location of the 13

orange box IMU sensors

by the learnt LSTM model. As with Human3.6M, we show

performance using the 3D Euclidean error metric over the

17 joints quantitatively in Table 5, and then qualitatively in

Fig. 9 and in the accompanying video (The video is avail-

able at http://youtu.be/CLDqpze53lU). The table shows that

our combined semantic and occupancy based fusion with

IMU approach outperforms all other methods, including our

previous work (Gilbert et al. 2017) by 6 mm, and the trian-

gulated CPM by 13 mm, which also performed well on the

Human3.6M. The ability of the LSTM layers to introduce

the temporal consistency and remove failure cases, improves

all approaches by around 20 mm.

4.4 Ablation Study

Our ablation study cumulatively enables each of our individ-

ual contributions on top of a classic baseline of a 3D Matte

PVH. 3D pose estimation performance error is presented in

Table 6 for separate parts of the approach.

The table shows how that the two channels of the PVH, 3D

Matte PVH and 3D CPM PVH separately have a similar per-

Fig. 7 Examples of performance variation in the proposed TotalCapture dataset
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Table 5 Comparison of our approach on TotalCapture to other human pose estimation approaches, expressed as average per joint per frame error

(mm)

Approach SeenSubjects(S1,2,3) UnseenSubjects(S4,5) Mean

W2 FS3 A3 W2 FS3 A3

Tri-CPM (Cao et al. 2016) 79.0 112.1 106.5 79.0 149.3 73.7 99.8

Tri-CPM-LSTM (Cao et al. 2016) 45.7 102.8 71.9 57.8 142.9 59.6 80.1

2D Matte (Trumble et al. 2016) 104.9 155.0 117.8 161.3 208.2 161.3 142.9

2D Matte-LSTM (Trumble et al. 2016) 94.1 128.9 105.3 109.1 168.5 120.6 121.1

3D Matte PVH + IMU-LSTM (Gilbert et al. 2017) 30.0 90.6 49.0 36.0 112.1 109.2 70.0

Ours 19.2 48.8 42.3 24.7 61.8 58.8 42.6

S2 A3 Fr227 S2 A3 Fr4300 S2 FS3 Fr227 S2 FS3 Fr1913

S3 FS3 Fr894 S3 FS3 Fr388 S4 FS3 Fr162 S4 FS3 Fr410

Fig. 9 Additional results across diverse poses within TotalCapture. The two skeleton results shown the joint estimates from a different camera

views

Table 6 Mean per joint error

(mm) of the approach

components on the TotalCapture

Dataset

Approach SeenSubjects(S1,2,3) UnseenSubjects(S4,5) Mean

W2 FS3 A3 W2 FS3 A3

3D Matte PVH 48.3 122.3 94.3 84.3 168.5 154.5 107.3

3D RGB Matte PVH 57.0 133.8 102.2 90.2 176.3 157.7 115.2

3D CPM PVH 85.5 123.1 88.6 105.7 142.2 97.7 105.8

3D Matte CPM PVH 66.0 93.3 75.2 78.1 114.2 100.0 85.9

3D Matte CPM PVH-LSTM 52.8 80.9 62.1 61.4 102.6 90.0 73.0

Raw IMU-LSTM 84.3 138.5 102.4 85.1 168.1 158.1 122.75

Solved IMU 38.5 60.5 68.7 48.0 89.5 80.0 64.2

Solved IMU-LSTM 29.8 50.7 59.8 32.4 64.1 74.5 51.9

Averaged fused approach 25.4 50.6 57.2 25.9 63.4 68.5 48.7

Dense layer fused approach 19.2 48.8 42.3 24.7 61.8 58.8 42.6

formance error, however by employing a two channel PVH

it is possible to reduce the error by 20 mm. We also show the

accuracy of using a 3 channel PVH (3D RGB Matte PVH )

with the foreground RGB pixel values instead, this performs

worse, due to the increased dimensionally of the 3 chan-

nels but without the increased complementary knowledge

that combining the occupancy and semantic label channels

provides. With regards the IMU, the Raw IMU LSTM, uses

the raw global orientation of the IMU units without an kine-

matic solve, an LSTM model is trained on the raw IMU

input and this performs badly with nearly double the error

of the Solved-IMU. Part of the reason for this higher error is

likely to be due to sensor drift within the IMU being unable

to be modelled correctly by the LSTM. However, through

constraining the noisy IMU unit responses with inverse kine-

matics, we are able to negate the IMU sensor drift to some

degree. By then fusing the SolvedIMU and two channel

PVH, the error is further reduced. This is likely to be due to
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the complementary nature of the two data sources. Also, we

show the result of just averaging the two data streams as the

fusion method, this produces a high error, as expected as it is

unable to learn anything about how the two data stream inter-

act. It is possible to examine the per frame error for a sequence

for subject 2 and sequence Acting3, in Fig. 10. Looking at

the framewise errors, it shows that the two modes of data, the

3D PVH and SolvedIMU have lower errors at times, however

through the use of the fusion layer, the overall error is lower

than both. At around frame 1250, the Solved IMU increases

in error due to a failure, however, the overall error rate of our

proposed approach is relativity unchanged. While at frame

2500, the IMU is out performing the 3D PVH allowing the

fused result to maintain a low error. However, at frame 4000

both modes fail, to cause higher errors in both data modes and

the fused results, qualitative results of these three frames are

shown in Fig. 11. For frame 4000 the higher errors can be seen

to be caused by the arms not being extended correctly. The

differences between the inferred poses can be quite small,

indicating the contribution of all components of the approach.

Although it’s important to notice that the errors in the Solved-

IMU pose for frames 2800 and 4000 aren’t introduced to the

final fused results. Run-time performance is 25 fps, includ-

ing PVH generation. The ability of the approach to generalise

between datasets is an interesting topic, therefore we com-

pared applying a model trained on the TotalCapture dataset

to the Human 3.6M dataset. We used the trained TotalCap-

ture model from Table 6, 3D Matte CPM PVH-LSTM i.e. the

input to the fusion layer (as we cant use a model that takes

in IMU data on the Human3.6M dataset). Given the different

number of cameras and far poorer resultant PVHs formed by

human3.6M, we fine-tune the TotalCapture trained model on

the human3.6M using unfixed weights with a single epoch of

the Human3.6M training data (normally the model is trained

with 100 epochs where an epoch is a complete pass of the

training data). The new fine-tuned model was then shown all

the test sequences from Human3.6M and achieved an aver-

age joint error of 75.3 mm. This is similar to the performance

of our approach with exclusive training on Human3.6M of

71.9 mm as shown in Table 2. This indicates that the learnt

model is similar, although a small amount of adaptation is

required between the datasets due in this case to the poor PVH

generalisation for the Human3.6M dataset, later in Sect. 5 we

will shown results on the TotalCaptureOutdoor without any

generalisation.

4.5 In Depth Analysis

In this section, we explore and analyse some of the parame-

ters in the approach. We investigate the effect of the number

of cameras used, the amount of training data, the number of

previous frames used for the temporal consistency and the

Fig. 10 Per frame accuracy of our proposed approach on sequence A3

Subject2

Fr 0500 3D PVH SolvedIMU Fused

Fr. 2800 3D PVH SolvedIMU Fused

Fr. 4000 3D PVH SolvedIMU Fused

Fig. 11 Visual comparison of poses resolved at different pipeline

stages. TotalCapture: Acting3, Subject 2

effect the size of the voxels in the PVH volume has on the

overall performance.

4.5.1 Number of Cameras Used

Within the TotalCapture dataset there are 8 cameras, the

greater the number of cameras, the more visually realistic

the PVH is, for this work however it is possible to remove

a large number of these with little or no impact on perfor-

mance. The 3D PVH is constructed from the intersection of

the foreground mattes and the intersection of the semantic 2D

joint heat maps. With a greater number of cameras a more

realistic PVH can be constructed, as can be seen comparing

Fig. 12a, b, c which show the foreground matte based PVH

with 8, 6, and 4 cameras respectively. While Fig. 12d shows

the PVH for the Human3.6M dataset, the reason visually the

Human3.6M PVH is worse in Fig. 12a–c, is probably due to

the cameras being closer to the ground and also noisier fore-
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Fig. 12 Effect on varying camera count on qualitative PVH appearance,

for TotalCapture dataset (a–c) and Human3.6M (d)

Table 7 Relative accuracy change (mm/joint) when varying the number

of cameras

Num Seen(S1,2,3) Unseen(S4,5)

Cams W2 (%) FS3 (%) A3 (%) W2 (%) FS3 (%) A3 (%)

4 93.8 90.8 95.3 91.6 89.5 93.5

6 94.3 99.3 97.4 96.0 98.2 98.1

8 100 100 100 100 100 100

ground mattes being used, however performance isn’t greatly

affected. It can be seen that the PVH is visually less realis-

tic with fewer cameras, however as shown in Table 7, which

shows the relative performance for the whole fusion system

with 4,6, and 8 cameras used to construct the 2 channel visual

PVH, the performance is relatively unaffected despite halv-

ing the number of cameras used.

4.5.2 Training Data Size

Generally for training neural networks a large amount of

varied data is required, and the more data the higher the per-

formance, especially as we use 3D convnets, which have

an additional dimension and therefore additional weights to

learn. We are able to investigate how the amount of training

data affects the performance. The test sequences were kept

consistent throughout as before, and an increasing percent-

age of total available training data was used from Subjects 1,

2 and 3, randomly sampled from maximum of ∼ 250k MVV

frames. Table 8 suggests that the performance is relatively

unaffected by the lower amounts of training data. This can

be in part due to the use of our range of motions sequences

within the training set. The approach can train with a sparse

set of data and doesn’t over-fit even if only 20% of the training

data is used.

4.5.3 Temporal Frame Length

Within the LSTM layers, there are memory cells that remem-

ber the previous f data instances in time to provide temporal

consistency. For this work f = 5, which is a compromise

between little or no temporal memory and too long, which

would fail to generalise to the test data after training. Fig-

Table 8 Evaluating impact of accuracy (relative change in per joint mm

error) as training data volume increases

% Train Seen(S1,2,3) Unseen(S4,5)

Data W2 (%) FS3 (%) A3 (%) W2 (%) FS3 (%) A3 (%)

20 96 89 86 93 85 84

40 97 91 87 94 86 86

60 97 94 89 94 89 90

80 99 95 93 97 91 93

100 100 100 100 100 100 100

Fig. 13 3D Pose estimation error for increasing number of previous

frames used by LSTM layers

Table 9 Relative accuracy change (mm/joint) when varying the number

of voxels in the PVH

Voxels Seen(S1,2,3) Unseen(S4,5)

W2 (%) FS3 (%) A3 (%) W2 (%) FS3 (%) A3 (%)

16 × 16 × 16 85 84 82 86 87 82

30 × 30 × 30 100 100 100 100 100 100

48 × 48 × 48 97 98 97 99 98 99

ure 13 shows the how the performance on the regular train and

test set varies for an increasing number of previous frames

used. It can be seen that initially, the error is higher when lit-

tle or no previous frame information is incorporated, it then

increases and slows after a minimal around 5–6 frames. This

is to be expected as the approach is starting to overfit to the

training data and can’t generalise to work well on the unseen

test sequences.

4.5.4 Voxel Resolution

Discrete voxels are used to carve up the 3D occupied volume

to produce the probabilistic visual hull and then fed into the

3D convnet, with an initial resolution of 30 × 30 × 30 vox-

els. Therefore for a 2 × 2 × 2 m volume each voxel being
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Fig. 14 Affect of voxel sizes on qualitative PVH appearance

67 mm3, which is the error measure, and therefore could be

hypothesised that this is the minimum error noise threshold.

We can investigate the effect of this coarse quantisation by

increasing and reducing the number of voxels. Table 9 shows

the relative effect in adjusting the voxel quantity, and visually

in Fig. 14.

It can be seen that there is a slight reduction in per-

formance with larger and smaller voxels 125 mm (16 ×

16 × 16) and 41 mm (48 × 48 × 48) respectively how-

ever this is to be expected as with a larger voxels, the

detail is reduced, and with the smaller voxels the parame-

ter space is exponentially increased (110,000 elements for

48 × 48 × 48 voxels compared to 27,000 for 30 × 30 ×

30), and therefore unable to effectively learn the additional

weight parameter without the exponential increase in training

data.

5 TotalCaptureOutdoor

To further demonstrate the generalisation of the approach,

we test on a new challenging dataset used by (Malleson et al.

2017), This is a MVV and IMU dataset that was recorded

outdoors in challenging uncontrolled conditions with a mov-

ing and changing background and varying illumination. 6

video cameras were placed in a 120 arc around the sub-

ject, with a large 8 × 8 m capture volume used. Examples

of the camera viewpoints are shown in Fig. 15. For the

TotalCaptureOutdoor sequences we uses the fully trained

model (Dense Layer Fused approach from Table 6) from

the TotalCapture dataset in Sect. 4.3 to predict the joints on

the TotalCaptureOutdoor sequences. To indicate the gener-

alisation ability of the approach a different camera setup (6

against the 8 on the indoor TotalCapture dataset) and the

S2 FS1 Fr 262 S2 FS1 Fr 36

S2 FS1 Fr 337 S2 FS1 Fr

1493

S2 FS1 Fr 131 Fr

131

S2 FS1 Fr 305 Fr 305

Fig. 16 Visual comparison of poses resolved for the dataset TotalCap-

tureOutdoor for our proposed approach and the Tri-CPM

13 Xsens IMUs were only placed in roughly similar loca-

tions to previous captures. Given the change in environment

from a controlled studio to a unconstrained sunny and cloudy

outdoor setting. We we able to achieve excellent qualita-

tive performance on this more challenging dataset. There

is no ground truth data is available for this dataset, however

Fig. 16 shows a selection of pose estimations, for our full

approach and the input image for subject 2. It can be seen

that the resolved poses for our approach are able to accu-

rately reflect the image despite all the training data being

from the indoor TotalCapture dataset. Also the moving back-

ground from the tree is ignored correctly as noise by the

occupancy based PVH. Finally Fig. 17, illustrates the resul-

tant joint estimates from views taken in a 360◦ around the

subject.

It shows that despite cameras only being present on one

side, we are able to be accurately estimate full 360◦ joint

locations.

Cam 1 Cam 2 Cam 3 Cam 4 Cam 5 Cam 6

Fig. 15 The cameras viewpoints of the TotalCaptureOutdoor dataset (Malleson et al. 2017)
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Sample View S2 FS1 Cam4 CloseUp

Fig. 17 360◦ views of a frame from TotalCapture Outdoor

6 Conclusion

We have presented a novel approach for marker-less perfor-

mance capture, that fuses MVV and IMU data to provide

high accuracy human pose estimation in 3D. The MVV is

used to produce semantic joint estimations and foreground

occupancy, with a temporal model provided by LSTM layers

to produce state of the art performance on the Human3.6M

dataset, with a mean per joint error of 71.9 mm. Through the

fusion of a forward kinematic solve from IMUs, this error

can be further reduced by 10 mm beyond the state of the art.

Currently the limitations of the approach are often due to

poor foreground mattes that can cause the PVH to fail to

accurately describe the subjects volume. Similarly, in chal-

lenging poses the 2D pose estimation can fail in a number of

camera views, resulting in a poor input PVH input. However

we have shown excellent qualitative results on three datasets

including on a challenging outdoor dataset and are able to

release the TotalCapture dataset; the first publicly available

dataset simultaneously capturing MVV, IMU and skeletal

ground truth.
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