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ABSTRACT Environmental noise can pose a threat to the stable operation of current speech recognition

systems. It is therefore essential to develop a front feature set that is able to identify speech under low signal-

to-noise ratio. In this paper, a robust fusion feature is proposed that can fully characterize speech information.

To obtain the cochlear filter cepstral coefficients (CFCC), a novel feature is first extracted by the power-law

nonlinear function, which can simulate the auditory characteristics of the human ear. Speech enhancement

technology is then introduced into the front end of feature extraction, and the extracted feature and their

first-order difference are combined in newmixed features. An energy feature Teager energy operator cepstral

coefficient (TEOCC) is also extracted, and combined with the above-mentioned mixed features to form the

fusion feature sets. Principal component analysis (PCA) is then applied to feature selection and optimization

of the feature set, and the final feature set is used in a non-specific persons, isolated words, and small-

vocabulary speech recognition system. Finally, a comparative experiment of speech recognition is designed

to verify the advantages of the proposed feature set using a support vector machine (SVM). The experimental

results show that the proposed feature set not only display a high recognition rate and excellent anti-noise

performance in speech recognition, but can also fully characterize the auditory and energy information in

the speech signals.

INDEX TERMS Cochlear filter cepstral coefficients, Teager energy operators cepstral coefficients, principal

component analysis, speech recognition.

I. INTRODUCTION

Speech is the material shell and acoustic representation of

language, and is one of the most easily accessible carri-

ers of information for humans. It is a vital component of

research in the field of human-computer interaction and

intelligent communication due to its ability to convey var-

ious information sources. Speech recognition is a technol-

ogy for realizing intelligent human-computer interaction with

broad application prospects and value. Its main purpose is

to communicate with a computer, so that the computer can

convert the speech signal into corresponding text or com-

mands through the process of understanding and recognition.

Interpretation of human spoken language through technology

has a diverse range of applications including in air trans-

port, intelligent homes, disaster rescue, medical diagnostics,

and other human-computer interaction fields [1]. At present,

research into speech recognition is mainly focused on feature
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extraction and pattern recognition. As an important element

of speech recognition, feature extraction has a large influence

on the performance of the system [2]. Therefore, methods

to extract the most information-capable, noise-less, easily

classified, and stable new features from speechmust be devel-

oped. In order to achieve integrity of speech information,

strategies to integrate and optimize the different types of

features that have been proposed also require further research

to establish a set of anti-noise speech features with the best

classification performance.

Currently, the most widely effective speech features are

based on the auditory characteristics of the human ear. The

human ear has good anti-noise attributes, and an increasing

number of researchers are studying these auditory features

to establish a speech feature model which is more consis-

tent with human auditory characteristics [3]. Mel frequency

cepstral coefficient (MFCC) is the most popular feature cur-

rently, and the majority of research is optimized for this

feature. However, studies have shown that the recognition

performance of MFCC features in low signal-to-noise (SNR)
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ratio environments are not ideal, resulting in poor stability

of the speech recognition system [4]. In addition, MFCC is

extracted based on Fourier transform, though Fourier trans-

form is only suitable for the processing of stationary signals.

In view of the non-stationary time-varying characteristics of

speech signals, Peter Li proposed an auditory-based trans-

form to process audio signals, and used this method to

extract cochlear filter cepstral coefficients (CFCC) features

for robust speaker identification [5], [6]. Studies have shown

that this auditory-based transform compensates for the short-

comings of Fourier transform, with the advantages of less

harmonic distortion and better spectral smoothness [7].

Recent development in CFCC features have been suc-

cessfully applied within various applications [8]–[13].

Li and Huang [8] applied the study of CFCC features for

robust speaker identification under mismatched conditions,

and compared this with the traditional feature parameters

such as MFCC, perceptual linear predictive (PLP), and rel-

ative spectral perceptual linear prediction (RASTA-PLP).

Xin and Changchun of Beijing University of Technology

described a blind bandwidth extension method based on

CFCC, in which bandwidth extension of wideband audio

signals achieved superior wideband audio auditory qual-

ity [9]. Li et al. added Teager energy operator (TEO) to

CFCC features and proposed TEO-CFCC feature parameters

for speaker recognition in noisy environments [10]. Patel

T B combined CFCC and derivative features with MFCC

for detection of natural vs. spoofed speech [11], [12], while

Zuoqiang and Yong realized the fusion of phase information

and CFCC in robust speaker identification systems [13].

Although some scholars have studied the CFCC feature

parameter, there are very few studies focused on the auditory

characteristics of the human ear and robustness of auditory

features in speech signals.

Auditory mechanism studies have shown that nonlinear

signal processing mechanisms in the cochlea contribute sig-

nificantly to auditory production and robustness [14]. Tradi-

tional CFCC features only consider the use of cubic roots

and logarithmic functions to complete the process of non-

linear loudness transformation, which does not fully con-

form to the auditory mechanism in the auditory system.

Thus, from a physiological point of view, considering the

saturation relationship between the spike rate of auditory

neurons and sound intensity, new cochlear filter cepstral

coefficients (NCFCC) are extracted by the power-law non-

linear function which can simulate the auditory characteris-

tics of human ear. Speech enhancement technology is then

introduced in the front-end of NCFCC feature extraction

to reduce the influence of noise. That is, spectral subtrac-

tion, recursive least square, and least mean square are used

as preprocessors to remove noise, respectively, to further

improve the SNR of the speech signal. Three new robust

feature parameters are then extracted: fusion feature based

on power-law nonlinearity function and spectral subtraction

(FFPSS), fusion feature based on power-law nonlinearity

function and recursive least square (FFPRLS), and fusion

feature based on power-law nonlinearity function and least

mean square (FFPLMS). In addition, from the perspective

of speech enhancement, the energy tracking transform char-

acteristics of noisy speech are analyzed and Teager energy

operator cepstral coefficient (TEOCC) is extracted. Combin-

ing the above robust features and their first order difference,

TEOCC is then used to form fusion feature sets. Finally,

principal component analysis (PCA) is applied to feature

selection and optimization of the feature set to obtain the

optimal feature set in order to achieve the best performance

by the speech recognition system.

II. PROPOSED NCFCC FEATURE EXTRACTION

A. COCHLEAR FILTER CEPSTRAL COEFFICIENTS (CFCC)

The feature extraction procedure for CFCC consists of four

parts: a series of cochlear filter banks model based on audi-

tory transform, hair cell function, nonlinearity, and discrete

cosine transform (DCT) [6]. The following subsection briefly

describes auditory transform and procedure for estimating the

CFCC and proposed NCFCC features.

1) AUDITORY TRANSFORM

As a new method of processing non-linear signals, auditory

transform is equivalent to converting time-domain signals

into frequency-domain signals through cochlear filter banks.

The cochlear filter function is used as the basis function of the

wavelet, completing the whole process of sound transmission

from the outer ear to the basement membrane, with an exist-

ing inverse transform [8].

Let ψ (t) be the impulse response of the basilar membrane

of cochlear ψ (t) ∈ L2 (R), in which the function ψ (t)

satisfies the following conditions:

1©. It integrates to zero:
+∞
∫

−∞

ψ (t)dt = 0 (1)

2©. It is square integrable or has finite energy:
+∞
∫

−∞

|ψ (t) dt|2 < ∞ (2)

3©. It satisfies:
+∞
∫

−∞

|9 (ω)|2
ω

dω = C (3)

where 0 < C < ∞, and

9 (ω) =
∫ +∞

−∞
ψ (t)e−jωtdω (4)

Let f (t) be any square integrable function. The audi-

tory transform of f (t), with respect to ψ (t) as the impulse

response of the basilar membrane in the cochlea, is defined

as:

T (a, b) =
∫ +∞

−∞
f (t)ψa,b (t) dt (5)
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where ψa,b (t) = 1√
a
ψ
(

t−b
a

)

dt , a, b are real, and a is a scale

or dilation variable. By changing a, the central frequency of

an impulse response function can be shifted. Subscript b is a

time shift or translation variable. If a is known,ψa,0 (t)moves

a unit along the time axis to get ψa,b (t). Note that 1
/√

a is

an energy normalizing factor. It ensures that the energy stays

the same for all a and b, providing:
∫ +∞

−∞

∣

∣ψa,b (t)
∣

∣

2
dt =

∫ +∞

−∞
|ψ (t)|2dt (6)

A typical cochlear impulse response function or cochlear

filter can be defined as:

ψa,b (t) = 1√
a

(t − b)α

a
exp

[

−2π fLβ

(

t − b

a

)]

×
[

cos 2π fL

(

t − b

a

)

+ θ

]

u(t − b) (7)

where α > 0, β > 0, parameters α and β determine the

frequency domain shape and width of the cochlear filter.

Subscript α and β are taken as the generally empirical value,

α = 3, β = 0.2, u (t) is the unit step function, and the

value θ is the initial phase. The value of a can be determined

by the current filter, the central frequency fc, and the lowest

frequency fL of the cochlear filterbank, which is denoted as:

a = fL
/

fc (8)

2) OTHER OPERATIONS IN CFCC EXTRACTION

As an important part of the auditory system, human cochlear

inner ear hair cells transform the vibration signals transmitted

from the basement membrane of the cochlea into analyzable

nerve impulse signals of the brain, and then transmit them

to the auditory nerve fibers [15]. The following nonlinear

function of hair cell describes this motion:

h(a, b) = [T (a, b)]2 (9)

where T (a, b) is the filterbank output of speech signal f (t).

The hair cell output of each filterbank is converted into a

representation of the nerve spike count density in a duration

associated with the current band central frequency, which is

computed as:

S(i, j) = 1

d

l+d−1
∑

b=1

h(i, b), l = 1,L, 2L · · · ; ∀i, j (10)

where d = max{3.5τi, 20ms} is the window length, τi is the

period of the i band. τi = 1
/

fc, and L is the window shift

duration.

The output of the above formula is further applied to scales

of loudness functions as cubic root nonlinearity, providing:

y (i, j) = [S (i, j)]1/3 (11)

Finally, discrete cosine transform (DCT) is applied to

decorrelate the feature dimensions. It generates the cochlear

filter cepstral coefficients as a new auditory-based speech

feature, which is computed as:

cfcc (i, n) =
√

2
/

M

M−1
∑

m=1

y (i,m) cos

(

πn
(

m− 1
/

2
)

M

)

0 ≤ m ≤ M (12)

where M is the number of filters.

B. NEW COCHLEAR FILTER CEPSTRAL

COEFFICIENTS (NCFCC)

The CFCC is a feature parameter that simulates the auditory

characteristics of the human ear. It imitates the basilar mem-

brane function of the human ear auditory system by auditory

transform, and uses cubic root function or logarithmic func-

tion to complete the non-linear transformation process [15].

Although the importance of auditory nonlinearity has been

confirmed in many studies, the impact of peripheral nonlin-

earity remains less understood. Existing research shows that

the non-linearity of the response of the auditory system to

the sound signal obeys exponential compression, and grad-

ually increases from low frequency to high frequency [16].

However, cubic root nonlinearity or logarithmic nonlinearity

function compresses the entire frequency domain. This non-

linearity does not fully conform to the auditory mechanism in

the auditory system, which causes some issues. Hence, in an

actual speech recognition system, the extraction method of

CFCC feature parameters is not ideal in a low SNR envi-

ronment. The power-law nonlinear function can be roughly

approximated to the relationship curve between spike rate

and sound intensity, and the characteristics of the power-law

nonlinear function are consistent with human auditory, that

is, the dynamic characteristics of output are not entirely

dependent on themagnitude of input [17]. Therefore, NCFCC

features obtained by using the power-law nonlinear function

to simulate human ear auditory characteristics are effective.

The equation of this function used in the experiment is as

follows:

y(i, j) = [S(i, j)]0.101 (13)

III. SPEECH ENHANCEMENT AND ROBUST FEATURE

EXTRACTION

A. PROPOSED FFPSS FEATURES

1) SPECTRAL SUBTRACTION

Spectral subtraction is a simple method used in the frequency

domain estimation speech enhancement algorithm. Its princi-

ple is that the power spectrum of pure speech signal can be

obtained by subtracting the power spectrum of noise from the

power spectrum of speech signal with noise [18].

Let y (n) be speech signal with noise, s (n) is pure speech

signal, d (n) is noise, and the relationship between them is:

y (n) = s (n)+ d (n) , 0 ≤ n ≤ N − 1 (14)

where n the data points, and N is frame length.
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FIGURE 1. Flow diagram of the extraction process of FFPSS feature parameters.

Their representation in the fourier transform domain is

given by:

Y (ω) = S (ω)+ D (ω) (15)

As speech is assumed to be uncorrelated with background

noise, the short-term power spectrum of y (n) has no cross-

terms, hence:

E

∣

∣

∣
|S (ω)|2

∣

∣

∣
= E

∣

∣

∣
|Y (ω)|2

∣

∣

∣
− E

∣

∣

∣
|D (ω)|2

∣

∣

∣
(16)

where S (ω), D (ω), Y (ω) is the short-term power spectrum

of s (n), d (n), and y (n).

For a short-time stationary process in a frame, use:

|S (ω)|2 = |Y (ω)|2 − λd (ω) (17)

in which λd (ω) is the statistical average of silent segment

|D (ω)|2. Therefore, the amplitude of the speech signal after

spectral subtraction can be expressed as:

Ŝ(ω) = [|Y (ω)|2 − E(|D(ω)|2)]1/2 = [|Y (ω)|2 − λd (ω)]
1/2

(18)

2) FFPSS FEATURES EXTRACTION

Spectral subtraction is introduced in the front-end of feature

extraction to suppress background noise and further improve

the clarity of the speech signal. The speech signal is pre-

processed first in a process which includes pre-emphasis,

endpoint detection, and frame windowing. Formula (16) is

then used to subtract the spectrum amplitude of noise from

the spectrum amplitude of the noise signal, providing the

spectrum amplitude of pure signal. Based on the phase insen-

sitivity of speech, the phase angle information before spectral

subtraction is directly used to reconstruct the signal after

spectral subtraction to obtain the denoised speech. Finally,

the denoised speech signal is extracted using a power-law

nonlinear function which simulates the auditory characteris-

tics of human ears, and a new feature parameter FFPSS is

obtained. The extraction process is illustrated in fig. 1.

B. PROPOSED FFPRLS FEATURES

1) RECURSIVE LEAST SQUARE

Recursive least square (RLS) is an adaptive filtering

method [19]. The filter has two inputs. The first is

input speech signal, which is represented by x (n) =
[x (1) , x (2) , . . . , x (N )]. The other input is the expected out-

put signal, which is represented by d (n) =
[

d (1) , d (2) , . . . ,

d (N )
]

. The impulse response of the filter is given by

[w (1) ,w (2) , . . . ,w (N )], and the output of the filter is:

y (n) =
M
∑

k=1

wk (n)x (n− k + 1) , n = 1, 2, . . .N (19)

whereN is data length,M is the number of filters, andN must

be greater than M . The RLS algorithm requires the sum of

squares of all errors to be minimum [20]. Therefore, the error

signal e (n) is defined as:
e (n) = d (n)− y (n) = d (n)− wT x (n) (20)

where w = [w1,w2, . . . ,wM ]T , the weighted sum of squares

of e (n) is expressed as:

ε (n,w) =
n
∑

i=0

λn−i |e (i)|2 (21)

in which λ is defined as the forgetting factor or weighting

factor, 0 ≤ λ < 1, and λ is to give new and old data different

weights to ensure the fast response ability of the algorithm to

changes in the input process.

To minimize the sum of weighted squares, the recursive

formula of RLS can be expressed as:
w (n) = w (n− 1)+ R−1

x (n) xT (n) e (n) (22)

where Rx (n) =
n
∑

i=1

λn−ix (i) x t (i), it can be seen that the

RLS algorithm is based on the previous parameter estimation.

the algorithm uses the recursive method to revise the results

according to the new observation data so as to recursively

deduce the new parameter estimation.

2) FFPRLS FEATURES EXTRACTION

The RLS adaptive filter is used as a pre-processor of the

speech signal to denoise the signal. The enhanced signal is

then processed by auditory transformation and hair cell func-

tion, and the power-law nonlinear function is used to simulate

the auditory characteristics of human ears to complete the

loudness conversion process. Finally, the FFPRLS features

are obtained by DCT transformation. The extraction process

is shown in Fig. 2.

C. PROPOSED FFPLMS FEATURES

1) LEAST MEAN SQUARE

The least mean square (LMS) algorithm is a commonly used

adaptive filtering algorithm [21]. It carries out automatic

adjustment of the current filter parameters according to the

estimation of the filter parameters at the previous moment

to adapt to the statistical characteristics of signal and noise

changes, thus realizing optimal filtering.
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FIGURE 2. Flow diagram of the extraction process of FFPRLS feature parameters.

FIGURE 3. Flow diagram of the extraction process of FFPLMS feature parameters.

Let the formula X1 (n) ,X2 (n) , . . . ,Xm (n) be the input

signal sequence, and d (n) be the desired output signal. The

error signal e (n) is defined as:

e (n) = d (n)−
M
∑

i=1

wixi (n) (23)

where wi is the weight coefficient of the filter.

For convenience of study, the above formula (23) is repre-

sented as a vector, and the vector of input signal is defined

as X (n) = [x1 (n) , x2 (n) , . . . , xM (n)]
T . The weight vector

is given by W (n) = [w1 (n) ,w2 (n) , . . . ,wM (n)]
T , and

formula (21) can be expressed as:

y (n) = W TX (n) (24)

e (n) = d (n)− y (n) = d (n)−W TX (n) (25)

The LMS algorithm uses the steepest descent method

based on random gradient to find the optimal solution of

weighted vector. Among them, the random gradient esti-

mation is unbiased, and the random gradient estimation is

unbiased.

The initial value of the weight vector is set and adjusted

along the direction of negative gradient until the optimal value

is found. The computation of the iteration formula used in this

paper is as follows:

W (k + 1) = W (k)− µ∇ (k) (26)

whereµ is a constant called the convergence factor, which can

control the convergence speed and stability. It can be seen that

the key two steps of LMS algorithm are calculating gradient

∇ (k) and selecting convergence factor µ.

Here, the value of∇ (k) is roughly calculated by taking the
error quadratic e2 (k) as the estimated value of mean square

error E
[

e2 (k)
]

. Hence, providing:

∇̂ (k) = ∇
[

e2 (k)
]

= 2e (k)∇ [e (k)] (27)

where ∇̂ (k) = −2e (k)X (k), and the iteration formula is as

follows:

W (k + 1) = W (k)+ 2µe (k)X (k) (28)

The selection of convergence factor µ is derived from the

updated formula of the weight coefficient vector.

When µ is satisfied, 0 < µ < 1
λmax

tends to infinity,

the weighted vector converges to the optimal wiener solution,

and is given as:

lim
k→+∞

E {W (k)} = R−1
xx Rxd (29)

where λ is the maximum eigenvalue of the autocorrelation

matrix Rxx .

2) FFPLMS FEATURES EXTRACTION

An LMS adaptive filter is used as the noise canceller of the

speech signal, and the estimated value y (n) of the output

noise is as close as possible to the noise signal in d (n). The

FFPLMS features are then extracted by auditory transforma-

tion, hair cell function, the power-law nonlinear function, and

dct from the signal after de-noising. The extraction process is

illustrated in fig. 3.

VOLUME 7, 2019 81915



Y. Shi et al.: Fusion Feature Extraction Based on Auditory and Energy for Noise-Robust Speech Recognition

IV. PROPOSED TEOCC FEATURE EXTRACTION

The TEO [22] is a type of non-linear difference operator

proposed by kaiser. it has the characteristics of tracking the

non-linear energy of a signal, can reasonably present the

transformation of signal energy, and restrain the influence of

zero-mean noise on speech signal to enhance the signal and

extract features in speech recognition.

Let x (n) be a discrete-time signal, and the definition of

TEO is:

ψ [x (n)] = x (n)2 − x (n+ 1) x (n− 1) (30)

where ψ [x (n)] is output of TEO, x (n) is the sampling value

of the discrete signal at n point.

Let x (n) be a speech signal with additive noise, s (n) be

pure speech signal, and ω (n) be zero-mean additive noise.

This relationship can be Expressed as:

x (n) = s (n)+ ω (n) (31)

The TEO of x (n) is given by:

ψ [x (n)] = ψ [s (n)] + ψ [ω (n)] + 2ψ̃ [s (n) , ω (n)] (32)

where ψ̃ [s (n) , ω (n)] is mutual teager energy of s (n) and

ω (n), and

ψ̃ [s (n) , ω (n)] = s (n) ω (n)− 0.5s (n− 1) ω (n+ 1)

− 0.5s (n+ 1) ω (n− 1) (33)

Both s (n) and ω (n) are zero mean and independent of each

other, providing:

E
{

ψ̃ [s (n) , ω (n)]
}

= 0 (34)

E {ψ [x (n)]} = E {ψ [s (n)]} + E {ψ [ω (n)]} (35)

Compared with TEO energy of pure speech signal, The TEO

energy of noise can be neglected, according to:

E {ψ [x (n)]} ≈ E {ψ [s (n)]} (36)

Thus, TEO can eliminate the influence of zero-mean noise

and achieve speech enhancement. The application of TEO

in feature extraction can not only better reflect the energy

change of speech signal, but also suppress noise and enhance

speech signals, achieving good results in speech recognition.

The average TEO energy of each speech signal is calcu-

lated according to formula (30), and normalized and logarith-

mic data are obtained as:

ψ̂ [x (n)] = log
{

ψ [x (n)]
/

max (ψ [x (n)])
}

(37)

One-dimensional TEOCC is then obtained by dct

transformation.

V. FUSION AND OPTIMIZATION OF FEATURE

PARAMETERS

All speech features attempt to fully represent the complete

characteristics of speech signals to achieve better recognition

results. However, a certain kind of feature generally contains

only part of the speech information, and the original feature

parameters reflect the static characteristics of speech signals

because human ears are more sensitive to dynamic parame-

ters [23]. Therefore, the combination of dynamic and static

feature parameters makes the dynamic and static information

complementary, so as to more accurately describe the char-

acteristics of speech. This paper is based on the above three

robust features that are extracted, and their first-order differ-

ence. The three fusion feature sets are obtained by adding

TEOCC which reflects the change of signal energy.

To reduce the storage of feature data and further obtain the

optimal feature set, the fusion features are analyzed by princi-

pal component analysis to reduce dimension and recognition

time, and further improve the performance of the recognition

system. In the current research, PCA [24] is a statistical

analysis method based on orthogonal transformation. This

method uses covariance matrix to linearly combine the data

with high correlation dimension into data with less corre-

lation dimension. That is to say, fewer features are used to

replace most of the information of the original features, so as

to construct more representative feature vectors. Based on the

fusion features sets above, this paper uses PCA algorithm to

reduce their dimension, and obtains the principal component

matrix by setting the threshold of cumulative contribution

rate, in which the cumulative contribution rate reaches 97 %.

The cumulative contribution rate is calculated by:

αp =

p
∑

i=1

λi

n
∑

i=1

λi

(38)

in which λ denotes the eigenvalue of each dimension, and p

is the preceding p principal component.

VI. EXPERIMENT PREPARATION

A. KOREAN ISOLATED WORDS DATABASE

The isolated words database is used for performing isolated

word recognition from speech signals. The vocabulary sizes

used here are 10 words and 20 words. The corpus consists

of 10 digits and 40 command words, with 16 speakers repeat-

ing each word three times. For the experiment in this study,

recordings of the utterances of nine speakers are used as

the training set, and the utterances of the remaining seven

speakers are used as the test set.

B. CLASSIFICATION

Constructing a reasonable and efficient speech recognition

model is the most important research challenge in the field of

speech recognition technology. Currently, for speech recog-

nition tasks, both linear and nonlinear classifiers are used.

Researchers have experimented with different model clas-

sifiers for improving speech recognition. The most widely

used classifiers for speech recognition are Hidden Markov

Model (HMM) [25], Gaussian Mixture Model (GMM) [26],

and Support Vector Machines (SVM) [27]. Among them,

the theoretical reasoning and geometric description of SVM
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TABLE 1. Comparison of recognition rates of CFCC features extracted from different functions in different SNR environments (%).

FIGURE 4. Comparison of speech recognition result of NCFCC and CFCCIF features.

are strict and intuitive, and its generalization ability is strong.

This classifier can deal with the problems of high dimension

inseparability and dimension disaster, which are difficult to

solve in traditional machine learning, and realize the appli-

cation of classification and regression in complex situations.

To carry out the classification of complex non-linear speech

data, this paper adopts SVM to map the original features into

a high-dimensional space. The choice of kernel function is

radial basis function (RBF).

VII. EXPERIMENTAL SETUP AND ANALYSIS OF RESULTS

To verify the validity and robustness of the proposed feature

set, the following four experimental schemes are designed.

A. VALIDITY AND VERIFICATION OF ROBUSTNESS OF THE

NCFCC FEATURE

Two experiments are designed to verify the validity of

NCFCC feature parameters, and the results are then

discussed.

Experiment 1: Traditional CFCC features are first

extracted by the cubic root function or logarithmic func-

tion which can simulate the auditory characteristics of the

human ear [8]–[11]. Next, the NCFCC feature parameters

are extracted from the power-law nonlinear function pro-

posed in this paper. Finally, the results of the two experi-

ments are compared. The experimental results are provided

in Table 1.

Experiment 2: To further test the recognition performance

of NCFCC features in different SNR environments, the recog-

nition rates of NCFCC and CFCCIF features proposed in

reference [11] are compared. The experimental results are

shown in Fig. 4.

It can be observed in Table 1 that for the task of speech

recognition, a higher accuracy are extracted compared to

traditional CFCC features. The robustness of the proposed

system is obviously improved. The findings also confirm the

feasibility and validity of the proposed feature NCFCC in

isolated word speech recognition systems.
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TABLE 2. Comparison of speech recognition based on five features (%).

FIGURE 5. Comparison of experimental results.

According to the experimental results shown in Fig. 4,

compared with CFCCIF, NCFCC features have a superior

recognition effect. The overall speech recognition rate under

10 words is increased by 0.47 %. The increase is small under

20 words, and the overall speech recognition rate is increased

by 0.03 %. This result proves that the power-law nonlinear

function can better simulate the auditory characteristics of

human ears to extract more representative speech features.

However, it can also been seen in Fig. 1 that the recognition

rate of the NCFCC features are lower than CFCCIF features

when the SNR is 0 dB, illustrating that the recognition effect

of the NCFCC features in a low SNR environment is not ideal.

B. VALIDITY AND VERIFICATION OF ROBUSTNESS OF THE

FFPSS, FFPRLS AND FFPLMS FEATURES

In this paper, the CFCCIF features, NCFCC features, FFPSS

features, FFPRLS features, and FFPLMS features extracted

above are used as the input of SVM for speech recognition

comparison experiments. The results of the recognition are

provided in Table 2 and Fig. 5. These results confirm the

validity and robustness of the three features based on speech

enhancement.

Experimental results show that when using different vocab-

ulary and different values of SNR, compared with the above

five features, the recognition rate can be improved. From
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TABLE 3. Comparison of speech recognition of FFPSS feature set (%).

TABLE 4. Comparison of speech recognition of FFPRLS feature set (%).

Table 2, it can be observed that NCFCC features have only

slight speech recognition advantages over CFCCIF features.

The three robust features FFPRLS, FFPSS, and FFPLMS

extracted in this paper have higher recognition effect than

NCFCC features. The average recognition rates are increased

by 2.15 %, 3.34 % and 4.48 % for 10 words, and 1.86 %,

3.74 % and 4.81 % for 20 words, respectively. By comparing

Table 2 with Fig. 5, it can be determined that the features

extracted by combining speech enhancement with feature

extraction have certain advantages in recognition rate and

robustness. It further illustrates the potential of LMS adaptive

filter as the preprocessor of speech signal, and the extracted

FFPLMS features demonstrate better robustness.

C. VALIDITY AND VERIFICATION OF ROBUSTNESS OF

FUSION FEATURE SET

The performance of discriminative features, as well as the

dynamic and static information from speech signals on the

basis of FFPRLS, FFPSS, and FFPLMS features are next ana-

lyzed. The first-order difference parameters are obtained and

combined to form new mixed features, which are expressed

by FFPSS_D, FFPRLS_D, and FFPLMS_D, and then used

to identify isolated speech. Additionally, the above mixed

features are combined with TEOCC to form fusion feature

sets, which can use the recognition model SVM to classify

speech signals. The experimental results are shown in Table 3,

Table 4, and Table 5.
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TABLE 5. Comparison of speech recognition of FFPLMS feature set (%).

TABLE 6. speech recognition result of optimized feature set (%).

Vertical analysis of Table 3, 4, and 5 illustrates the

following:

(1) Comparing the recognition results of experiment 1 and

experiment 2, it can be observed that the recognition rate of

three dynamic and static combination features are higher than

that of single static features in different SNR environments.

The advantage of the FFPRLS_D features are more promi-

nent in 0 dB 20 words and 15 dB 20 words, which are 4.73 %

and 3.54% higher than the FFPRLS feature, respectively. The

average recognition rate of dynamic and static combination

features are improved to varying degrees, which shows that

the combination of dynamic and static features can more

effectively represent the information of speech signals. The

result provides further proof that the combination of features

has an optimization effect on recognition performance com-

pared with single feature.

(2) Comparing the recognition results of experiment

2 and experiment 3, it can be seen that after adding the

TEOCC feature that embodies nonlinear energy characteris-

tics, the recognition effect of the fusion feature set is further

improved compared to that of dynamic and static combination

features. From the average recognition rate, the recognition

effect of three fusion feature sets are better than that of

dynamic and static combination features. The fusion feature

set FFPSS_D+TEOCC is 3.68% higher than FFPSS_D. This

result illustrates that TEOCC contains the effective infor-

mation of speech signal and can be used as an auxiliary

feature parameter to improve the performance of a speech

recognition system.

(3) Comparison of experiment 1, 2, and 3 confirms

that the three fusion feature sets proposed have the high-

est recognition rate compared with single static feature

and dynamic-static combination features. Among them,

the recognition rates of fusion feature set FFPSS_D+TEOCC

and FFPLMS_D+TEOCC in the case of 20 dB 10 words are

as high as 94.29 %. The result shows that the combination of
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TEOCC feature reflects the non-linear energy characteristics

of speech signals and eliminates the noise of the speech sig-

nal, thus improving the classification performance of speech

recognition systems, and further verifying the effectiveness

of feature fusion.

D. VALIDITY AND VERIFICATION OF ROBUSTNESS OF

FUSION FEATURE SET OPTIMIZATION

To further confirm the validity of the optimized feature set,

a recognition rate comparison experiment between the fusion

feature set FFPLMS_D+TEOCC and the optimized feature

set is carried out. The optimized feature set is defined as

PCA-Features at the input of SVM, and the experimental

results are provided in Table 6.

It can be observed from Table 6 that after the fusion feature

is optimized by PCA, the recognition rate is improved. This

is because PCA analysis can reduce the correlation between

the feature parameters, retain the important components in

the characteristics, and remove the redundant features. This

analysis can also highlight the differences between the feature

parameters, so that the performance of the speech recognition

system is further improved.

VIII. CONCLUSION AND FURTHER STUDY

In view of the non-stationary time-varying characteristics of

speech signals, this paper used auditory feature CFCC in

noisy speech recognition systems, improved the non-linear

transformation process of feature CFCC, and proposed a

new feature to improve the operation of speech recognition

systems. Due to the poor recognition performance of this

feature in low SNR environments, three speech enhancement

methods were introduced into the feature extraction process,

then three robust features were extracted. In addition, due to

the incomplete voice information represented by the exist-

ing features, the energy feature TEOCC was fused, and the

compensation effect of the feature TEOCC on the auditory

features was verified. Finally, based on the feature redun-

dancy problem of fusion feature set, a feature optimization

method of principal component analysis was proposed, and

its effectiveness was verified. In future research, we would

like to consider finding a better speech enhancement method

combined with feature extraction to achieve better speech

recognition performance. In addition, the study of more

robust feature sets are also the future research direction that

needs to be further explored.
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