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Abstract

The notion of frame has some generalizations such as frames of subspaces, fu-
sion frames and g -frames. In this paper we introduce frames of submodules, fusion
frames and g -frames in Hilbert C∗ -modules and we show that they share many useful
properties with their corresponding notions in Hilbert space. We also generalize a
perturbation result in frame theory to g -frames in Hilbert spaces.

1 Introduction

Frames for Hilbert spaces were introduced in 1952 by Duffin and Schaeffer. Many gener-
alizations of frames were introduced, e.g. frames of subspaces [2, 1], Pseudo-frames [8],
Oblique frames [4], G-frames [11], and fusion frames [3]. Meanwhile Frank and Larson
presented a general approach to the frame theory in Hilbert C∗ -modules [6] and some
results on this subject can be found in [7, 12].

In this note we generalize the frame theory of subspaces, fusion frames and G-frames
to Hilbert C∗ -modules and we also extend some of the known results of these subjects to
Hilbert C∗ -modules.

The content of the present note is as follows: In Section 2, we state some of the
definitions and basic properties of Hilbert C∗ -modules and we introduce fusion frames
and frames of submodules, which are generalizations of frames of subspaces. We also
generalize some of the results about frames of subspaces and fusion frames and frames in
Hilbert C∗ -modules to frames of submodules.

In Section 3, we introduce g -frames in Hilbert C∗ -modules and we generalize some
of the results in [11] to Hilbert C∗ -modules. Finally we generalize a perturbation result
in frame theory to g -frames in Hilbert spaces.

1. Keywords: Frame, fusion frame, g -frame, Hilbert c∗ -module.
2. AMS Subject Classification: 41A58, 42C15, 46L99, 47A05
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2 Frames of Submodules

The theory of Hilbert C∗ -modules is a generalization of Hilbert spaces and we recall some
of the basic definitions and properties of frames in Hilbert C∗ -modules, for more details
see [6].

Let A be a unital C∗ -algebra with identity 1A and for every a ∈ A , set |a| =
(a∗a)1/2 . Let I and J be finite or countable index sets, let C be the complex field and
let N be the set of natural numbers. Throughout this paper X and Y are countably
or finitely generated Hilbert A-modules and {Yi | i ∈ I} is a sequence of closed Hilbert
submodules of Y . For each i ∈ I , End∗A(X, Yi) is the collection of all adjointable A-linear
maps from X to Yi and End∗A(X, X) is denoted by End∗A(X).
Definition 2.1. A pre-Hilbert A-module is a left A-module X equipped with an A-
valued inner product 〈., .〉 : X ×X −→ A such that

(i) 〈x, x〉 ≥ 0 for all x in X ;
(ii) 〈x, x〉 = 0 if and only if x = 0;
(iii) 〈x, y〉 = 〈y, x〉∗ for any x, y ∈ X ;
(iv) 〈ax + y, z〉 = a〈x, z〉+ 〈y, z〉 for any a ∈ A , x, y, z ∈ X .
We assume that the linear operations of A and X are compatible, i.e., λ(ax) =

(λa)x for every λ ∈ C , a ∈ A and x ∈ X . For every x ∈ X we define

‖x‖ = ‖〈x, x〉‖1/2 and |x| = 〈x, x〉1/2.

It is known that ‖.‖ is a norm on X . If X is complete with respect to this norm, it is
called a Hilbert A-module (or a Hilbert C∗ -module over A). If X is a Hilbert A-module,
it is a Banach A-module, i.e., ‖ax‖ ≤ ‖a‖.‖x‖ for all a ∈ A , x ∈ X , see [6].

Let X be a Hilbert A-module. We say X is algebrically finitely generated if there
exists a finite subset {xi | 1 ≤ i ≤ n} of X such that X is the A-linear hull of {xi | 1 ≤
i ≤ n} . X is countably generated if there exists a countable subset {xi | i ∈ I} of X
such that X is the norm closure of the A-linear hull of {xi | i ∈ I} .

By Kasparov Stablization Theorem [12], for any countably generated Hilbert A-
module X , we have X ⊕ `2(A) ∼= `2(A), where

`2(A) = {(ai)i∈N :
∑

aia
∗
i converges in ‖.‖A}. (1)

Definition 2.2. Let A be a unital C∗ -algebra and X be a Hilbert A-module. A sequence
{xi : i ∈ I} in X is called a frame for X if there exist real constants C,D > 0 such that
for any x ∈ X ,

C〈x, x〉 ≤
∑
i∈I

〈x, xi〉〈xi, x〉 ≤ D〈x, x〉. (2)

The constants C and D are called a lower and upper frame bound for the frame.
If C = D = λ , the frame is called a λ-tight frame. If C = D = 1,the frame is called
a normalized tight frame or a Parseval frame. If the sum in middle of (2) converges in
norm, the frame is standard. We say that {xi : i ∈ I} is a frame sequence if it is a
frame for the closure of A-linear hull of {xi : i ∈ I} . A closed submodule M of a
Hilbert C∗ -module X is complemented if for some closed submodule N of X we have
X = M ⊕ N and πM : X −→ M is the orthogonal projection of M . We say M is
orthogonally complemented if X = M ⊕M⊥ and in this case πM ∈ End∗A(X, M).
Definition 2.3. Let A be a unital C∗ -algebra, X be a Hilbert A-module and let {vi :
i ∈ I} be a family of weights in A , i.e., each vi is a positive invertible element from the
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center of the C∗ -algebra A . A sequence of closed submodules {Mi : i ∈ I} is a frame
of submodules if every Mi is orthogonally complemented and there exist real constants
0 < C ≤ D < ∞ such that

C〈x, x〉 ≤
∑
i∈I

v2
i 〈πMi(x), πMi(x)〉 ≤ D〈x, x〉 for x ∈ X. (3)

We call C and D the lower and upper bounds of the frame of submodules, and like [3] we
call {(Mi, vi) : i ∈ I} a fusion frame. As usual if C = D = λ , the family {Mi; i ∈ I} is
called a λ-tight frame of submodules with respect to {vi : i ∈ I} and if C = D = 1, it is
called a Parseval or a normalized tight frame of submodules.

If in (3) the sum converges in norm, it is called a standard frame of submodules.
If X = ⊕Mi , the family {Mi : i ∈ I} is called an orthogonal basis of submodules, and
{(Mi, vi) : i ∈ I} is called an orthonormal fusion frame. If in (3) we only require to have
the upper bound, then {Mi : i ∈ I} is called a Bessel sequence and {(Mi, vi) : i ∈ I}
is a Bessel fusion frame with Bessel bound D . We note that if {Mi : i ∈ I} is a Bessel
sequence, by corollary 15.3.9 of [12] each πMi : X −→ Mi is adjointable.
Example 2.4. (a) Let {Mi : i ∈ I} be a sequence of Hilbert A-modules and

X = ⊕i∈IMi = {x = (xi) : xi ∈ Mi and
∑
i∈I

〈xi, xi〉 is norm convergent in A}.

Then X is a Hilbert A-module with A-valued inner product 〈x, y〉 =
∑

i∈I〈xi, yi〉 ,
where x = (xi)i∈I and y = (yi)i∈I , pointwise operations and the norm defined by
‖a‖ = ‖〈a, a〉‖1/2 , see [7].

Plainly {Mi : i ∈ I} is a standard Parseval frame of submodules of X with respect
to {vi : i ∈ I} , where vi = 1 for each i ∈ I .

(b) If X is a Hilbert A-module, then by (a)

`2(I, X) = {x = (xi)i∈I : xi ∈ X,
∑
i∈I

〈xi, xi〉 is norm convergent in A}

is a Hilbert A-module.
A small modification in the proof of Theorem 3.2 in [2] gives the following result.

Theorem 2.5. Let {vi : i ∈ I} be a family of weights in A . Let for each i ∈ I , Mi

be an orthogonally complemented submodule of X , and let {fij : j ∈ Ii} be a frame for
Mi with bounds Ci and Di . Suppose 0 < C = inf Ci ≤ D = supi Di < ∞ . Then the
following conditions are equivalent

(a) {vifij : i ∈ I, j ∈ Ii} is a frame for X ,
(b) {(Mi, vi) : i ∈ I} is a fusion frame for X .

Definition 2.6. Let X be a Hilbert A-module. (a) A sequence {fi : i ∈ I} in X
is complete if the A-linear hull of {fi : i ∈ I} is dense in X , (b) a family of closed
submodules {Xi : i ∈ I} of X is complete if the A-linear hull of

⋃
i∈I Xi is dense in X .

Our next result is a generalization of Lemmas 3.4 and 3.5 in [2].
Lemma 2.7. Let X be a Hilbert A-module such that each closed submodule of X is
orthogonally complemented, let {Mi : i ∈ I} be a family of closed submodules of X and
let {vi : i ∈ I} be a family of weights in A . Let for each i ∈ I , {fij : j ∈ Ii} be a frame
of Mi . Then we have

(a) if {(Mi, vi) : i ∈ I} is a fusion frame for X , then {Mi : i ∈ I} is complete,
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(b) {Mi : i ∈ I} is complete if and only if {fij : i ∈ I, j ∈ Ij} is complete.
Proof. It is enough to consider W , the closed A-linear hull of {Mi : i ∈ I} and note
that X = W ⊕W⊥ . �

We note that if A is K(H), the algebra of compact operators on a Hilbert space
H , then all closed submodules of all Hilbert A-modules are orthogonally complemented
[10].

Our next result is analogous to Lemma 3.9 in [2].
Lemma 2.8. Let X be a Hilbert A-module and let {(Mi, vi) : i ∈ I} be a Bessel fusion
sequence for X with Bessel bound D . Then for each x = (xi)i∈I in ⊕i∈IMi ,

∑
i∈I vixi

is convergent unconditionally and ‖
∑

i∈I vixi‖2 ≤ D‖x‖2 .
Proof. Let x = (xi)i∈I be an element of ⊕i∈IMi . Assume that J is a finite subset of I
and y =

∑
i∈J vixi . Since πMi is self adjoint

〈y, y〉 = 〈y,
∑
i∈J

vixi〉 =
∑
i∈J

vi〈y, xi〉 =
∑
i∈J

vi〈y, πMi(xi)〉 =
∑
i∈J

〈viπMi(y), xi〉.

Now by [7, Prop. 1.1]

‖〈y, y〉‖2 ≤ ‖
∑
i∈J

v2
i 〈πMi(y), πMi(y)〉‖.‖

∑
i∈J

〈xi, xi〉‖.

Since
∑

i∈J v2
i 〈πMi(y), πMi(y)〉 ≤

∑
i∈I v2

i 〈πMi(y), πMi(y)〉 ≤ D〈y, y〉 and these elements
are positive we have

‖
∑
i∈J

v2
i 〈πMi(y), πMi(y)〉‖ ≤ ‖

∑
i∈I

v2
i 〈πMi(y), πMi(y)〉‖ ≤ D‖〈y, y〉‖.

Similarly ‖
∑

i∈J〈xi, xi〉‖ ≤ ‖
∑

i∈I〈xi, xi〉‖ = ‖〈x, x〉‖ = ‖x‖2 . On the other hand by
definition ‖y‖2 = ‖〈y, y〉‖ . Hence ‖y‖4 ≤ D‖y‖2‖

∑
i∈J〈xi, xi〉‖ ≤ D‖y‖2.‖x‖2 . Therefore

‖
∑

i∈J vixi‖2 ≤ D‖
∑

i∈J〈xi, xi〉‖ ≤ D‖x‖2 , which shows that
∑

i∈I vixi is convergent
unconditionally and ‖

∑
i∈I vixi‖2 ≤ D‖x‖2 . �

We can also generalize Theorem 4.1 of [6] to fusion frames.
Theorem 2.9. (frame transform) Let A be a unital C∗ -algebra and let X be a finitely
or countably generated Hilbert A-module. Assume that {(Mi, vi) : i ∈ I} is a standard
fusion frame for X with bounds C and D . Then the corresponding frame transform
θM,v : X −→ `2(I,X) defined by θM,v(x) = (viπMi(x))i∈I for x ∈ X , is an isomorphic
imbedding with closed range, and its adjoint operator θ∗M,v : `2(I, X) −→ X is surjective,
bounded and defined by θ∗M,v(y) =

∑
i∈I viπMi(yi) for all y = (yi)i∈I in `2(I, X).

Proof. Since {(Mi, vi) : i ∈ I} is a standard fusion frame, the frame transform is
well-defined and for each x ∈ X ,

C〈x, x〉 ≤
∑
i∈I

v2
i 〈πMi(x), πMi(x)〉 = 〈θM,v(x), θM,v(x)〉 ≤ D〈x, x〉.

Now since 〈x, x〉 and 〈θM,v(x), θM,v(x)〉 are positive elements of C∗ -algebra A , we obtain
√

C‖x‖ ≤ ‖θM,v(x)‖ ≤
√

D‖x‖.

Hence θM,v is one to one, bounded ‖θM,v‖ ≤
√

D and since X is complete, θM,v(X) is
closed in `2(I, X). Therefore θM,v : X −→ `2(I, X) is an isomorphic imbedding with
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norm closed range and by [7, Theorem 3.2], θ∗M,v is surjective. To find the values of θ∗M,v ,
let y = (yi) ∈ `2(I,X). For every x ∈ X ,

〈x, θ∗M,v(y)〉 = 〈θM,v(x), y〉 =
∑
i∈I

〈viπMi(x), yi〉 =
∑
i∈I

〈x, viπMi(y)〉 = 〈x,
∑
i∈I

viπMi(yi)〉.

(4)
Since the above relation holds for each x ∈ X , then θ∗M,v(y) =

∑
i∈I viπMi(yi) for all

y = (yi) ∈ `2(I,X), moreover θ∗M,v is bounded, ‖θ∗M,v‖ ≤ ‖θM,v‖ ≤
√

D . �
We note that if we regard θM,v : X −→ θM,v(X), then θM,v is invertible and by [12,

Theorem 15.3.8] or [7, Theorem 3.2], θ∗M,v : θM,v(X) −→ X is invertible. We also note
that if {Mi : i ∈ I} is a standard Parseval frame, then θM,v is an isometry.
Definition 2.10. Let {(Mi, vi) : i ∈ I} be a standard fusion frame for X . Then the
fusion frame operator SM,v for {(Mi, vi) : i ∈ I} defined by

SM,v(x) = θ∗M,vθM,v(x) =
∑
i∈I

v2
i πMi(x), (x ∈ X).

Our next result is a generalization of [6, Theorem 6.1.] and [3, Prop. 4.1].
Theorem 2.11 (Reconstruction formula). Let {(Mi, vi) : i ∈ I} be a standard
fusion frame with bounds C and D . Then its associated frame operator SM,v is a positive
invertible operator on X such that for all x ∈ X ,

x =
∑
i∈I

v2
i s
−1
M,v(πMi(x)).

Proof. For any x, y ∈ X we have

〈SM,v(x), y〉 = 〈
∑
i∈I

v2
i πMi(x), y〉 =

∑
i∈I

v2
i 〈πMi(x), y〉 =

∑
i∈I

v2
i 〈πMi(x), πMi(y)〉

= 〈x,
∑

i

v2
i πMi(y)〉 = 〈x, SM,v(y)〉,

which shows that SM,v is a self-adjoint map and the above equality for y = x shows that
SM,v is positive. Since {(Mi, vi) : i ∈ I} is a fusion frame with bounds C and D , for
every x ∈ X we have

C〈x, x〉 ≤
∑
i∈I

v2
i 〈πMi(x), πMi(x)〉 = 〈SM,v(x), SM,v(x)〉 ≤ D〈x, x〉.

As we mentioned earlier we can take θM,v and θ∗M,v invertible, so SM,v : X −→ X is
invertible and for every x ∈ X , x = S−1

M,vSM,v(x) =
∑

i∈I v2
i S

−1
M,vπMi(x).

Also by using the proof of Theorem 3.2 of [7] we can conclude that SM,v is invertible.
�

Our next result is a generalization of Prop. 3.11 of [2].
Theorem 2.12. Let {(Mi, vi) : i ∈ I} be a standard fusion frame for X with bounds C
and D and frame operator SM,v . If T ∈ End∗A(X) is an invertible operator on X such
that for each i ∈ I , T ∗T (Mi) ⊆ Mi , then {(TMi, vi) : i ∈ I} is a standard fusion frame
for X with frame operator TSM,vT

−1 .
Proof. Firstly for each i ∈ I , T : Mi −→ TMi is invertible, so each TMi is a closed
submodule of X . We show that X = TMi ⊕ T (M⊥

i ). Since X = TX , then for each
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x ∈ X , there exists y ∈ X such that x = Ty . On the other hand y = u + v , for some
u ∈ Mi and v ∈ M⊥

i . Hence X = Tu + Tv , where Tu ∈ T (Mi) and Tv ∈ T (M⊥
i ).

Plainly T (Mi) ∩ T (M⊥
i ) = (0), therefore X = T (Mi) ⊕ T (M⊥

i ). Now by assumption
T ∗ : TMi −→ Mi , therefore T : Mi −→ TMi is adjointable, see [7].

Hence for every g ∈ Mi , h ∈ M⊥
i we have T ∗Tg ∈ Mi and therefore 〈Tg, Th〉 =

〈T ∗Tg, h〉 = 0, so T (M⊥
i ) ⊆ (TMi)⊥ and consequently (TM⊥

i ) = (TMi)⊥ which implies
that TMi is orthogonally complemented and πTMi = TπMiT

−1 . Now by using Prop. 1.2
of [7] for T and T−1 very easily we conclude that for each x ∈ X ,

C‖T−1‖−2.‖T‖2〈x, x〉 ≤ ‖T−1‖−2
∑

v2
i |πMi(T

−1x)|2 ≤
∑

v2
i |πTMi(x)|2

≤ ‖T‖2
∑

v2
i |πMi(T

−1x)|2 ≤ ‖T‖2.‖T−1‖2D〈x, x〉.

Since {(Mi, vi) : i ∈ I} is standard, the above inequalities shows that {(TMi, vi) : i ∈ I}
is a standard fusion frame. Secondly for each x ∈ X we have

SM,v(T−1x) =
∑

v2
i πMi(T

−1x) = T−1(
∑

v2
i πTMi(x)) = T−1STM,v(x).

Therefore STM,v = TSM,vT
−1 . �

3 G-Frames

Sun in [11] introduced g -frames for Hilbert spaces, in this section we extend this notion
to Hilbert C∗ -modules. Let X and Y be Hilbert A-modules and for each i ∈ I , Yi be a
closed submodule of Y .
Definition 3.1. A sequence {Λi ∈ End∗A(X, Yi) : i ∈ I} is called a g -frame or a
generalized frame in X with respect to {Yi : i ∈ I} if there exist constants C,D > 0 such
that for every x ∈ X ,

C〈x, x〉 ≤
∑
i∈I

〈Λix,Λix〉 ≤ D〈x, x〉. (5)

As usual C and D are g -frame bounds of {Λi : i ∈ I} . If C = D = λ , the g -frame is
called λ-tight and if C = D = 1, it is called a Parseval or a normalized tight g -frame.
The g -frame is standard if for every x ∈ X , the sum in (5) converges in norm. If for each
i , Yi = Y , we call it a g -frame of X with respect to Y .
Examples 3.2. (a) For every fusion frame {(Mi, vi) : i ∈ I} for X with respect to
{vi : i ∈ I} , the sequence {viπMi ∈ End∗A(X, Mi) : i ∈ I} is a g -frame of X with respect
to {Mi : i ∈ I} .
(b) Let {xi : i ∈ I} be a frame of X . For each i ∈ I , we define Txi : X −→ A by Txi(x) =
〈x, xi〉 for all x ∈ X . Then Txi is adjointable with adjoint T ∗xi

defined by T ∗xi
(a) = axi for

each a ∈ A , because for every a ∈ A , x ∈ X we have 〈〈x, xi〉, a〉A = 〈x, xi〉a∗ = 〈x, axi〉.
Therefore {Txi ∈ End∗A(X, A) : i ∈ I} is a g -frame of X with respect to A .

Just like frames, for g -frames we can define the frame transform θ , the synthesis
operator θ∗ and the g -frame operator S as follows:

θ : X −→ ⊕i∈IYi, θ(x) = (Λjx)j∈I ,

θ∗ : ⊕i∈IYi −→ X, θ∗(y) =
∑

Λ∗j (yj) for all y = (yj) in ⊕j∈IYj , and S = θ∗θ :
X −→ X gives by S(x) =

∑
Λ∗jΛjx for each x ∈ X . We know that ‖θ∗‖ ≤

√
D and
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θ : X −→ θ(X) is invertible with ‖θ−1‖ ≤ 1√
C

. Moreover S is positive, self-adjoint and

invertible with ‖S‖ ≤ D and ‖S−1‖ ≤ 1
C .

Now we are able to generalize Theorem 2.5 and also Theorem 3.2 of [2] to g -frames.
Theorem 3.3. Let for every i ∈ I , Λi ∈ End∗A(X, Yi) and {fij : j ∈ Ii} be a frame
for Yi with frame bounds Ci , Di and let 0 < C = inf Ci ≤ D = supDi < ∞ . Then the
following conditions are equivalent

(i) {Λ∗i fi,j : i ∈ I, j ∈ Ii} is a frame for X ,
(ii) {Λi : i ∈ I} is a g -frame for X .

Proof. Let i ∈ I . Since
∑

i∈I

∑
j∈Ii

|〈Λix, fij〉|2 =
∑

i∈I

∑
j∈Ii

|〈x,Λ∗i fij〉)2 and {fij :
j ∈ Ii} is a frame for Yi with bounds Ci , Di we have

C
∑
i∈I

|〈Λix,Λix〉|2 ≤
∑
i∈I

Ci|〈Λix,Λix〉|2 ≤
∑
i∈I

∑
j∈Ii

|〈Λix,Λix〉|2

≤
∑
i∈I

Di|〈Λix,Λix〉|2 ≤ D
∑
i∈I

|〈Λix,Λix〉|2.

which shows that {Λ∗i (fij) : i ∈ I, j ∈ Ii} is a frame for X if and only if {Λi : i ∈ I} is
a g -frame for X . �

Our next result is analog to Theorem 1 of [11].
Corollary 3.4. Let for each i ∈ I , Λi ∈ End∗A(X, Yi) and {fij : j ∈ Ii} be a Parseval
frame of Yi . Then we have
(i) {Λi : i ∈ I} is a g -frame (resp. g -Bessel sequence, tight g -frame) for X if and only
if {Λ∗i fij : i ∈ I, j ∈ Ii} is a frame (resp. Bessel sequence, tight frame) for X .
(ii) The g -frame operator of {Λi : i ∈ I} is the frame operator of {Λ∗i fij : i ∈ I, j ∈ Ii} .
Proof. (i) Follows from the above theorem.
(ii) For every x ∈ X and y ∈ Yi we have

〈x,Λ∗i y〉 = 〈Λix, y〉 =
∑
j∈Ii

〈Λix, fij〉〈fij , y〉 =
∑
j∈Ii

〈x, Λ∗i fij〉〈y, fij〉∗

= 〈x,
∑
j∈Ii

〈y, fij〉Λ∗i fij〉.

Hence Λ∗i y =
∑

j∈Ii
〈y, fij〉Λ∗i fij . By using this result we can write∑

i∈I

Λ∗i Λix =
∑
i∈I

∑
j∈Ii

〈Λix, fij〉Λ∗i (fij) =
∑
i∈I

∑
j∈Ii

〈x,Λ∗i (fij)〉Λ∗i (fij)

=
∑
i∈I

∑
j∈Ii

〈x, Λ∗i fij〉Λ∗i fij .

and we have the result. �
Theorem 3.5. Let {Λj ∈ End∗A(X, Yj) : i ∈ I} be a g -frame with bounds C,D > 0
and g -frame operator S , let M be a Hilbert A-module and let T ∈ End∗A(M,X) be
invertible. Then {ΛjT ∈ End∗A(M,Yj) : i ∈ I} is a g -frame with g -frame operator T ∗ST
with bounds C/‖T−1‖2 , D‖T‖2 .
Proof. A simple calculation shows that if {Λj ∈ End∗A(X, Yj) : j ∈ I} is a g -frame
with bounds C and D , then {ΛjT ∈ End∗A(M,Yj); j ∈ I} is a g -frame with respect to
{Yi : i ∈ I} and for every x ∈ M , C〈Tx, Tx〉 ≤ 〈T ∗STx, x〉 ≤ D〈Tx, Tx〉. Moreover for
every x ∈ M ,

T ∗ST (x) = T ∗(
∑

j

Λ∗jΛjTx) =
∑

j

T ∗Λ∗jΛjTx =
∑

j

(ΛjT )∗(ΛjT )(x).
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Hence by [7, Prop. 1.2] for every x ∈ M ,

C

‖T−1‖2
〈x, x〉 ≤ 〈T ∗STx, x〉 =

∑
j

〈ΛjTx,ΛjTx〉 ≤ D‖T‖2〈x, x〉.

Therefore {ΛjT : j ∈ I} is a g -frame of M with respect to {Yj : j ∈ I} with g -frame
operator T ∗ST . �
Corollary 3.6. Let {Λj ∈ End∗A(X, Yj) : j ∈ I} be a g -frame with bounds C , D and g -
frame operator S . Then {Λ̂j = ΛjS

−1 ∈ End∗A(X, Yj) : j ∈ I} is a g -frame with bounds
1/D , 1/C , g -frame operator S−1 and for every x ∈ X , x =

∑
Λ̂iΛ∗i x =

∑
(Λ̂i)∗Λi(x).

Proof. If in the above lemma we take M = X and T = S−1 , we conclude that {Λ̂j =
ΛjS

−1 ∈ End∗A(X, Yj) : j ∈ I} is a g -frame with g -frame operator S−1 and for every
x ∈ X we have

1
D
〈x, x〉 ≤ 1

‖S‖
〈x, x〉 ≤

∑
j

〈Λ̂jx, Λ̂jx〉 = 〈S−1x, x〉 ≤ ‖S−1‖〈x, x〉 ≤ 1
C
〈x, x〉.

Moreover since for every i ∈ I , (Λ̂i)∗ = S−1Λ∗i and for every x ∈ X , x = S−1Sx = SS−1x ,
then x =

∑
i Λ̂iΛ∗i x =

∑
i(Λ̂i)∗Λi(x). �

The next result is a generalization of [1, Theorem 2.8] to g -frames in Hilbert spaces.
Theorem 3.7. Let H and K be Hilbert spaces and for each i ∈ I , Ki be a closed
subspace of K . Let {Λj ∈ B(H,Kj) : j ∈ I} be a g -frame for H with respect to
{Kj : j ∈ I} . If {µj ∈ B(H,Kj) : j ∈ I} is a family of maps such that the map
V : H −→ H given by V (f) =

∑
(µ∗jµj − Λ∗jΛj)(f) is a compact operator and H1 is

the closed linear span of
⋃

j∈I µ∗j (Kj), then {µj ∈ B(H1,Kj) : j ∈ I} is a g -frame with
respect to {Kj : j ∈ I} .
Proof. Plainly V is a self-adjoint operator on H . Let S be the g -frame operator of
{Λj ∈ B(H,Kj) : j ∈ I} . If we take T = S + V : H −→ H , then T is a bounded linear
self-adjoint operator, with ‖T‖ ≤ D + ‖V ‖ , we also have

‖T‖ = sup
‖f‖≤1

|〈Tf, f〉| = sup
‖f‖≤1

∑
j

‖µjf‖2.

Hence for every f ∈ H ,

〈Tf, f〉 =
∑

j

‖µjf‖2 ≤ ‖T‖.‖f‖2 ≤ (D + ‖V ‖)‖f‖2. (6)

Now S−1V is compact and S−1T = I + S−1V , so a small modification of the proof of
Theorem 2.8 in [1] shows that T has a closed range, and N(T ) = H⊥

1 , because if f ∈ N(T ),
then T (f) = 0 and therefore 〈Tf, f〉 = 0, so for every j ∈ I , µj(f) = 0, which implies
that f is orthogonal to span(∪jµ

∗
j (Kj)) = H1 , i.e., f ∈ H⊥

1 . Conversely if f ∈ H⊥
1 , then

a simple calculation shows that T (f) = 0. Therefore Range(T ) = (N(T ∗))⊥ = N(T )⊥ =
H1, and T induces a bounded linear, self-adjoint operator T1 = T |H1 : H1 −→ H1 which
is invertible. Now by Cauchy-Schwarz inequality and (6) for every f ∈ H1 ,

‖T1(f)‖4 = (〈
∑

j

µ∗jµjf, T1f〉)2 = (
∑

j

〈µjf, µjT1f〉)2 (7)

≤ (
∑

j

‖µjf‖2)(
∑

j

‖µjT1f‖2) ≤ (
∑

j

‖µjf‖2)(D + ‖V ‖)‖T1f‖2. (8)
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Hence for every f ∈ H1 , ∑
j

‖µjf‖2 ≥ 1
D + ‖V ‖

.
1

‖T−1‖2
.‖f‖2,

and therefore we have the result. �
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